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Abstract A monotone estimate of the conditional variance function in a het-
eroscedastic, nonparametric regression model is proposed. The method is based
on the application of a kernel density estimate to an unconstrained estimate of
the variance function and yields an estimate of the inverse variance function.
The final monotone estimate of the variance function is obtained by an inver-
sion of this function. The method is applicable to a broad class of nonparametric
estimates of the conditional variance and particularly attractive to users of con-
ventional kernel methods, because it does not require constrained optimization
techniques. The approach is also illustrated by means of a simulation study.

Keywords Nonparametric regression · Heteroscedasticity · Variance function ·
Monotonicity · Order restricted inference

1 Introduction

In regression analysis the assumption of homoscedasticity is often not satisfied
and the efficiency of the statistical analysis can be improved substantially by
taking heteroscedasticity into account. The classical example is the weighted
least squares method, which requires estimates of the variance function. Other
examples, where the estimation of the conditional variance is important include
the choice of a local bandwidth in nonparametric regression (see Müller and
Stadtmüller 1987, Fan and Gijbels 1995), the construction of confidence inter-
vals for the conditional expectation (see Carroll 1987, Fan and Gijbels 1996)
and quality control (see Box 1988). In contrast to the problem of estimating
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the conditional mean much less effort has been spent on the construction of
nonparametric variance function estimators. Carroll (1982) developed kernel
estimators in the context of linear regression, Müller and Stadtmüller (1987)
and Hall and Carroll (1989) analyzed kernel-type estimators without assuming
a parametric form of the mean function, and Müller and Stadtmüller (1993)
studied a broad class of estimators of the conditional variance, which are rep-
resentable as quadratic forms. Local polynomial variance function estimators
have been proposed by Fan and Gijbels (1995) and Ruppert et al. (1997), where
the latter authors also consider the problem of estimating derivatives of the
variance function, a topic with applications in engineering. More recently the
estimation of the conditional variance was considered by Fan and Yao (1998)
in a time series context and by Yu and Jones (2004), who proposed a localized
normal likelihood approach.

In many applications monotone estimates of the regression and variance
function are required because of physical considerations. Such examples typi-
cally appear in growth curve models or in models, where the conditional var-
iance is a function of the conditional mean, which depends monotonically on
an explanatory variable. In contrast to the problem of estimating a monotone
conditional expectation (see e.g. Brunk 1955, Mukerjee 1988, Mammen 1991,
Hall and Huang 2001, among many others), the problem of estimating a mono-
tone variance function has not been considered so far in the literature. In the
present paper we propose a simple and efficient method for the estimation of
a monotone conditional variance, which is based on the evaluation of a kernel
density estimate from some (not necessarily monotone) estimated values of
the variance function. This idea was introduced by Dette et al. (2006) in the
context of estimating a monotone regression function and will be adapted to
the specific problem of statistical inference for the conditional variance. The
method produces an estimate of the inverse of the monotone variance function
and is applicable to any of the unconstrained variance function estimators men-
tioned in the previous paragraph. The main differences between the work of
these authors and the present paper are the following. While Dette et al. (2006)
considered the problem of estimating the regression function, the focus of our
work is the estimation of the conditional variance. This introduces some addi-
tional dependencies, which change parts of the asymptotic analysis, because the
original data has to be replaced by dependent (squared) nonparametric resid-
uals. A further difference is the order of the smoothing parameters. Dette et
al. (2006) mainly consider smoothing parameters in the density and regression
step, which are of the same order, while in the present paper the smoothing
parameter for the density estimate is assumed to be of smaller order than the
smoothing parameter in the regression step.

In Sect. 2 we introduce some general notation and explain the basic idea
of monotonizing a function by kernel density estimation. Because most work
on unconstrained variance estimation suggests smoothing squared residuals
from a nonparametric fit or pseudo-residuals by kernel smoothing we mainly
restrict ourselves to this type of variance function estimators, but the results
of the paper remain valid for other estimation methods. In Sect. 3 we prove
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asymptotic normality of the new estimate and show that it is first order asymp-
totically equivalent to the unconstrained variance function estimate. We also
mention the corresponding statements for the local polynomial estimators of
the conditional variance introduced by Fan and Gijbels (1995) and Ruppert et
al. (1997). For the sake of brevity we restrict ourselves to the case of a non-
parametric regression model with a fixed design and independent errors, but
extensions to more general models (random design, time series) are briefly men-
tioned in Sect. 3.3. Finally, in Sect. 4 a small simulation study and a data example
are presented which illustrate the finite sample properties of the new monotone
variance function estimates. Finally some of the more technical arguments are
deferred to the appendix in Sect. 5.

