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Abstract We study joint efficient estimation of two parameters dominating either the
inverse-Gaussian or gamma subordinator, based on discrete observations sampled at
(tn

i )
n
i=1 satisfying hn := maxi≤n(tn

i − tn
i−1) → 0 as n → ∞. Under the condition that

Tn := tn
n → ∞ as n → ∞ we have two kinds of optimal rates,

√
n and

√
Tn . More-

over, as in estimation of diffusion coefficient of a Wiener process the
√

n-consistent
component of the estimator is effectively workable even when Tn does not tend to
infinity. Simulation experiments are given under several hn’s behaviors.

Keywords Efficient estimation · Gamma subordinator · High-frequency sampling ·
Inverse-Gaussian subordinator · Optimal rate

1 Introduction

A subordinator Z = (Zt )t∈R+ is a one-dimensional non-decreasing càdlàg (right con-
tinuous and having left hand side limits) process a.s. starting from the origin with
independent and stationary increments. For any subordinator without drift, there cor-
responds a Lévy measure ν satisfying

∫ 1
0 |z|ν(dz) < ∞ and supported by R+ for

which

ϕZt (u) = exp

{

t
∫
(eiuz − 1)ν(dz)

}

, u ∈ R, t ∈ R+. (1)

This is a special case of the so called Lévy–Khintchine formula. Here and in the
sequel u �→ ϕξ (u) stands for the characteristic function of ξ , a random variable or a
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182 H. Masuda

distribution. Given a subordinator Z the law at time 1, say L(Z1), is uniquely associated
with an infinitely divisible distribution whose support is contained in R+ = [0,∞);
see, e.g., Bertoin (1996) for a systematic account of subordinators. A subordinator
plays a role as a natural continuous-time analogue of independent and identically dis-
tributed (iid) sequence of positive random variables, which appears in, e.g., theory of
dams (Moran 1959) and insurance theory (Huzak et al. 2004).

In this note we shall present two case studies of estimating a subordinator based on
a kind of high-frequency discrete data. We shall consider two specific subordinators
such that L(Z1) = I G(δ, γ ) and �(δ, γ ) admitting the density (w.r.t. the Lebesgue
measure) given by

p(x; δ, γ ) = δeδγ√
2π

x−3/2 exp

{

− 1

2

(

γ 2x + δ2

x

)}

1R+(x), (2)

p(x; δ, γ ) = γ δ

�(δ)
xδ−1 exp(−γ x)1R+(x), (3)

respectively, where δ and γ are positive constants. The Lévy measure ν in the for-
mula (1) of the inverse-Gaussian subordinator (resp. the gamma subordinator) admits
a density (w.r.t. the Lebesgue measure) given by

g(z; δ, γ ) = δ√
2π

z−3/2 exp

(

− γ 2z

2

)

1R+(z),

(

resp. g(z; δ, γ ) = δ

z
exp(−γ z)1R+(z)

)

,

hence a.s. has infinitely many jumps over each finite time interval as ν(R) = ∞. In
each case we are interested in estimating θ = (δ, γ ) when Z is discretely observed
with available data being

Ztn
0
, Ztn

1
, . . . , Ztn

n
,

where (tn
i )

n
i=0 is a nonrandom positive sequence satisfying

0 ≡ tn
0 < tn

1 < · · · < tn
n =: Tn

for each n ∈ N. Throughout this note we suppose

{
hn := max1≤i≤n(tn

i − tn
i−1) → 0,

Tn � nhn,
(4)

as n → ∞, where an � bn means that there exists a constant c > 0 such that
c−1 ≤ an/bn ≤ c for every n large enough. For joint estimation of δ and γ we shall
additionally suppose Tn → ∞; then the sampling scheme comes near the ideal but
unrealistic continuous observation (Zt )t≤T with T → ∞.

Our main goal is to derive asymptotic behaviors of the corresponding maximum-
likelihood estimators (MLE) of θ := (δ, γ ), say θ̂n = (δ̂n, γ̂n). In both cases we
suppose that the parameter space 	 ⊂ (0,∞)2 is a bounded domain whose closure,
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Estimation of IG and � subordinators 183

say 	−, is contained in (0,∞)2 and that there is a true parameter which lies in 	.
Denote by Pn

θ the image measure of (Ztn
i
)ni=0 associated with θ . We shall derive the

local asymptotic normality (LAN) as well as the asymptotic normality of the MLEs
with rate diag(

√
n,

√
Tn) when Tn → ∞, both uniform in 	. Here the asymptotic

normality with rate diag(
√

n,
√

Tn) means that

( √
n(δ̂n − δ)√

Tn(γ̂n − γ )

