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Abstract In this article, the problem of constructing efficient discrimination designs
in a Fourier regression model is considered. We propose designs which maximize
the power of the F-test, which discriminates between the two highest order models,
subject to the constraints that the tests that discriminate between lower order models
have at least some given relative power. A complete solution is presented in terms
of the canonical moments of the optimal designs, and for the special case of equal
constraints even more specific formulae are available.
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1 Introduction

The Fourier regression or trigonometric regression model

g2d(x) = a0 +
d∑

j=1

a j sin( j x) +
d∑

j=1

b j cos( j x), x ∈ [−π, π ], (1)

g2d−1(x) = a0 +
d∑

j=1

a j sin( j x) +
d−1∑

j=1

b j cos( j x), x ∈ [−π, π ], (2)
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where d ∈ IN0, is used to describe periodic phenomena (see, e.g., Mardia (1972),
Kitsos et al. (1988) or the collection of research papers in biology edited by Lestrel
(1997)). Moreover, there are several applications of trigonometric regression models
in two-dimensional shape analysis in biology. We refer to Younker and Ehrlich (1977)
and Currie et al. (2000) for concrete examples. The value 2d in (1) or 2d − 1 in (2)
is usually denoted as the degree of the Fourier regression model. The coefficients
a0, a1, . . . , ad , b1, . . . , bd denote unknown parameters, which have to be estimated
from the data. The problem of designing experiments for models of the form (1)
has been discussed by several authors; see, e.g., Karlin and Studden (1966), p. 347,
Fedorov (1972), p. 94, Hill (1978), Lau and Studden (1985) for optimal designs on the
full circle, as well as Dette et al. (2002a) and Dette et al. (2002b) for optimal designs
on a partial circle. Most authors concentrate on the problem of determining optimal
designs for the estimation of the full vector of unknown parameters, whereas the prob-
lem of constructing optimal designs for model discrimination has been considered by
Dette and Haller (1998), Dette and Melas (2003) and Zen and Tsai (2004). The present
paper is devoted to the problem of constructing optimal discrimination designs using
constrained optimality criteria.

Constrained optimal designs have primarily been considered by Stigler (1971),
Studden (1982b) and Lee (1988a,b), whereas Cook and Wong (1994), Dette (1995)
and Clyde and Chaloner (1996) investigated the relation between this approach and
compound optimality criteria.

Although these results are interesting from a theoretical point of view constrained
optimal designs still had to be found numerically and explicit results could only
be inferred in rare cases. In particular, it turns out that there is a one-to-one cor-
respondence between compound and constrained optimal designs, which, however,
can only be exploited in rare cases to find the constrained optimal design from the
corresponding compound optimal design, which is usually much simpler to calculate.
Dette and Franke (2000) characterized constrained optimal discriminating designs
for polynomial regression models utilizing the theory of canonical moments, which
was introduced by Skibinsky (1967) and applied by Studden (1980, 1982a,b, 1989) for
determining optimal designs in polynomial regression models. The problem of finding
constrained optimal discriminating designs for Fourier regression models, however,
has not been considered yet.

The present paper is devoted to this problem. For the construction of constrained
optimal designs we assume that the highest frequency of the model has been fixed
and determine the design such that the coefficient corresponding to this frequency is
estimated with maximal efficiency subject to the constraints that the coefficients cor-
responding to the highest frequencies in the models of lower degree can be estimated
with some guaranteed efficiency. The optimality criterion is carefully described in
Sect. 2. In Sect. 3 we briefly review some facts from the theory of canonical moments
(see Dette and Studden 1997), which is the basic tool for the construction of optimal
discrimination designs. A complete characterization of the constrained optimal des-
criminating designs is given in terms of their canonical moments, and in the special
case of equal bounds we further specify the optimal designs in terms of their support-
ing polynomials and explicit formulae for the weights. Finally, in Sect. 4 we give some
concluding remarks discussing our approach.
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2 Constrained optimal designs in Fourier regression models

We assume that we can make n ≥ 2d + 1 independent observations Y1, . . . , Yn where
Yi ∼ N (g(xi ), σ

2), and the regression function g(x) belongs to the class of trig-
onometric models {g0, g1, . . . , g2d} where g2l and g2l−1 are defined in (1) and (2),
respectively. For k = 0, . . . , 2d we define

fk(x)=
{
(1, sin(x), cos(x), . . . , sin( j x), cos( j x))T , if k = 2 j
(1, sin(x), cos(x), . . . , sin(( j −1)x), cos(( j −1)x), sin( j x))T, if k =2 j−1

and

θk =
{

(a0, a1, b1, . . . , a j , b j )
T if k = 2 j

(a0, a1, b1, . . . , a j−1, b j−1, a j )
T if k = 2 j − 1.