2 Preliminaries: monotonizing by kernel density estimation

Consider the common nonparametric regression model

Yi,n = m(xi,n) + √
s(xi,n)εi,n, (1)

where 0 ≤ x1,n < x2,n < · · · < xn,n = 1 are fixed design points satisfying

∫ xi,n

0
f (t)dt = i

n
, i = 1, . . . , n (2)

for a strictly positive design density f : [0, 1] → R (see Sacks and Ylvisaker
1970), m : [0, 1] → R denotes the regression and s : [0, 1] → R is a positive
variance function. The errors ε1,n, . . . , εn,n are assumed to be independent iden-
tically distributed with mean E[εi,n] = 0, variance Var(εi,n) = 1 and fourth
moment E[ε4

i,n] = m4(xi,n), where m4 : [0, 1] → R
+ is a smooth function. For

the sake of a simple notation we omit the index n, whenever it is clear from
the context, i.e. we use the notation Yi, xi, εi instead of Yi,n, xi,n, εi,n in such
cases. We assume that the design density f and the variance function s are two
times continuously differentiable and that the regression function m satisfies
certain smoothness conditions which will be specified below. Moreover, the
variance function is assumed to be strictly monotone and we are interested in a
nonparametric estimate of this function, which also satisfies this restriction.

In order to fix ideas let s denote an arbitrary strictly increasing function on
the interval [0, 1], then the inverse of s can be represented as

s−1(t) =
∫ 1

0
I{s(x) ≤ t}dx. (3)
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Note that this function is not necessarily smooth, but smoothing can easily be
accomplished by considering the function

s−1(t, hd) = 1
hd

∫ 1

0

∫ t

−∞
Kd

( s(x) − u
hd

)
dudx, (4)

where hd is a bandwidth satisfying hd → 0 with increasing sample size and
Kd is a two times continuously differentiable, symmetric kernel with compact
support, say [−1, 1]. Note that for hd → 0 we have

1
hd

∫ 1

0

∫ t

−∞
Kd

( s(x) − u
hd

)
dudx =

∫ 1

0
I{s(x) ≤ t}dx + o(1) (5)

and that for a positive kernel Kd the function s−1(t, hd) is always increasing
with respect to t, independently whether the original function s has this prop-
erty, because

∂

∂t
s−1(t, hd) = 1

hd

∫ 1

0
Kd

( s(x) − t
hd

)
dx ≥ 0.

For more details discussing the role of the inverse of s−1(t, hd) as a monotone
approximation of the function s we refer to Sect. 2 in Dette et al. (2006).

In the present context we will use this concept to obtain monotone estimates
of the variance function. For the sake of transparency we restrict ourselves to
the problem of estimating an increasing variance function, the corresponding
case of a decreasing variance is briefly mentioned in Remark 1. Observing the
discussion in the previous paragraph we only need an unconstrained estimate
of the variance function, and for this purpose we will use

ŝ(x) =
∑

i Kr

(
x−xi

hr

)
�2

i

∑
i Kr

(
x−xi

hr

) , (6)

where Kr and hr denote a further kernel and bandwidth, respectively. We as-
sume that the kernel Kr is symmetric and has also compact support contained
in the interval [−1, 1]. In (6) the quantities �i will denote residuals from a
nonparametric fit (see e.g. Hall and Marron 1990) or pseudo residuals (see e.g.
Rice 1984 or Gasser et al. 1986). For the sake of brevity we concentrate on the
Nadaraya-Watson estimate based on smoothing squared residuals, but other
types of estimators could be considered as well (see Remark 3 for some exam-
ples). Estimators of the form (6) have been considered by several
authors, including Müller and Stadtmüller (1987, 1993), who mainly discussed
pseudo residuals, Hall and Carroll (1989) and Akritas and Van Keilegom (2001),
who proposed to use residuals from a nonparametric fit. Different smoothing
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techniques in the context of estimating the conditional variance have been pro-
posed by Ruppert et al. (1997), Fan and Yao (1998) and Yu and Jones (2004).

Following our general motivation for constructing an increasing variance
function estimate we propose the statistic

ŝ−1
I (t) = 1

Nhd

N∑

i=1

∫ t

−∞
Kd

( ŝ( i
N ) − u

hd

)
du (7)

as an estimate of s−1. The required monotone increasing estimate of the condi-
tional variance is now obtained by a simple inversion of this function and will
be denoted by ŝI throughout this paper. Note that the estimator ŝ−1

I is equal to
1 and 0 if t > maxN

i=1 ŝ( i
N ) + hd and t < minN

i=1 ŝ( i
N ) − hd, respectively, and only

for

t ∈
[

N
min
i=1

ŝ
( i

N

)
,

N
max
i=1

ŝ
( i

N

)]

the inverse of the function ŝ−1
I is calculated. The properties of this estimate

depend on the particular method used for the unconstrained variance function
estimate ŝ, but we prove below that in all important cases the monotone increas-
ing estimate ŝI is asymptotically normal distributed and first order equivalent to
the corresponding unconstrained estimate. Note that the integral in (4) has been
replaced by a simple quadrature formula with equidistant nodes. Moreover, the
estimate ŝ−1

I can be considered as an integrated density estimate based on the
“data”

{
ŝ(

i
N

) | i = 1, . . . , N
}

and the number N used in this density estimator does not necessarily coin-
cide with the sample size n used for the calculation of the unconstrained esti-
mate. The indices “r” and “d” of the kernel functions Kr and Kd correspond
to the phrase “regression” and “density”, because we combine a regression
with a density estimate to define the estimator in (7). In the following we will
discuss the properties of the new estimate for two different types of residuals
�i separately.