)

⇒ N2(0, I (θ)−1) : (5)

especially, in both of the inverse-Gaussian and gamma cases, I (θ) turns out to be
diagonal, which implies that the joint ML estimation of δ and γ is asymptotically
mutually independent under the asymptotics (4) with Tn → ∞; see the expressions
(11) and (15) below for specified expressions of I (θ). This is a similar phenomenon
to the well known case where Z is a Wiener process such that L(Z1) = N1(γ, δ), or,
more generally, a diffusion process. Also, δ can be consistently estimated even when
(Tn) is bounded in n; in this case γ may be unknown, hence a nuisance parameter.

On and after the next section, we shall present our asymptotic results in Sect. 2,
then some simulation results in Sect. 3, and finally the proofs in Sect. 4. Section 4.1
contains a useful statement, which may apply to much more general situations than
ours.

We end this section with some remarks.

Remark 1 If we were able to observe continuous data (Zt )t∈[0,T ], the likelihood the-
ory has been already established: see, e.g., Akritas and Johnson (1981). Denote by PT

θ

the law of a sample path (Zt )t∈[0,T ] on the Skorohod space (i.e., the space of càdlàg
processes endowed with the Skorohod topology), and fix any θ i = (δi , γ i ), i = 1, 2,
and T > 0. Then, in both of the inverse-Gaussian and gamma cases, PT

θ1 and PT
θ2

fail to be mutually absolutely continuous as soon as δ1 �= δ2 (see, e.g., Akritas and
Johnson 1981, Theorem 4.1), so that we cannot consider the likelihood estimation
from a continuous record while it makes sense in discrete-observation cases as the
likelihood does exist.

Remark 2 Recall that, for general Lévy processes the likelihood function can be writ-
ten down only up to the Fourier inversion formula. This fact makes it difficult to
develop a general feasible procedure for likelihood estimation of a multi-dimensional
parameter contained in a Lévy process (not necessarily a subordinator, of course)
from high-frequency data. As a matter of fact, specification of the parametric opti-
mal rates in estimating a general Lévy process seems to be an intricate problem. For
example, Masuda (2006) previously studied the LAN property for discretely observed
non-Gaussian stable Lévy processes, where various optimal rates were found for each
component: there the scaling property, which is inherent in the stable case among
general Lévy processes, was fully utilized, and it has been shown that the Fisher infor-
mation matrix is always degenerate as long as joint estimation of scale and index
parameters is concerned. Such a phenomenon does not arise in the present context.

Remark 3 If we suppose tn
i − tn

i−1 ≡ h > 0 instead of (4), then the situation is nothing
but the classical iid framework as {Zih − Z(i−1)h}i≤n forms an iid sequence of random

123



184 H. Masuda

variables. In this case, Woerner (2001) systematically studied the LAN property for
much more general Lévy processes when parameter’s dimension is one, and Jongbloed
and van der Meulen (2006) studied the parametric estimation of subordinators and
induced Ornstein-Uhlenbeck processes based on the empirical characteristic function
(their estimator is more robust than the MLE, but not efficient). The convergence rate
of the MLE is then of course

√
n for both of δ and γ , and we can readily get the

closed form of the corresponding Fisher information matrices (depending on h in this
case); more precisely, when tn

i − tn
i−1 ≡ h > 0 the forms of the asymptotic Fisher

information matrices are different from (11) and (15) in our framework. To be clearer,
let us mention the gamma case. Suppose tn

i − tn
i−1 ≡ h > 0 so that Tn = nh → ∞.

Then, by a routine argument (e.g., van der Vaart 1998) we can see that the MLE fulfils

√
n

(
δ̂n − δ

γ̂n − γ

)

⇒ N2

((
0
0

)

,

(
h2ψ ′(δh) −h/γ

−h/γ hδ/γ 2

)−1
)

,

whereψ(x) := ∂x�(x)/�(x) denotes the digamma function. Actually, the form of the
asymptotic variance is different from that of (15), especially, non-diagonal for every
h > 0. Though we have

√
n-consistency for both of δ̂n and γ̂ , we cannot accommodate

the bounded-domain asymptotics, i.e., Tn = O(1).