Then the models gk(x) where k = 0, . . . , 2d, can be written as gk(x) = fk(x)T θk .
An approximate design is a probability measure σ with finite support on the interval

[−π, π ] with the interpretation that observations are taken at the support points in pro-
portion to the corresponding masses. The information matrix in the Fourier regression
model gk(x) is given by

Mk(σ ) =
∫ π

−π

fk(x) f T
k (x)dσ(x). (3)

An optimal design maximizes an appropriate information function of the informa-
tion matrix (see Pukelsheim 1993, p. 131). There are numerous criteria which can be
used for the characterization of efficient designs. Most of these criteria focus on precise
parameter estimation in a model of given degree. In many practical situations, however,
it is not known before the experiment, up to which degree a Fourier regression model
should be fitted. As sparse modeling is advisable we turn our attention to designs
that allow successive testing of the higher order coefficients with high power, thus
guaranteeing good discrimination properties of the testing procedure. Our optimal-
ity criterion for constructing discrimination designs is therefore based on a multiple
F-test, where, starting with the given regression model g2d(x) in (1) one tests the
hypotheses H (2d)

0 : bd = 0, H (2d−1)
0 : ad = 0, H (2d−2)

0 : bd−1 = 0, H (2d−3)
0 :

ad−1 = 0, . . . , H (0)
0 : a0 = 0, in the models g2d , g2d−1, . . . , g0, successively,

and decides for the model gk0 where k0 is the first index for which the hypothesis
H (k0)

0 : θk0 = 0 is rejected. (Note that this sequence of tests can be stopped earlier if
the minimal degree of the Fourier regression model is pre-specified.) The statistical
properties of this testing procedure are elaborately presented in Anderson (1994). The
quantities corresponding to the noncentrality parameter of the F-test for the hypothesis
H (k)

0 are given by

δk(σ ) = (eT
k M−1

k (σ )ek)
−1 k = 1, . . . , 2d, (4)
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where ek denotes the (k + 1)th unit vector in R
k+1 and the design σ is assumed

to have at least (2d + 1) support points (see Pukelsheim 1993, p. 70). A design σ ∗
k

is called D1-optimal for the model gk or Dk
1-optimal if it maximizes δk . This is in

fact equivalent to maximizing the power of the corresponding test. Collecting data
following a Dk

1-optimal sampling scheme therefore gives the best results for discrimi-
nating between models gk and gk−1. To discriminate between more than two different
models, one has to construct an optimality criterion based on several functions δk(σ ),
k = 2d, 2d − 1, . . . , 0. As these quantities are of different scalings we standardize
them by using the corresponding efficiencies to make them comparable in size. The
expression

effk(σ ) := δk(σ )

δk(σ
∗
k )

, k = 1, . . . , 2d (5)

is called the Dk
1-efficiency of the design σ in the Fourier regression model gk(x).

Dette and Haller (1998) proposed to maximize a weighted p-mean of the effi-
ciencies eff1, . . . , eff2d for the construction of an optimal design for discriminating
between the models {g1, . . . g2d}. In the present paper, we consider an alternative opti-
mality criterion to obtain efficient discriminating designs. This approach is attractive
if the main interest of the experimenter is in discriminating between the two models of
highest degree, while at the same time the optimal design should allow for an efficient
discrimination between the models of lower degrees.