Remark 1 If the variance function s is supposed to be strictly decreasing the
estimate can easily be modified as

ŝ−1
A (t) := 1

Nhd

N∑

i=1

∫ ∞

t
Kd

( ŝ( i
N ) − u

hd

)
du (8)

and the antitone estimate of the conditional variance is obtained by the
inversion of this function.
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3 Monotone variance function in action

3.1 Monotone variance function estimation with pseudo residuals

Following Hall et al. (1990) we define pseudo residuals by

�i = �i,n =
r∑

j=0

djYi+j, (9)

where the quantities d0, . . . , dr are given weights satisfying

r∑

j=0

dj = 0,
r∑

j=0

d2
j = 1. (10)

In this case the preliminary estimator of the variance function is defined by

ŝ(x) =
∑n−r

i=1 Kr

(
x−xi

hr

)
�2

i

∑n−r
i=1 Kr

(
x−xi

hr

) . (11)

Two special choices of pseudo residuals are very popular and have been con-
sidered by Rice (1984) [r = 1, d0 = −d1 = 1/

√
2] and Gasser et al. (1986)

[r = 2, d0 = d2 = 1/
√

6, d1 = −2/
√

6], while some general properties of vari-
ance estimates based on pseudo residuals are discussed in Dette et al. (1998) in
the case of a homoscedastic regression model. Throughout this paragraph we as-
sume that the regression function is Lipschitz continuous of order γ > 1

4 , which
allows us to replace the quantities �i in (9) by their unobservable counterparts

�ε
i = �ε

i,n =
r∑

j=0

dj

√
s(xi+j)εi+j (12)

with sufficiently accuracy (see the proofs in Sect. 5.1 of the Appendix). The main
properties of isotone variance function estimators using pseudo residuals are
summarized in the following theorem, for which we require some assumptions
regarding the bandwidths hd, hr and the number N used in the definition of the
statistic ŝ−1

I , that is

hr → 0, hd → 0, (13)

nhd → ∞, nhr → ∞ (14)

lim
hd→0,hr→0

hr/hd = ∞ (15)

nh5
r = O(1), n = O(N), (16)
1

nhrh2
d

= o(1). (17)
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Theorem 1 Assume that the design density f and the variance function s are
positive and twice continuously differentiable, that the regression function m in
the nonparametric regression model (1) is Lipschitz continuous of order γ > 1/4
and that the assumptions (13)–(17) are satisfied. Let ŝI denote the isotone esti-
mate of the variance function s obtained as the inverse of the statistic (7) with the
statistic (11) as preliminary estimate, then it follows that for every t ∈ (0, 1) with
s′(t) > 0 √

nhr

(
ŝI(t) − s(t) − �(hd, hr, t)

) D⇒ N (0, β2(t)), (18)

where the asymptotic bias and variance are given by

�(hd, hr, t) = κ2(Kd)
s′′(t)

(s′(t))2 h2
d + κ2(Kr)

( s′′f + 2s′f ′

f

)
(t)h2

r , (19)

β2(t) = s2(t){m4(t) − 1 + 4δr}
f (t)

∫ 1

−1
K2

r (u)du, (20)

respectively, for a given kernel K the constant κ2(K) is defined as

κ2(K) = 1
2

∫ 1

−1
v2K(v)dv, (21)

and the quantitiy δr is given by

δr =
r∑

k=1

⎛

⎝
r−k∑

j=0

djdj+k

⎞

⎠

2

(r ≥ 1). (22)

Remark 2 Note that the dominating term in the representation (19) for the bias
is given by

�(hd, hr, t) = κ2(Kr)
( s′′f + 2s′f ′

f

)
(t)h2

r + o(h2
r ), (23)

because hd = o(hr) by assumption (15). In the context of estimating a mono-
tone regression function it was observed by Dette et al. (2006) by a numerical
study that the choice of the bandwidth hd in the density step is less critical
compared to the choice of the bandwidth hr in the regression step. The same
fact is true for the problem of estimating the conditional variance. A simple cal-
culation shows that the choice hd = hα

r with α ∈ (1, 2) satisfies the assumptions
(13)–(17) in Theorem 1 and the approximation (23) is well justified. However,
an extensive numerical study shows that there exist no substantial differences
with respect to the performance of the estimate ŝI for larger values of α. Based
on our numerical experience we recommend to choose hd as hd = hα

r for some
α ≥ 1.5.