Remark 4 Finally we mention Basawa and Brockwell (1978, 1980), which studied
estimation of the gamma subordinator (also, the stable subordinator) for a very differ-
ent asymptotics from (4). Concerning the gamma subordinator Z associated with the
density (3), they considered the following situation. Suppose we observe all jump
sizes of Z greater than or equal to some ε > 0, on an interval [0, T ]. They con-
sidered the MLE (δ̃T,ε, γ̃T,ε) of (δ, γ ) based on the available sample D(T, ε) :=
{(τi ,Ui (ε)); i = 1, 2, . . . , N (T, ε)}, where τi denotes the i th jump time, Ui (ε) the
jump size of i th observation, and N (T, ε) the number of the jumps in [0, T ] (all of
these three quantities are random). Note that such an asymptotics are possible only
when we can observe the whole path (Zt )t≤T ; compared with this, our framework
may be more realistic. Here are two remarks.

• Consider the asymptotics where T → ∞ and then ε → 0. Then Basawa and
Brockwell (1978, Eq. 10) states that

√
T

(
δ̃T,ε − δ

γ̃T,ε − γ

)

⇒ N2

((
0
0

)

,

(
0 0
0 γ 2/δ

))

,

which reveals an important fact, namely, we can estimate δ at a faster rate than√
T . Turning to our asymptotics (4), a faster optimal convergence rate

√
n of δ̂n

than
√

Tn of γ̂n is specified in (5).
• Actually Basawa and Brockwell (1978, 1980) did not make any further inquiry

concerning the asymptotics T → ∞ and ε → 0. Instead, they focused on the case
where T > 0 is fixed and ε → 0. In this case we cannot estimate γ consistently
(more precisely, the corresponding observed information is stochastically bounded
in ε); this point is also seen in our setting, namely, we cannot estimate γ consis-
tently, as soon as Tn is bounded. Then they proved that | log ε|1/2(δ̂T,ε − δ) ⇒
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Estimation of IG and � subordinators 185

N1(0, δT ) as ε → 0, whereas
√

n(δ̂n − δ) ⇒ N1(0, δ2) in our framework (see
Corollary 2).

Although the asymptotics used in Basawa and Brockwell (1978, 1980) and this note
are of different types, as above stated, a similar phenomenon occurs, namely, we can
construct a consistent estimator of δ from a high-frequency sample over any fixed
[0, T ]. Thus we may say that sufficiently high-frequency data of Z on any nonempty
time interval is enough to estimate δ consistently; we might expect that this is the case
for any “scale parameter” of Woerner’ definition (cf. Woerner 2001, Sect. 3.2).

2 Statement of results

We use asymptotic symbols for n → ∞unless otherwise stated. Write�n
i t = tn

i −tn
i−1,

�n
i Z = Ztn

i
−Ztn

i−1
, and ∂θ = ∂/∂θ . Note that the sequence (�n

i Z)ni=1 forms a rowwise
independent triangular array fulfilling

L(�n
i Z) = L(Z�n

i t ) (6)

for each i ∈ {1, 2, . . . , n}. Let |a| := (
∑

k,l a2
kl)

1/2 and a
 denote the transpose for
any matrix a = [akl ]k,l . For a σ(Ztn

i
: i ≤ n)-measurable random variables Xn(θ),

n ∈ N, and a (possibly random) function θ �→ X (θ), we write:

(i) “Xn(θ) ⇒u X (θ)” if
|P Xn(θn) f − P X (θ) f | → 0

for every bounded continuous function f and nonrandom sequence (θn) ⊂ 	−
such that θn → θ , where Pξ denotes the law of ξ ;

(ii) “Xn(θ) →p
u X (θ)” if for every ε > 0 we have

Pn
θn

[|Xn(θn)− X (θ)| > ε] → 0

for every nonrandom sequence (θn) ⊂ 	− such that θn → θ .

By the definitions we see that Xn(θ) →p
u X (θ) implies Xn(θ) ⇒u X (θ).

Given a log-likelihood function θ �→ �n(θ) of class C2(	), we write

Sn(θ) = ∂θ�n(θ) and In(θ) = −∂2
θ �n(θ), (7)

the score function and the observed information matrix, respectively.
With the above-mentioned notation, we formulate the uniform LAN property in

our context as follows. Write

An = diag(
√

n,
√

Tn), (8)

so that A−1
n → 0. We shall say that the experiments (Pn

θ ) is “uniformly An-LAN with
Fisher information I (θ)” if:
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[U1] �n(θ + A−1
n un)−�n(θ)−u


n A−1
n Sn(θ)+ 1

2 u

n A−1

n In(θ)A−1
n un →p

u 0 for any
nonrandom bounded sequence (un) ⊂ R

2 such that un → u;
[U2] There exists a nonrandom I (θ) ∈ R

2⊗2 positive definite for any θ ∈ 	−, such
that A−1

n Sn(θ) ⇒u N2(0, I (θ));
[U3] A−1

n In(θ)A−1
n →p

u I (θ), with the same I (θ) as in [U2].
The forthcoming asymptotic results reveal that the MLE θ̂n is asymptotically effi-

cient in both of inverse-Gaussian and gamma cases (in the sense of Hajék and Le Cam;
see van der Vaart 1998). If θ̂n ∈ 	− is not well-defined, we may assign any number
θ ∈ 	− to θ̂n ; asymptotically, this does not matter.