We consider two criteria for determining a constrained optimal discriminating de-
sign for the Fourier regression model. The first approach considers the highest cosine
frequency as most important and a constrained optimal discriminating design σ ∗ max-
imizes

eff2d(σ ) subject to effk(σ ) ≥ ck, k = 2d − 1, 2d − 2, . . . , 2d − 2 j − 1 (6)

for some j ∈ {0, . . . , d − 1}. The second criterion, however, determines the design
which maximizes

eff2d−1(σ ) subject to the constraints effk(σ )≥ck, k =2d, 2d−2, . . . , 2d − 2 j −1,

(7)

and j ∈ {1, . . . , d − 1}. For both criteria, the quantities c2d−2 j−1, . . . , c2d ∈ (0, 1)

are given by the experimenter reflecting the desired minimal relative power of testing
H (k)

0 , k = 2d − 2 j − 1, . . . , 2d. A necessary condition for the existence of optimal
designs is c2d−2 j + c2d−2 j−1 ≤ 1. Unlike criterion (6), criterion (7) corresponds to
the situation where the highest sine frequency is regarded as most important, i.e. the
power of testing H (2d−1)

0 is maximized whereas the preceding test of H (2d)
0 (and all the

other hypotheses H (k)
0 ) have some prespecified minimal relative power. The situation

where the experimenter prefers to start with model (2) for some practical reason, and
therefore start the testing procedure with H (2d−1)

0 , can be incorporated in criterion (7)
by putting c2d = 0. For the solution of the constrained optimization problems (6) and
(7) we need several tools, which will be explained in what follows.
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Discrimination designs for Fourier regression models 147

It follows by standard arguments (see Pukelsheim 1993, Chap. 4, 5) that effk is
a concave function on the set of designs on the interval [−π, π ] and invariant with
respect to a reflection of the design σ at the origin. Consequently, if there exists a con-
strained optimal discriminating design, then there also exists an optimal design in the
set � of all symmetric designs on the interval [−π, π ]. We note that these symmetric
designs induce designs ξσ on the interval [−1, 1] by the projection

ξσ (cos x) =
{

2σ(x) = 2σ(−x) if 0 < x ≤ π

σ(0) if x = 0
(8)

for any symmetric design σ ∈ �. The corresponding set of the measures ξσ on [−1, 1]
will be denoted by �[−1,1]. It was shown in Dette and Haller (1998) that for any σ ∈ �

δk(σ ) =
⎧
⎨

⎩

22( j−1) |A j (ξσ )|
|A j−1(ξσ )| if k = 2 j

22( j−1) |B j (ξσ )|
|B j−1(ξσ )| if k = 2 j − 1

(9)

where B0(ξσ ) = A0(ξσ ) = 1, and

Ak(ξσ ) =
(∫ 1

−1
zi+ j dξσ (z)

)k

i, j=0
(10)

and

Bk(ξσ ) =
(∫ 1

−1
(1 − z2)zi+ j dξσ (z)

)k−1

i, j=0
(11)

denote the information matrices of the design ξσ on the interval [−1, 1] for a homo-
scedastic and a heteroscedastic polynomial regression model with efficiency func-
tion λ(z) = (1 − z2) (see Karlin and Studden 1966), respectively. Consequently, the
problem of determining constrained optimal discriminating designs for the Fourier
regression model can be solved by maximizing a certain function over the set of prob-
ability measures on the interval [−1, 1] and transforming the maximizing measure
back via (8).

The problem of maximizing the right hand side of (9) over the set �[−1,1] if k = 2 j
is in fact the D1-optimal design for the ordinary polynomial regression model, while
for odd values of k the right hand side of (9) corresponds to the weighted polyno-
mial regression with efficiency function σ 2(x) = σ 2/(1 − x2), x ∈ (−1, 1). The
solutions of these problems are well known (see Studden 1968, 1982b and yield
δk(σ

∗
k ) = max

σ
δk(σ ) = 1 (k = 1, . . . , 2d), and therefore the efficiency of a symmet-

ric design σ defined in (5) can be rewritten as

effk(σ ) =
⎧
⎨

⎩

22( j−1) |A j (ξσ )|
|A j−1(ξσ )| if k = 2 j

22( j−1) |B j (ξσ )|
|B j−1(ξσ )| if k = 2 j − 1.