Remark 3 It follows from the proof of Theorem 1 that the choice of a different
smoothing procedure in (6) does not change the asymptotic variance of the
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resulting monotone estimate of the variance function, but its asymptotic bias.
For example, if a local linear estimate (see Fan and Gijbels 1996) is applied to
the squared pseudo residuals (9), then the resulting estimate ŝI is asymptotically
normal distributed, that is

√
nhr

(
ŝI(t) − s(t) − �loc(hd, hr, t)

) D⇒ N (0, β2(t)), (24)

where the asymptotic variance is given by (20) and the bias is defined by

�loc(hd, hr, t) = κ2(Kd)
s′′(t)

(s′(t))2 h2
d + κ2(Kr)s′′(t)h2

r = κ2(Kr)s′′(t)h2
r + o(h2

r ).

(25)

Other estimates for the regression step can be treated similarly. For example,
if the local log-linear estimator proposed by Yu and Jones (2004) is used as
preliminary unconstrained estimate of the conditional variance, the isotonized
estimate ŝI has still asymptotic variance β2(t)/nhr, asymptotic bias is given by

�YJ(hd, hr, t) = κ2(Kd)
s′′(t)

(s′(t))2 h2
d + κ2(Kr)

(
s′′(x) − (s′(x))2

s(x)

)
h2

r + o(h2
r )

and the appropriately standardized version of ŝI is asymptotically normal dis-
tributed.

Remark 4 For the different estimates of the variance function considered in
Theorem 1 and Remark 3 it follows from the results of Müller and Stadtmüller
(1993), Yu and Jones (2004) and the proof of Theorem 1 that the isotone esti-
mates of the variance function are first order asymptotically equivalent to the
unconstrained estimates in the sense that they yield the same first order expan-
sion for the bias and variance.

Remark 5 Note that the asymptotic variance in Theorem 1 depends on the
constant δr defined in (22). For the estimator of Rice (1984) we have r = 1,
d0 = −d1 = 1/

√
2, which yields δ1 = d4

0 = 1/4 and

β2
R(t) = s2(t)m4(t)

f (t)

∫ 1

−1
K2

r (u)du.

A different weighting scheme was suggested by Gasser et al. (1986), who used
for a uniform design (d0, d1, d2) = 1√

6
(1, −2, 1) in the context of a nonpara-

metric homoscedastic regression model, and argued that this sequence yields
a smaller bias in the approximation of the pseudo residuals by the quantities
defined in (12). For this choice we obtain in Theorem 1 (r = 2)δ2 = 17/36,

β2
G(t) = s2(t)

f (t)

(
m4(t) + 8

9

) ∫ 1

−1
K2

r (u)du. (26)
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Alternatively one could try to minimize the asymptotic variance (20) by an
appropriate choice of the weights d0, . . . , dr. Hall et al. (1990) determined for
a fixed order r optimal weights dj such that the quantity δr in (22) becomes
minimal (see Table 1 of their paper). For this choice we have

r−k∑

j=0

djdj+k = − 1
2r

,

the minimal value of δr is obtained as δ
opt

r = 1/4r and the resulting asymptotic
variance is given by

β2
opt(t) = s2(t)

f (t)

(
m4(t) − r − 1

r

) ∫ 1

−1
K2

r (u)du. (27)

Consequently the asymptotic variance in Theorem 1 can be decreased by using
an optimal difference sequence in the sense of Hall et al. (1990) and an increas-
ing order r. However, some care is appropriate in these asymptotic consider-
ations. For realistic sample sizes it is also necessary to obtain a sufficiently small
bias of the pseudo residuals �i and optimal sequences usually produce a small
variance but a large bias. The general choice of the weights in the definition of
the pseudo residuals was carefully discussed by Dette et al. (1998) in the con-
text of homoscedastic nonparametric regression. These authors give some data
driven guidelines for choosing an appropriate order r and the corresponding
weights d0, . . . , dr. In general difference sequences for r = 1 or r = 2 will be
sufficient and the improvement in efficiency by using a larger order is negligible
in most cases (compare also with the results of our simulation study in Sect. 4).