2.1 Inverse-Gaussian case

When L(Z1) = I G(δ, γ ) whose density is given by (2), we have L(Zt ) = I G(δt, γ )
for each t > 0 since

ϕI G(δ,γ )(u) = exp{δ(γ −
√
γ 2 − 2iu)}.

On account of (6), the target log-likelihood function of (Ztn
i
)ni=0 is given by

�n(θ) =
n∑

i=1

{

log δ + δγ�n
i t − 1

2

(
δ2(�n

i t)2

�n
i Z

+ γ 2�n
i Z

)}

. (9)

Solving ∂θ�n(θ) = 0, we get the explicit MLE:

δ̂n =
[

1

n

{ n∑

i=1

(�n
i t)2

�n
i Z

− T 2
n

ZTn

}]−1/2

, γ̂n = Tn δ̂n

ZTn

. (10)

For the joint estimation we have the following.

Theorem 1 (Unbounded-domain asymptotics) Let Z be a subordinator such that
L(Z1) = I G(δ, γ ) with (δ, γ ) ∈ 	, let �n(θ) and θ̂n = (δ̂n, γ̂n) be as in (9) and (10),
respectively, and suppose (4) and Tn → ∞. Then (Pn

θ ) is uniformly An-LAN with
Fisher information

II G(θ) =
(

2/δ2 0
0 δ/γ

)

, θ ∈ 	, (11)

and we have An(θ̂n − θ) ⇒u N2(0, II G(θ)
−1).

If Tn does not tends to infinity, then the observed information associated with γ is
stochastically bounded in n, and this is the case also for the gamma Lévy process; see
(22) and (23). Nevertheless, this is not the case for estimating δ, and actually we may
use the same estimate as in (10).

Corollary 1 (Bounded-domain asymptotics) Let Z be a subordinator such that
L(Z1) = I G(δ, γ ) with (δ, γ ) ∈ 	, where γ > 0 is fixed while it may be
unknown, let δ̂n be given by (10), and suppose (4) and Tn = O(1). Moreover suppose
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Estimation of IG and � subordinators 187

that δ ∈ (a, b) for some 0 < a < b < ∞. Then (Pn
δ ) is uniformly

√
n-LAN with

Fisher information 2/δ2, and δ̂n fulfils
√

n(δ̂n − δ) ⇒u N1(0, δ2/2).

2.2 Gamma case

When L(Z1) = �(δ, γ ) whose density is given by (3), we get L(Zt ) = �(δt, γ ) for
each t > 0 since

ϕ�(δ,γ )(u) = (1 − iu/γ )−δ.
Thus the log-likelihood function of (Ztn

i
)ni=0 is given by

�n(θ) =
n∑

i=1

{

δ�n
i t log γ − log�(δ�n

i t)+ δ�n
i t log(�n

i Z)− γ�n
i Z

}

. (12)

The corresponding MLE solves

n∑

i=1

(�n
i t){log(δ�n

i t)− ψ(δ�n
i t)} = Tn log

(
ZTn

Tn

)

−
n∑

i=1

(�n
i t) log

(
�n

i Z

�n
i t

)

,

(13)

γ = δ
Tn

ZTn

, (14)

where ψ(x) := ∂x�(x)/�(x) denotes the digamma function.
For each n ∈ N the left-hand side of (13), say fn(δ), is a smooth, positive, and

strictly decreasing function of δ ∈ (0,∞): fn(δ) → 0 (resp. → ∞) as δ → ∞ (resp.
→ 0). So (13) admits a unique root δ̂n a.s. on the event where the right-hand side of
(13) is positive, and we can simply apply, e.g., the bisection search in order to find the
root of (13) readily.

Theorem 2 (Unbounded-domain asymptotics) Let Z be a subordinator such that
L(Z1) = �(δ, γ ) with (δ, γ ) ∈ 	, and let �n(θ) and θ̂n = (δ̂n, γ̂n) be as in (12) and
the solution to (13) and (14), respectively, and suppose (4) and Tn → ∞. Then (Pn

θ )

is uniformly An-LAN with Fisher information

I�(θ) =
(

1/δ2 0
0 δ/γ 2

)

, θ ∈ 	, (15)

and we have An(θ̂n − θ) ⇒u N2(0, I�(θ)−1).