(12)
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3 The solution of the constrained optimal design problem

For the characterization of the measure ξσ ∗ ∈ �[−1,1] corresponding to the con-
strained optimal discriminating design σ ∗ by the relation (8) we require some basic
facts about the theory of canonical moments which has been introduced by Studden
(1980, 1982a,b) in the context of optimal design. We will only give a very brief heu-
ristical introduction and refer to the monograph of Dette and Studden (1997) for more
details.

It is well known that a probability measure on the interval [−1, 1], say ξ, is deter-
mined by its sequence of moments (m1, m2, . . .). Skibinsky (1967) defined a one to
one mapping from the sequences of ordinary moments onto sequences (p1, p2, . . .)

whose elements vary independently in the interval [0, 1]. For a given probability mea-
sure on the interval [−1, 1] the element p j of the corresponding sequence is called
the j th canonical moment of ξ. If j is the first index for which p j ∈ {0, 1} then the
sequence of canonical moments terminates at p j , and the measure is supported at a
finite number of points. The support points and corresponding masses can be found
explicitly by evaluating certain orthogonal polynomials (see Dette and Studden 1997,
Chap. 3). The set of probability measures on the interval [−1, 1] with first k canon-
ical moments equal to (p1, . . . , pk) ∈ (0, 1)k−1 × [0, 1] is a singleton if and only if
pk ∈ {0, 1}. Otherwise there exists an uncountable number of probability measures
corresponding to (p1, . . . , pk) (see Skibinsky 1986).

It turns out that the determinants in (12) can be described in terms of the canonical
moments p1, p2, . . . of the measure ξσ (see Studden 1982b), that is

|Ak(ξσ )| = 2k(k+1)
k∏

�=1

(q2�−2 p2�−1q2�−1 p2�)
k−�+1 (13)

|Bk(ξσ )| = 2k(k+1)
k∏

�=1

(p2�−2q2�−1 p2�−1q2�)
k−�+1 (14)

where p0 = 1, q0 = 1 and q j = 1 − p j for j ≥ 1. Observing (12), (13) and (14),
we find that the efficiencies are increasing functions of the terms p2l−1q2l−1, and
consequently the odd canonical moments of the optimal projection design ξσ ∗ satisfy

p2�−1 = 1

2
� = 1, . . . , d. (15)

Therefore we can restrict ourselves to designs with this property, and (12) reduces to

effk(σ ) =
⎧
⎨

⎩
22 j−2 p2 j

∏ j−1
�=1 q2� p2� if k = 2 j

22 j−2q2 j
∏ j−1

�=1 q2� p2� if k = 2 j − 1
(16)

where p2, p4, . . . denote the canonical moments of even order of the design ξσ ∈∑
[−1,1] satisfying (15) and corresponding to the measure σ via (8). Our main result

gives a characterization of the canonical moments of ξσ ∗ .
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Discrimination designs for Fourier regression models 149

Theorem 1 (a) If there exists a constrained optimal discriminating design for the
vector (c2d−2 j−1, . . . , c2d−1) in (6), then there also exists a symmetric optimal dis-
criminating design σ ∗. The canonical moments up to the order 2d of the corresponding
projection ξσ ∗ are determined by the system of equations

p2n−1 = 1

2
n = 1, . . . , d

p2n = 1

2
n = 1, . . . , d − j − 1

p2d−2 j+2n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − max

⎧
⎨

⎩
1

2
,

c2d−2 j+2n−1

22n
∏d− j+n−1

l=d− j p2lq2l

⎫
⎬

⎭ , if c2d−2 j+2n−1 >c2d−2 j+2n

max

⎧
⎨

⎩
1

2
,

c2d−2 j+2n

22n
∏d− j+n−1

l=d− j p2lq2l

⎫
⎬

⎭ , if c2d−2 j+2n ≥c2d−2 j+2n−1

n = 0, . . . , j − 1

p2d = 1 − c2d−1

22 j
∏d−1

l=d− j p2lq2l
.