3.2 Monotone variance function estimation with nonparametric residuals

Following Hall and Marron (1990) we consider residuals

ε̂i = Yi − m̂(xi) (28)

where

m̂(x) =
∑n

i=1 K
(

x−xi
h

)
Yi

∑n
i=1 K

(
x−xi

h

) (29)

is the Nadaraya-Watson estimate of the regression function. The unconstrained
estimate of the conditional variance is now given by

ŝ(x) =
∑n

i=1 Kr

(
x−xi

hr

)
ε̂2

i

∑n
i=1 Kr

(
x−xi

hr

) . (30)
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Note that different bandwidths are used for the estimation of the regression and
variance function and that the kernels used in (29) and (30) do not necessarily
coincide. The following result is an analogue of Theorem 1 for the case, where
residuals from a nonparametric fit are used in the construction of a monotone
estimate of the conditional variance. For its proof we require the following
assumption regarding the bandwidth h in the Nadraya-Watson estimate (29)

h → 0, nh → ∞, hr = O(h). (31)

Theorem 2 Assume that the design density f and the variance function s are
positive, that f , s and the regression function m in the nonparametric regres-
sion model (1) are twice continuously differentiable and that the assumptions
(13)–(17) and (31) are satisfied. Let ŝI denote the isotone estimate of the variance
function s obtained as the inverse of the statistic (7) with the statistic (30) as
preliminary estimate, then it follows that for every t ∈ (0, 1) with s′(t) > 0

√
nhr

(
ŝI(t) − s(t) − �(hd, hr, t)

) D⇒ N (0, δ2(t)), (32)

where the asymptotic bias is defined by (19) and the asymptotic variance is given
by

δ2(t) = s2(t){m4(t) − 1}
f (t)

∫ 1

−1
K2

r (u)du. (33)

Note that the asymptotic bias of the monotone estimates based on (11) and
(30) coincide, while there is a difference in the asymptotic variance. The asymp-
totic variance in (33) can be considered as a limit (r → ∞) of the asymptotic
variance of the monotone estimate using pseudo residuals with an optimal
difference sequence. We note, however, that for realistic sample sizes these
asymptotic differences are rarely observable.

Remark 6 A different choice of the estimator m̂ (for example a local polyno-
mial or the Gasser-Müller estimator) does not change the asymptotic result in
Theorem 2. On the other hand, if a different estimator is used for the smooth-
ing of the squared residuals in (30) the asymptotic bias has to be modified
appropriately (compare with Remark 3). Moreover, it can be shown by similar
arguments as given in Fan and Yao (1998) that the estimates ŝI considered in
Theorem 2 and its corresponding preliminary estimate ŝ defined in (30) are first
order asymptotically equivalent.

3.3 Extension to other models

The results discussed so far remain valid (subject to an appropriate modification
of the constants) for other nonparametric regression models. As an illustration
consider the stochastic regression model
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Yi = m(Xi) + √
s(Xi)εi, (34)

where (Xi, Yi)i∈Z is a strictly stationary two dimensional process with E[Yi |
Xi = x] = m(x), Var(Yi | Xi = x) = s(x) 	= 0, E[ε4

i | Xi = x] = m4(x). Fan and
Yao (1998) proposed s̃(x) = α̂ as estimate of the conditional variance, where

(α̂, β̂) = argmin
α,β

n∑

i=1

{
r̂i − α − β(Xi − x)

}2
Kr

(Xi − x
hr

)

is the local linear estimate based on the nonparametric residuals r̂1, . . . , r̂n.
These quantities are defined by r̂j = Yj − â, where

(â, b̂) = argmin
a,b

n∑

i=1

{
Yi − a − b(Xi − Xj)

}2
K

(Xi − Xj

h

)

is the local linear estimate of the regression function (and its derivative) at the
point Xj. If s̃I denotes the isotonization of the conditional variance estimate
obtained as the inverse of the statistic (7) with ŝ = s̃, the assumptions of Theo-
rem 2 and the conditions 1–5 in Appendix 1 of Fan and Yao (1998) are satisfied,
then the statistic

√
nhr

{
s̃I(x) − s(x) − �loc(hd, hr, x)

}

is asymptotically normal with mean 0 and variance δ2(x) defined in (33), where
the quantity �loc(hd, hr, x) is given by (25) and f is the marginal density of X.
Again the monotonized estimate is first order asymptotically equivalent to the
unconstrained estimate (see Fan and Yao 1998, Theorem 1).

3.4 Confidence intervals

As pointed out by a referee the results of the paper can easily be used to
obtain confidence intervals for a monotone conditional variance. For the sake
of completeness we briefly indicate the construction in the situation considered
in Theorem 2 where the fourth moment does not depend on t, i.e. m4(t) = m4
and hr = o(n−1/5). In this case the statement in (32) reduces to

√
nhr

(
ŝI(t) − s(t)

) D⇒ N (0, δ2(t)),

and an estimate of the asmyptotic variance δ2(t) is obtained as

δ̂2(t) = ŝ2
I (t)(m̂4 − 1)

f̂ (t)

∫ 1

−1
K2

r (u)du,
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where f̂ is the (non random) density estimate from the predictors {xi,n}i=1,...,n,

m̂4 = Â4,n

Ŝ2
4,n

− 3,

Â4,n = 1
2(n − 1)

n∑

j=2

(�∗
j )

4

Ŝ4,n = 1
4(n − 3)

n∑

j=3

(�∗
j )

2(�∗
j−2)