We also have an analogue to Corollary 1.

Corollary 2 (Bounded-domain asymptotics) Let Z be a subordinator such that
L(Z1) = �(δ, γ ) with (δ, γ ) ∈ 	, where γ > 0 is fixed while it may be unknown,
let δ̂n be a solution of (13), and suppose (4) and Tn = O(1). Moreover, suppose that
δ ∈ (a, b) for some 0 < a < b < ∞. Then (Pn

δ ) is uniformly
√

n-LAN with Fisher
information 1/δ2, and δ̂n fulfils

√
n(δ̂n − δ) ⇒u N1(0, δ2).
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Fig. 1 The plot of the bounded function (0,∞) � α �→ {logα − ψ(α)}/{(3α + 1)/(6α2 + α)}, which is
increasing to 1 as α → 0 near the origin

Here is a remark for finding the root of (13) in the equidistant-sampling case,
hn = tn

i − tn
i−1 for each n: in this case (13) can be rewritten as

log(δhn)− ψ(δhn) = log

(
1

n

n∑

i=1

�n
i Z

)

− 1

n

n∑

i=1

log(�n
i Z).

Write this right-hand side as Yn . By a standard argument it is not difficult to show that
hnYn →p

u δ
−1 > 0, hence Yn becomes positive with probability tending to 1. Now,

using the approximation (see Fig. 1)

log(α)− ψ(α) ∼ 3α + 1

6α2 + α
, α ↘ 0,

and taking the positivity of δ into account, we get the approximate MLE δ̃n of δ given
by

δ̃n = 3 − Yn

12hnYn
+

{(
3 − Yn

12hnYn

)2

+ 1

6hnYn

}1/2

,

which, together with γ̃n := δ̃nTn/ZTn in case of Tn → ∞, enables us to bypass the
numerical optimization procedure.

Remark 5 As a naive estimator, we may consider moment estimator based on the first
and second sample moments, utilizing the convergences

1

Tn

n∑

i=1

�n
i Z →p

u
δ

γ
,

1

Tn

n∑

i=1

(�n
i Z)2 →p

u
δ

γ 2 .
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Estimation of IG and � subordinators 189

Table 1 Simulation 1. Means and standard deviations (s.d.) of the estimate based on 1,000 independent
trajectories. Here hn = n−0.7, i.e. Tn = n0.3 → ∞, and (δ, γ ) = (3, 2)

n Tn δ̂ I G
n -mean (s.d.) γ̂ I G

n -mean (s.d.) δ̃�n -mean (s.d.) γ̃ �n -mean (s.d.)

50 3.23 3.0910 (0.3195) 2.1514 (0.5217) 3.0674 (0.4832) 2.2386 (0.8505)

100 3.98 3.0276 (0.2243) 2.0865 (0.4657) 3.0604 (0.3249) 2.2331 (0.7651)

300 5.54 3.0142 (0.1233) 2.0560 (0.3547) 3.0499 (0.1798) 2.1650 (0.6089)

500 6.45 3.0021 (0.0929) 2.0657 (0.3410) 3.0426 (0.1321) 2.1241 (0.5064)

However, the asymptotic behavior of the moment estimator, say θ̂M,n , obtained from
the above convergences is far from being optimal: using the delta method we can
obtain

√
Tn(θ̂M,n − θ) ⇒ N2

(

0,

(
2δ 2γ
2γ 3γ 2/δ

) )

.

This reveals that we cannot use θ̂M,n even as an initial estimate in applying Fisher’s
scoring or one-step improvement because of the slower convergence rate of δ̂M,n .

3 Simulation experiments

We here report some numerical results. For simplicity we carried out equidistant high-
frequency sampling cases, �n

i t = hn for each i ≤ n. For gamma cases, we adopted
the approximate MLE θ̃n := (δ̃n, γ̃n); the results will show that even θ̃n performs well.
In each simulation we simulated 1,000 independent discrete sample paths of Z , and
then computed mean and standard deviation (s.d.) of the obtained 1,000 estimates.
Throughout the true value is (δ, γ ) = (3, 2). For generating pseudorandom-�(p, q)
numbers with p ∈ (0, 1), we used the algorithm developed in Michael et al. (1976).