(b) If there exists a constrained optimal discriminating design for the vector
(c2d−2 j−1, . . . , c2d−2, c2d) in (7), then there also exists a symmetric constrained
optimal discriminating design σ ∗. The canonical moments up to the order 2d of the
corresponding projection ξσ ∗ are determined by the system of equations

p2n−1 = 1

2
n = 1, . . . , d

p2n = 1

2
n = 1, . . . , d − j − 1

p2d−2 j+2n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − max

⎧
⎨

⎩
1

2
,

c2d−2 j+2n−1

22n
∏d− j+n−1

l=d− j p2lq2l

⎫
⎬

⎭ , if c2d−2 j+2n−1 >c2d−2 j+2n

max

⎧
⎨

⎩
1

2
,

c2d−2 j+2n

22n
∏d− j+n−1

l=d− j p2lq2l

⎫
⎬

⎭ , if c2d−2 j+2n ≥c2d−2 j+2n−1

n = 0, . . . , j − 1

p2d = c2d

22 j
∏d−1

l=d− j p2lq2l
.

A necessary condition for the existence of optimal designs with respect to either
criterion ((6) or (7)) is given by c2d−2 j + c2d−2 j−1 ≤ 1.
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Proof Because both parts are proven similarly, we restrict ourselves to a proof of part
(a). By the previous discussion the canonical moments of odd order 1, 3, . . . , 2d − 1
must be 1/2. Note that

eff2d−2 j+2n(σ ) = p2d−2 j+2n22(d− j+n−1)

d− j+n−1∏

l=1

p2lq2l , n = 0, . . . , j.

In order to maximize these efficiencies we have to choose the canonical moments
such that the products p2lq2l are as large as possible. This can be accomplished by
choosing p2l as close as possible to the value 1/2 such that the constraints in (6) are
satisfied. Since there are no restrictions on the efficiencies eff1(σ ), . . . , eff2d−2 j−2(σ )

we obtain p2 = · · · = p2d−2 j−2 = 1
2 . Substituting this choice into the formulae for

the higher order efficiencies, (16) reduces to

eff2d−2 j+2n−1(σ ) = q2d−2 j+2n22n
d− j+n−1∏

l=d− j

p2lq2l

eff2d−2 j+2n(σ ) = p2d−2 j+2n22n
d− j+n−1∏

l=d− j

p2lq2l .

We start with the case n = 0, for which the representations eff2d−2 j−1(σ ) = q2d−2 j ,
eff2d−2 j (σ ) = p2d−2 j yield the constraints

p2d−2 j ≥ c2d−2 j , q2d−2 j ≥ c2d−2 j−1.

Consequently any design ξσ for which p2d−2 j ∈ [c2d−2 j , 1 − c2d−2 j−1] satisfies the
constraints of order 2d − 2 j and 2d − 2 j − 1. We therefore assume that c2d−2 j +
c2d−2 j−1 ≤ 1 in what follows to ensure the existence of such a design. If 1

2 ∈
[c2d−2 j , 1 − c2d−2 j−1] one can choose p2d−2 j = 1

2 to maximize p2d−2 j q2d−2 j . Else
we have either c2d−2 j ≥ 1

2 or 1 − c2d−2 j−1 ≤ 1
2 , and we choose p2d−2 j = c2d−2 j or

p2d−2 j = 1 − c2d−2 j−1, respectively.
If n >0 we note that the constraints eff2d−2 j+2n(σ ) ≥ c2d−2 j+2n and eff2d−2 j+2n−1

(σ ) ≥ c2d−2 j+2n−1 reduce to

p2d−2 j+2n ≥ c2d−2 j+2n

22n
∏d− j+n−1

l=d− j p2lq2l

=: c′
2d−2 j+2n

q2d−2 j+2n ≥ c2d−2 j+2n−1

22n
∏d− j+n−1

l=d− j p2lq2l

=: c′
2d−2 j+2n−1

Therefore the same arguments as presented for the case n = 0 yield the corresponding
result for p2d−2 j+2n . Finally we consider the case n = j , where there is only one
constraint eff2d−1(σ ) ≥ c2d−1, which can be rewritten as

p2d ≤ 1 − c2d−1

22d−2
∏d−1

l=1 p2lq2l
.
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Discrimination designs for Fourier regression models 151