2

and �∗
j = Yj − Yj−1, j = 2, . . . , n (see e.g. Dette and Munk 1998). Therefore an

asymptotic (1 − α)-confidence interval for s(t) is given by

[

ŝI(t) − z1−α/2
δ̂(t)√
nhr

, ŝI(t) + z1−α/2
δ̂(t)√
nhr

]

,

where z1−α/2 denotes the (1 − α/2)-quantile of the standard normal distribu-
tion. Note that the pseudo residuals �∗

j correspond to the choice r = 1 in (9)
and that other choices would result in different estimates of m4. The general
case of a non constant function m4 can be obtained by calculating m̂4 locally.
Bandwidths of optimal order, i.e. hr = cn−1/5, could also be used, if the bias in
Theorem 2 is estimated appropriately. The details are omitted for the sake of
brevity.

4 Finite sample properties

In this section we illustrate the finite sample properties of the monotone esti-
mates of the conditional variance by means of a small simulation study and a
data example is analyzed using the new methodology.

4.1 A small simulation study

We begin with a comparison of different estimates based on pseudo residuals
(see Sect. 3.1) and then compare the best estimates in this class with the mono-
tone variance estimates based on nonparametric residuals (see Sect. 3.2). For
the sake of brevity we restrict our study to two regression models, that is

Yi = sin(6xi) +
√

3
2

x2
i εi; i = 1, . . . , n (35)

Yi = xi + √
xiεi; i = 1, . . . , n (36)
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where ε1, . . . , εn i.i.d. ∼ N (0, 1) and the sample size is n = 100. As a design
a uniform design (f (x) = 1) is considered, while the Epanechnikov kernel is
used for the kernels Kd and Kr in the density and regression estimate. Note
that for this kernel the integral in (7) can be evaluated explicitly, and that there
are several other kernels (e.g. beta-kernels), where no numerical integration is
required in (7).

The bandwidth hd for the density step is always given by hd = ĥ1.9
r , where

ĥr is a data driven bandwidth of order n−1/5, which will be specified below. We
applied 2000 simulation runs to calculate the squared bias, variance and mean
squared error of the different estimates in the interval [0, 1].

4.1.1 Finite sample properties of difference based estimates

In order to avoid boundary effects we use a local linear estimate based on the
pseudo residuals (9) in the regression step (for a definition of this estimate see
also Sect. 3.3), where different orders r and different sequences of weights are
investigated. The choice of the bandwidth is important for the performance of
the estimate and we use the following simple plug-in-rule

ĥr =
( Â

n

)1/5
, (37)

where

Â = 1
n − r

n−r∑

i=1

(�2
i − �̄2)2 (38)

is the empirical variance of the pseudo residuals �2
1, . . . , �2

n (�̄2 = 1
n−r

∑n−r
i=1 �2

i ).

Because Â is a consistent estimate of

1
n

n∑

i=1

Var(�2
i ) ≈

∫ 1

0
s2(x)

{
2 + (m4(x) − 3)

r∑


=0

d4



}
f (x)dx

the bandwidth (37) is (asymptotically) proportional to the global (with respect
to the integrated mean squared error criterion) optimal bandwidth, if a local
linear estimate is applied to the pseudo residuals �2

1, . . . , �2
n. Smoothing param-

eters proportional to locally optimal bandwidths could be obtained similarly,
but the bandwidth (37) yields reasonable results in all cases considered in our
study.

In what follows we display the mean squared error, squared bias and variance
curves of various estimates for the variance function. It should be noted that
these curves depend on the specific choice of hd, because they are depicted on
a very fine scale. The effect of hd on the curve estimate is less visible. Our first
example investigates the optimal difference sequences introduced by Hall et al.
(1990), which minimize the asymptotic variance of the monotone estimate ŝI . In
Fig. 1 we show the curves of the mean squared error, squared bias and variance
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Fig. 1 Simulated mean squared error, squared bias and variance of the monotone variance esti-
mate (7) based on pseudo residuals with an optimal difference sequence proposed by Hall et al.
(1990); r = 1 : solid line; r = 2 : dashed line; r = 3 : dotted line. The upper panel corresponds to
model (35) and the lower panel to model (36)

with an optimal difference sequence of order r = 1, 2, 3. Variance estimates
based on pseudo residuals with an optimal difference of larger order show a
very similar picture and are therefore not depicted.

We observe that for model (35) all estimates behave very similary with respect
to the variance criterion (with slight advantage for difference sequences of
order r = 2, 3) and that the variance of the estimate ŝI is strictly increasing.
This reflects the asymptotic representation in Theorem 1, which shows that the
variance must be proportional to
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(nhr)
−1 ·

(
2 + 1

r

)
· 3

2
· t2 · 0.6

(recall that f (x) ≡ 1 and that for the Epanechnikov kernel
∫

K2(u)du = 3/5).
On the other hand there are advantages with respect to the squared bias crite-
rion for the estimates using pseudo residuals with a lower order (r = 1, 2), while
the monotone variance estimate based on pseudo residuals with an optimal
difference sequence of order 3 has a substantial larger bias. A similar phe-
nomenon was observed by Dette and Munk (1998) in the context of variance
estimation in a homoscedastic nonparametric regression model. These differ-
ences are also reflected in the mean squared error curves, where the estimates
with pseudo residuals of order one and two have the best performance.