In Tables 1 and 2, we distinguish inverse-Gaussian and gamma cases by the super-
scripts “I G” and “�”.
Simulation 1. We set hn = n−0.7, so that Tn = n0.3 → ∞ and the jointly consistent
estimation of δ and γ can be done. The results are given in Table 1.
Simulation 2. We set hn = n−0.3, so that Tn = n0.7 → ∞; the total observation-time
domain diverges faster than the previous case. It is observed that:

• accuracy of estimating δ is slightly worse than Simulation 1, which implies that δ
can be estimated more accurately with more high-frequency data; and

• performance of estimating γ is much better than Simulation 1, because of the faster
increase of Tn .

The results are given in Table 2.
Finally, let us look at a case of Tn = O(1) in the inverse-Gaussian case.

Simulation 3. Set hn = 1/n, so that Tn ≡ 1. In this case only δ can be consistently
estimated. The results are given in Table 3: just for reference we also give estimates
γ̂n , which badly behaved and have severe inevitable bias, as was expected.
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190 H. Masuda

Table 2 Simulation 2. Means and standard deviations (s.d.) of the estimate based on 1, 000 independent
trajectories. Here hn = n−0.3, i.e. Tn = n0.7 → ∞, (δ, γ ) = (3, 2)

n Tn δ̂ I G
n -mean (s.d) γ̂ I G

n -mean (s.d.) δ̃�n -mean (s.d) γ̃ �n -mean (s.d.)

50 15.46 3.0812 (0.3190) 2.0630 (0.2941) 3.1331 (0.5908) 2.1335 (0.5235)

100 25.12 3.0384 (0.2152) 2.0487 (0.2248) 3.0319 (0.3988) 2.0470 (0.3557)

300 54.20 3.0058 (0.1224) 2.0095 (0.1392) 2.9866 (0.2059) 2.0030 (0.2130)

500 77.50 3.0115 (0.0933) 2.0087 (0.1138) 2.9713 (0.1534) 1.9911 (0.1741)

Table 3 Simulation 3. Means and standard deviations (s.d.) of the estimate based on 1, 000 independent
trajectories. Here hn = 1/n, i.e. Tn ≡ 1, (δ, γ ) = (3, 2)

n δ̂ I G
n -mean (s.d) γ̂ I G

n -mean (s.d.)

50 3.0760 (0.3220) 2.3424 (0.9575)

100 3.0431 (0.2200) 2.4193 (0.9441)

300 3.0211 (0.1230) 2.3300 (0.9481)

500 3.0114 (0.0935) 2.3123 (0.9044)

1000 3.0011 (0.0674) 2.3603 (0.9735)

4 Proofs

4.1 Preliminary

We shall utilize the results of Sweeting (1980). For convenience, in Theorem 3 below
we shall rephrase them in a more convenient form, which can apply to much more
general situations than our present setting. In this subsection we shall forget our main
context, and target at a log-likelihood function �n(θ) associated with any (possibly
dependent) observation stemming from a sequence of dominated experiments (Pn

θ ).
Let	 ⊂ R

p be a convex domain with compact closure	−, and suppose θ �→ �n(θ)

is of class C2(	) for each n ∈ N. Let (An(θ)) ⊂ R
p⊗p be a sequence of nonrandom

matrices, which are continuous and positive definite in	−, such that |A−1
n (θ)| →u 0,

where →u means the usual uniform convergence in	−. Define Sn(θ) and In(θ) along
with (7), let

Hn(θ) = [Hkl
n (θ)]n

k,l=1 := An(θ)
−1In(θ)An(θ)

−1
,

the normalized observed information matrix, and put In(θ) = [Ikl
n (θ)]p

k,l=1. For

� := (ρk)
p
k=1 ⊂ 	, we introduce the notation

In(�) := [Ikl
n (ρ

k)]p
k,l=1,

and, for each constant a > 0,

Fa
n (θ) := sup

ρk∈	−:|ρk−θ)|≤a|An(θ)−1|,k≤p
|An(θ)

−1{In(�)− In(θ)}An(θ)
−1
|.
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Let Ip denote the p-dimensional identity matrix. As well as the uniform An(θ)-LAN
property introduced in Sect. 2, we say the experiments (Pn

θ ) is “uniformly An(θ)-
LAMN (locally asymptotically mixed normal) with random Fisher information I (θ)”
if the following [U1′] and [U2′] are fulfilled:

[U1′] �n(θ + An(θ)
−1
un) − �n(θ) − u


n An(θ)
−1Sn(θ) + 1

2 u

n An(θ)

−1In(θ)

An(θ)
−1
un →p

u 0 for any nonrandom bounded sequence (un) ⊂ R
p such

that un → u;
[U2′] There exist random vector�(θ) ∈ R

p and random matrix H(θ) ∈ R
p⊗p pos-

itive definite for any θ ∈ 	−, such that (An(θ)
−1Sn(θ), Hn(θ)) ⇒u (�(θ),

H(θ)), where L{�(θ)|H(θ) = H} = Np(0, H).