In order to maximize this expression one has to choose p2d such that there is equality.
This proves the final assertion of part (a) in Theorem 1. ��
Remark 1 Note that Theorem 1 characterizes the canonical moments up to the order
2d of the projection ξσ ∗ of the (symmetric) constrained optimal discriminating design
σ ∗. In general p2d 	∈ {0, 1} and in these cases there exists an infinite number of
probability measures on the interval [−1, 1] with the canonical moments p1, . . . p2d

(see Skibinsky 1986). Each of these measures corresponds to a constrained optimal
discriminating design by the projection (8). One possible choice among these designs
with a reasonable small support will be illustrated later in the proof of Theorem 2,
Eq. (24).

In what follows, we present two further results, where a solution of the constrained
optimal design problem can be found explicitly. For this purpose let Tj (x) and U j (x)

denote the j th Chebyshev polynomial of the first and second kind, respectively (see
Rivlin 1974).

Theorem 2 Consider the constrained optimal design problem in (6) where c2d−2 j =
· · · = c2d−2 = c ∈ (0, 1), cl < c (l = 2d − 2 j − 1, . . . , 2d − 1). If there exists a con-
strained optimal discriminating design, then there also exists a symmetric constrained
optimal discriminating design σ ∗.

(a) If c > 1/2, define

κ = κ(c2d−1, c) = 1

2
− c2d−1

4c
+ 2c − 1

2((2c − 1) j − 2c)
,

P∗
d+1(x) = (xU j (x) − 2κU j−1(x))Td− j (x)

− 2c(xU j−1(x) − 2κU j−2(x))Td− j−1(x), (17)

P(1)
d (x) = (xU j (x) − 2κU j−1(x))Ud− j−1(x)

− 2c(xU j−1(x) − 2κU j−2(x))Ud− j−2(x) (18)

The polynomial P∗
d+1(x) has d + 1 distinct roots x0, . . . xd in the interval (−1, 1),

and the design ξσ ∗ with masses

λk = P(1)
d (xk)

d
dx P∗

d+1(x)|x=xk

, k = 0 . . . , d (19)

at x0, . . . , xd corresponds to a constrained optimal discriminating design by the pro-
jection (8) for the optimization problem (6).

(b) If c < 1/2, define

P∗
d+1(x) = Td+1(x) − (1 − 2c)Td−1(x),

P(1)
d (x) = Ud(x) − (1 − 2c)Ud−2(x).

The polynomial P∗
d+1(x) has d +1 distinct roots x0, . . . , xd in the interval (−1, 1),

and the design ξσ ∗ with masses (19) at x0, . . . , xd corresponds to a constrained optimal
discrimination design by the projection (8) for the optimization problem (6)
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Remark 2 A necessary condition for the existence of a symmetric constrained optimal
discrimination design for the design problem (6) is κ > 0, which ensures that the value
of the canonical moment p2d will be within the interval (0, 1). If κ ≤ 0 it is therefore
recommended to modify the choices of c and c2d−1 accordingly so that κ attains a
positive value, before starting to calculate the optimal design.

Proof We only prove part (a) of the Theorem. Part (b) follows by similar (and even
simpler) arguments. Note that the canonical moments of the constrained optimal dis-
criminating design can be obtained by Theorem 1. The canonical moments of odd
order satisfy

p2n−1 = 1

2
, n = 1, . . . , d, (20)

while the canonical moments of even order less or equal than 2d − 2 j − 2 are given
by

p2n = 1

2
, n = 1, . . . , d − j − 1. (21)

For the next canonical moment of even order we have from Theorem 1

p2d−2 j = max

{
1

2
, c

}
= c,

and it can be shown by a straightforward induction that

p2d−2 j+2t = 1

2

(2c − 1)t − 2c

(2c − 1)(t + 1) − 2c
, t = 0, . . . , j − 1. (22)

Note that this representation implies

1

2
< c <

j + 1

2 j
,

because the canonical moments vary in the interval (0, 1). The remaining canonical
moment of order 2d is obtained by a direct calculation, that is

p2d = 1 − 1

2

c2d−1

c

(2c − 1) j − 2c

(2c − 1)( j + 1) − 2c
. (23)