Note that for the regression model (36) the second derivative of the variance
function vanishes, which results in a substantially smaller bias in Theorem 1. As
a consequence the variance has a stronger impact on the mean squared error
and we expect that variance estimates based on optimal difference sequences
of larger order have a better performance. These asymptotic properties are par-
tially reflected in the squared bias curve (see the lower panel of Fig. 1). On the
other hand there are no substantial differences between the variance estimates
ŝI based on pseudo residuals with optimal difference sequences of different
order and the variance dominates the mean squared error. The best perfor-
mance with respect to the mean squared error criterion and the differences
between the three estimates are now mainly caused by the variance.

Figure 2 shows the corresponding curves for model (35) and (36) if the differ-
ence sequence

di = (−1)i

(r
i

)

(2r
r

)1/2
r = 1, 2, 3 (39)

is used for the construction of the pseudo residuals �i in (9). As pointed out by
Dette et al. (1998) these difference sequences reduce the bias at the cost of a
larger variance. Note that for r = 1 and r = 2 this choice yields the difference
sequences proposed by Rice (1984) and Gasser et al. (1986), respectively. For
order r = 3 this effect is clearly visible in model (35), where we observe a
slightly smaller curve for the squared bias (compare also the upper panels in
Figs. 1 and 2), but a larger variance. For both models the difference sequence
with r = 1 has the best performance in the class (39) and the decrease with
respect to the bias does not compensate the increase in variance.

In model (35) the estimate with a difference sequence of order r = 1 produces
the smallest mean squared error curve among the estimates using difference
sequences of the form (39) (see the upper panel Fig. 2), but the estimate with
an optimal difference sequence of order r = 2 has a similar mean squared error
(see Fig. 1 and note that for r = 1 the optimal difference sequence and the
difference sequence of the form (39) coincide). In model (36) the best optimal
difference sequence (obtained by using the order r = 2 or r = 3) yields a smaller
mean squared error than the best difference sequence from the class (39).
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Fig. 2 Simulated mean squared error, squared bias and variance of the monotone variance esti-
mate (7) based on pseudo residuals with a difference sequence of the form (39); r = 1 : solid line;
r = 2 : dashed line; r = 3 : dotted line. The upper panel corresponds to model (35) and the lower
panel to model (36)

Variance estimates based on pseudo residuals with optimal difference
sequences produce a substantially smaller variance and mean squared error
compared to the estimators using the difference sequences of the form (39).
Because other simulation results (which are not depicted here for the sake of
brevity) show a similar picture we recommend the use of the optimal difference
sequences if pseudo residuals are used in the construction of the monotone
estimate ŝI of the conditional variance. We now compare these estimates with
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the monotone variance estimates based on nonparametric residuals introduced
in Sect. 2.2.

4.1.2 Pseudo or nonparametric residuals?

For the construction of the nonparametric residuals ε̂i = Yi − m̂(xi) we use a
local linear estimate m̂ with bandwidth

h =
( σ̂ 2

n

)1/5
, (40)

where σ̂ 2 = 1
2(n−1)

∑n
i=2(Yi − Yi−1)

2 is the nonparametric estimate of Rice
(1984) for the integrated variance. Again a local linear estimate based on the
nonparametric residuals ε̂2

1, . . . , ε̂2
n is used in the preliminary regression step. The

bandwidth hr was chosen according to the plug-in rule (37) where the pseudo
residuals �2

i in (38) are now replaced by the nonparametric residuals ε̂2
i .

Throughout this section monotone variance estimators obtained from the
nonparametric residuals ε̂2

1, . . . , ε̂2
n will be denoted by ŝN

I , while the estimates
obtained from pseudo residuals with the best optimal variance sequence (r = 2)

and the best sequence of the form (39) (r = 1) are denoted by ŝD2
I and ŝD1

I ,
respectively. Note that in the case r = 1 the optimal difference sequence and
the difference sequence of the form (39) coincide. For both models (35) and
(36) we observe in Fig. 3 that the estimate ŝN

I has the smallest variance followed

by ŝD2
I and ŝD1

I . This corresponds to asymptotic theory, which shows that the

asymptotic variance of the statistics ŝN
I , ŝD1

I , ŝD2
I is given by

6
5

s2(t)
nhr

,
9
5

s2(t)
nhr

,
3
2

s2(t)
nhr

,

respectively. However, Fig. 3 also shows that there are differences in the behav-
iour with respect to the squared bias criterion. In both models the estimate ŝN