See, e.g., van der Vaart (1998, Sect. 9) for a brief account of the general LAMN
property.

By means of Sweeting (1980, Theorems 1 and 2) we then obtain

Theorem 3 Suppose there exists a random matrix H(θ) defined on some probability
space (�,A, P), such that H(θ) is P-a.s. positive definite in θ ∈ 	− and that

Hn(θ) ⇒u H(θ). (16)

Moreover, suppose that for every a > 0 we have

sup
ρ∈	−:|ρ−θ |≤a|An(θ)−1|

|An(θ)
−1 An(ρ)− Ip| →u 0 (17)

and
Fa

n (θ) →p
u 0. (18)

Then, we have

(An(θ)
−1Sn(θ), Hn(θ)) ⇒u (H(θ)

1/2 Z , H(θ)), (19)

where L(Z) = Np(0, Ip) and Z is independent of H(θ). Also, there exists a local
maximizer θ̂n of �n(θ) with probability tending to one, for which

An(θ)
−1Sn(θ)− Hn(θ)An(θ)


(θ̂n − θ) →p
u 0. (20)

In particular, (Pn
θ ) is uniformly An(θ)-LAMN with Fisher information H(θ) and

(
Hn(θ)

1/2 An(θ)

(θ̂n − θ), Hn(θ)

)
⇒u (Z , H(θ)). (21)

Remark 6 We have put the conditions (17) and (18) with seemingly stronger forms
than C2 of Sweeting (1980). They may be equivalent if, e.g., supn∈N supθ∈	− |
An(θ)||An(θ)

−1| < ∞, which is not the case when components of An(θ) increase
with different rates as in our case (8).
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Proof of Theorem 3 Equations (19) and (20) follow from Theorems 1 and 2 of Sweet-
ing (1980), respectively, and (21) is then a direct consequence of the continuous map-
ping theorem. As for the uniform An(θ)-LAMN property it suffices to verify [U1′] as
we already have (19) and (20), but from Taylor’s formula and (18) we see that

∣
∣
∣
∣�n(θ + An(θ)

−1un)− �n(θ)− u

n Sn(θ)+ 1

2
u


n Hn(θ)un

∣
∣
∣
∣ � F‖u‖∞

n (θ) →p
u 0

for any bounded sequence un → u in R
p. ��

The following simple corollary of Theorem 3 is enough to prove our main results.

Corollary 3 Suppose that θ �→ �n(θ) is three times differentiable in	, that An(θ) is
independent of θ and diagonal, say

An(θ) = An = diag(A1n, A2n, . . . , Apn),

and that the following statements hold true for any constants a > 0 and ε > 0 and
any nonrandom sequence (θn) ⊂ 	− such that θn → θ :

(a) En
θn

[Hn(θn)] → H(θ), where H(θ) is positive definite for each θ ∈ 	−;

(b) Varn
θn

[Hkl
n (θn)] → 0 for each k, l ∈ {1, . . . , p};

(c) A−1
kn A−1

ln En
θn

[
sup
θ∈	−

|∂θIkl
n (θ)|

]
= O(1) for each k, l ∈ {1, . . . , p}.

Then (19), (20) and (21) hold true. In particular, the experiments {Pn
θ : n ∈ N} is

uniformly An-LAN with the Fisher information matrix H(θ), and An(θ̂n − θ) ⇒u

Np(0, H(θ)−1).

Proof of Corollary 3 Denote an � bn if there exists a constant c > 0 for which
an ≤ cbn for every n large enough. First we show (16) and (18) under (a) to (c);
clearly (17) is automatic. From Markov’s inequality we have for each ε > 0

Pn
θn

[|Hn(θn)− H(θ)| > ε] �
∑

k,l

{

Varn
θn

[Hkl
n (θn)] +

(

En
θn

[Hkl
n (θn)] − Hkl(θ)

)2}

,

the right-hand side tending to zero by means of (a) and (b). This shows that Hn(θ) →p
u

H(θ), hence (16). Next, let Ga
n := Pn

θn
[Fa

n (θn) > ε] for each a > 0, where ε > 0. As
for (18), it suffices to observe that

Ga
n �

∑

k,l

{(

sup
ρ∈	−:|ρ−θn |≤a|A−1

n |
|ρ − θn|

)

· A−1
kn A−1

ln En
θn

[

sup
θ∈	−

|∂θIkl
n (θ)|

]}

� O(|A−1
n |) = o(1)

on account of Markov’s inequality, Taylor’s formula, and (c). ��
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Now let us return to our main framework, where the norming matrix is given by
(8) and the maps θ �→ �n(θ) are smooth in both of the inverse-Gaussian and gamma
cases. It suffices to prove the conditions (a) to (c) of Corollary 3. In the sequel, we
shall consistently use the notation introduced above.