It follows from a straightforward but tedious calculation that p2d ∈ (0, 1) ⇔ κ > 0,
which proves Remark 2. Note that (20)–(23) do not determine a design on the interval
[−1, 1] (except in the case c2d−1 = 0, which is excluded). In order to obtain a design
with finite support we extend this sequence by

p2d+1 = 1

2
, p2d+2 = 0. (24)

The design ξ∗
σ on the interval [−1, 1] with canonical moments (20)–(24) is uniquely

determined and has d + 1 support points not including 1 or −1 (see Skibinsky 1986),
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entailing that the design σ ∗ will be supported on 2d + 2 points. For the calculation of
the support points and corresponding weights we apply Theorem 3.6.1 in Dette and
Studden (1997). By this result the design ξσ ∗ has weights

λk = P(1)
d (xk)

d
dx P∗

d+1(x)|x=xk

(25)

at the roots x0, . . . , xd of the polynomial P∗
d+1(x), where P∗

d+1(x) and P(1)
d (x) are

obtained from the recursion

Wk+1(x) = xWk(x) − q2k−2 p2k Wk−1(x) (26)

(note that p2 j−1 = 1
2 for j = 1, . . . , d + 1) with different initial conditions, that is

P∗
d+1(x) = Wd+1(x) for W−1(x) ≡ 0, W0(x) ≡ 1 (27)

P(1)
d (x) = Wd+1(x) for W0(x) ≡ 0, W1(x) ≡ 1. (28)

We now calculate these polynomials using (21)–(24) and begin with P∗
d+1(x). From

the initial condition in (27) and (21) we obtain by a straightforward calculation

Wd− j (x) = 1

2d− j−1 Td− j (x) , Wd− j−1(x) = 1

2d− j−2 Td− j−1(x) (29)

Observing (22) and

q2l−2 p2l =
(

1 − 1

2

(2c − 1)(l − 1 − d + j) − 2c

(2c − 1)(l − d + j) − 2c

)
1

2

(2c − 1)(l − d + j) − 2c

(2c − 1)(l − d + j + 1) − 2c

= 1

4

(2c − 1)(l − d + j + 1) − 2c

(2c − 1)(l − d + j + 1) − 2c
= 1

4

(d − j < l ≤ d − 1), we obtain the recursion

Wd− j+1 = xWd− j (x) − 1

2
cWd− j−1(x)

Wl+1(x) = xWl(x) − 1

4
Wl−1(x) if d − j < l ≤ d − 1.

Now a straightforward induction yields

Wd− j+l(x) = 1

2l+d− j−1 (Ul(x)Td− j (x) − 2cUl−1(x)Td− j−1(x)) , l = 1, . . . , j.
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We finally note that by (22) and (23) we have q2d−2 p2d = κ , from which it follows
that

P∗
d+1(x) = 1

2d−1

[
(xU j (x) − 2κU j−1(x))Td− j (x) − 2c(xU j−1(x)

− 2κU j−2(x))Td− j−1(x)
]

using (26) and (27). Observing the initial conditions in (28) it follows that the poly-
nomial P(1)

d (x) can be calculated analogously, where (29) is replaced by

Wd− j (x) = 1

2d− j−1 Ud− j−1(x) , Wd− j−1(x) = 1

2d− j−2 Ud− j−2(x).

Consequently, by a straightforward induction we obtain

P(1)
d (x) = 1

2d−1

[
(xU j (x) − 2κU j−1(x))Ud− j−1(x)

− 2c(xU j−1(x) − 2κU j−2(x))Ud− j−2(x)
]
,

and the assertion (a) of Theorem 1 follows from Theorem 3.6.1 in Dette and Studden
(1997). ��

We conclude this section with an analogue for the optimization problem (7). The
proof is similar and omitted for brevity.

Theorem 3 Consider the constrained optimal design problem in (7) where c2d−2 j =
· · · = c2d−2 = c2d = c ∈ (0, 1), cl < c (l = 2d − 2 j − 1, . . . , 2d − 3). If there
exists a constrained optimal discriminating design then there also exists a symmetric
constrained optimal discriminating design σ ∗.