4.2 Inverse-Gaussian case

Proof of Theorem 1. Direct computations yield

Hn(θ) =

⎛

⎜
⎜
⎜
⎝

1

δ2 + 1

n

n∑

i=1

(�n
i t)2

�n
i Z

−
√

Tn

n

sym.
ZTn

Tn

⎞

⎟
⎟
⎟
⎠
. (22)

Fix any (θn) ⊂ 	− such that θn = (δn, γn) → (δ, γ ), and observe that

En
θn

[�n
i Z ] = δn�

n
i t

γn
,

En
θn

[(�n
i Z)2] = δn�

n
i t

γ 3
n

+
(
δn�

n
i t

γn

)2

,

En
θn

[(�n
i Z)−1] = 1

(δn�
n
i t)2

+ γn

δn�
n
i t
,

En
θn

[(�n
i Z)−2] = 1

(δn�
n
i t)4

+ 3γn

(δn�
n
i t)3

+ 2 + γ 2
n

(δn�
n
i t)2

.

With these quantities we see that

En
θn

[Hn(θn)] =
(

2/δ2
n + Tnγn/(nδn) −√

Tn/n
sym. δn/γn

)

→ II G(θ),

hence (a); recall (11). Also, observe that

Varn
θn

[H11
n (θn)] � 1

n

n∑

i=1

En
θn

[{
(�n

i t)2

�n
i Z

− γn�
n
i t

δn
− 1

δ2
n

}2]

� O(hn) = o(1),

Varn
θn

[H22
n (θn)] = δn

Tnγ 3
n

= o(1),

where we applied Hölder’s inequality to the former, from which (b) follows. (c) is
clear in view of (22). ��
Proof of Corollary 1. Note that in the proof of Theorem 1 the condition Tn → ∞ was
not used for H11

n (θ), so that the claim follows on applying the continuous mapping
theorem. ��
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4.3 Gamma case

Proof of Theorem 2. In this case the observed information is nonrandom and

Hn(θ) =

⎛

⎜
⎜
⎜
⎝

1

δ2n

n∑

i=1

(δ�n
i t)2ψ ′(δ�n

i t) −
√

Tn

γ n

sym.
δ

γ 2

⎞

⎟
⎟
⎟
⎠
, (23)

ψ ′ denoting the derivative of ψ , hence (b) is automatic. It suffices to only consider
H11

n (θ). Again fix any (θn) ⊂ 	− such that θn = (δn, γn) → (δ, γ ). On account of
(4) we can find n1 ∈ N for which

sup
n≥n1

sup
i≤n
(δn�

n
i t) < 1.

It follows from Abramowitz and Stegun (1992, Formula 6.4.10) that

|zm+1ψ(m)(z)− (−1)m+1m!| =
∣
∣
∣
∣(−1)m+1m!

∞∑

k=1

(
z

z + k

)m+1∣∣
∣
∣ � |z|m+1 (24)

for each m ∈ N and z ∈ (0, 1). Now fix any ε > 0. By (24) with m = 1 we can find
an integer n2 ≥ n1 for which

sup
n≥n2

sup
i≤n

{
δ−2

n |(δn�
n
i t)2ψ ′(δn�

n
i t)− 1|

}
< ε/2

and |δ−2 − δ−2
n | < ε/2. Then, for every n ≥ n2 we see

∣
∣
∣
∣H11

n (θn)− 1

δ2

∣
∣
∣
∣ ≤ 1

n

n∑

i=1

{

δ−2
n

∣
∣
∣
∣(δn�

n
i t)2ψ ′(δn�

n
i t)− 1

∣
∣
∣
∣

}

+ |δ−2 − δ−2
n | < ε,

yielding (a). Turning to (c), it follows from (24) with m = 2 that

|∂δH11
n (θ)| � 1

n

n∑

i=1

{
|(δ�n

i t)3ψ ′′(δ�n
i t)+ 2| + 2

}
� 1

uniformly in 	− for every n large enough, hence we are done. ��
Proof of Corollary 2. This follows every bit as Corollary 1. ��
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