(a) If c > 1/2, define

κ = κ(c2d , c) = c2d

4c
,

and consider for this κ the polynomials P∗
d+1(x) and P(1)

d (x) defined by (17) and (18),
respectively. The polynomial P∗

d+1(x) has d+1 distinct roots x0, . . . , xd in the interval
(−1, 1), and the design ξσ ∗ which has masses (19) at the points x0, . . . , xd corresponds
to a constrained optimal discriminating design for the optimization problem (7) by
the projection (8).

(b) If c < 1/2, define

P∗
d+1(x) = Td+1(x) + (1 − 2c)Td−1(x),

P(1)
d (x) = Ud(x) + (1 − 2c)Ud−2(x).
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The polynomial P∗
d+1(x) has d+1 distinct roots x0, . . . , xd in the interval (−1, 1), and

the design ξσ ∗ with masses (19) corresponds to a constrained optimal discrimination
design for the optimization problem (7) by the projection (8).

4 Concluding remarks and discussion

We have applied the theory of canonical moments to derive constrained optimal designs
for discriminating between Fourier models of different degree. For general constraints,
we have found explicit recursive relations (see Theorem 1) for the first 2d canonical
moments of the optimal designs, from which optimal designs can be computed apply-
ing Theorem 3.6.1 in Dette and Studden (1997). For some special cases (with respect
to the constraints) we present explicit formulae for the supporting polynomials and
the weights, which allow the direct computation of one of the optimal designs (see
Theorems 2 and 3).

The choice of the lower bounds cl , l = 2d − 2 j − 1, . . . , 2d, for the efficien-
cies is up to the experimenter according to his interest in a specific testing problem.
There is, however, no guarantee that there exists an optimal design satisfying these
constraints. Apart from the necessary conditions that κ > 0 (see Remark 2) and
c′

2d−2 j+2n +c′
2d−2 j+2n−1 ≤ 1, where n = 0, . . . , j −1 and c′

k are defined in the proof
of Theorem 1 there seems to be no simple check if a particular choice of values cl will
be admissible. Naturally, the experimenter would like to have the bounds as large as
possible, which might, however, contradict the existence of an optimal design. Once
the bounds have been chosen, we recommend to either compute the optimal canoni-
cal moments by the recursive relations given in Theorem 1 or the optimal supporting
polynomials P∗

d+1(x) via Theorems 2 or 3 (if appropriate). If any of the canonical
moments is outside the open interval (0, 1) or the roots of the polynomial P∗

d+1(x) are
either outside (−1, 1) or not distinct then there exists no optimal design with respect
to these constraints. In this situation, the choice of the constraints has to be modified
by lowering the values of the less important bounds.

If the experimenter does not favour any testing problem over another, a natural
approach to choose the bounds is cl = 1/2, l ∈ {2d − 2 j − 1, . . . , 2d} for some
j . Applying Theorem 1 yields that in this situation all canonical moments up to the
order 2d equal 1/2. A somewhat related approach would be to maximize the minimal
efficiency effl(σ ) for any l within some subset L of {1, 2, . . . , 2d}. This criterion has
already been considered in Dette and Haller (1998), Sect. 4, Theorem 4.3. From part (b)
of this theorem, it follows for example that for the choice L = {2d −2 j −1, . . . , 2d},
the optimal designs also have canonical moments pk = 1/2, k = 1, . . . , 2d. These
designs therefore coincide with the constrained optimal designs where all values
cl , l ∈ L, are equal to 1/2. This corresponds to intuition since neither approach
gives preference to any testing problem within L over another. For different choices
of L the reader is referred to Sect. 4 in Dette and Haller (1998). In practice, however,
there will be higher interest in testing the higher order coefficients in most situations.

A challenging problem for future considerations will be the generalization of our
results and techniques to models in more than one dimension. In this situation, one
approach may be to find optimal designs within the class of product designs [see, e.g.,
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Dette and Studden (1997), Sect. 5.8, for some results on multivariate polynomials].
Another method worth trying will be a lattice design approach as described in
Riccomagno et al. (1997), i.e. embed the higher dimensional problem into a one-
dimensional structure and exploit results in one dimension, including those in the
present paper.
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