I
produces the largest bias [but this is negligible in the model (36)]. The estimate
ŝD1

I has a smaller (squared) bias in both models than ŝD2
I . In model (35) the

estimates based on pseudo residuals have a smaller mean squared error than
ŝN

I over a broad range of the interval [0, 1]. Only at the right boundary of the
interval [0, 1] the smaller variances of ŝN

I compensate its larger bias, such that it
becomes the best estimate in our comparison. On the other hand in model (36)
the bias can be neglected and the mean squared error is dominated by the
variance. As a consequence the monotone variance estimate ŝN

I based on non-
parametric residuals yields the smallest mean squared error for the complete
interval [0, 1].
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Fig. 3 Simulated mean squared error, squared bias and variance of the monotone variance estimate
(7) based on pseudo residuals with an optimal difference sequence order r = 1 (solid line), with
an optimal difference sequence of order r = 2 (dashed line) and based on nonparametric residuals
(dotted line). The upper panel corresponds to model (35) and the lower panel to model (36)

4.2 A data example

We conclude this section with an application of the monotone variance estimator
to real data. The data set consists of 4177 records of the mollusc Abalone
(genus Haliotis) with variables concerning several measurements of lengths
and weights as well as the categorical variable gender. Further, the number of
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rings in the shell has been counted, from which by adding 1.5 the age of the
mollusc can be derived (for the original study see Nash et al. 1994). 15 (obvious)
outliers have been omitted in the following data analysis.

In the left panel of Fig. 4 the scatterplot of the variables age (in years) and
weight of the shell (in grams) is displayed, and it appears that both the mean
function and the variance function are monotone.

The quadratic fit in the right panel of Fig. 4 (dotted line) shows large devi-
ations of the curve at the boundary, such that a quadratic regression model
seems to be inappropriate for these data. The local-linear estimator produces
a more sophisticated figure. After a short flat beginning, the slope of the curve
increases between the age of 5 and 12 years, passes to a moderate rise up to the
age 25 and forms a peak thereafter, though this final increase is less confident

Fig. 4 Left panel: Scatterplot
of age (in years) and shell
weight (in grams) of the
mollusc Abalone (Haliotis).
Right panel: A parametric
quadratic fit (dotted line), a
nonparametric local-linear fit
(dashed line) and a
nonparametric monotone fit
(solid line) of the mean
function
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because of the sparse data. For the most ages the parametric and nonparamet-
ric fit exhibit substantial differences. The solid curve shows a monotonization
of the local-linear fit, which has been carried out by the same methods as for
the monotone variance ŝI discussed in this article (see Dette et al. 2006). The
monotone estimator eliminates the two decreasing parts of the unconditional
estimator between 22.5 and 24.5 years and after 28.5 years.

Turning to the estimation of the variance function, the left panel in Fig. 5
shows the estimated squared residuals ε̂2

i = (Yi − m̂I(xi))
2, where m̂I is the

isotonization of the local-linear estimator (see the right panel of Fig. 4). Here
a monotone relation is less apparent than in the scatterplot of age versus shell
weight. But this might be a visual effect, since the local-linear estimate in the
right panel (dashed line) shows no substantial decrease up to the age 22, where
the data become sparse. This visual effect seems to be generated by fewer
extreme squared residuals after an age of 20, but increasing variance among the
smaller ones in these ages. The monotone estimation of the variance function in
the right panel (solid line) shows a similar shape as the unconstrained estimator,
but eliminates decreasing parts, especially between the age of 18 and 25.

5 Proofs

5.1 Proof of Theorem 1

The proof is performed in several steps. At first we calculate the asymptotic bias
and variance of the statistic ŝ−1

I defined in (7), secondly, we establish asymptotic
normality of this estimate and finally we use this result to obtain the assertion
of Theorem 1. For the sake of transparency we assume that N = n; the general
case is obtained by exactly the same arguments with an additional amount of
notation.

For the calculation of the asymptotic bias we first note that it follows from
Lemma 2.1 in Dette et al. (2006)

ŝ−1
I (t) = s−1(t) + κ2(Kd)h2

d(s−1)′′(t) + �n(t) + o(h2
d) + O

( 1
nhd

)
, (41)

where the term �n(t) is given by

�n(t)= 1
nhd

n∑

i=1

∫ t

−∞

{
Kd

( ŝ( i
n ) − u

hd

)
− Kd

( s( i
n ) − u

hd

)}
du=�(1)

n (t) + 1
2
�(2)

n (t),

(42)
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Fig. 5 Left panel: Scatterplot
of the nonparametric squared
residuals ε̂i. Right panel:
Local-linear estimator for the
variance function (dashed
line) and its monotonization
(solid line)
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and the quantities �
(j)
n (t) (j = 1, 2) in this decomposition are defined by

�(1)
n (t) = −1

nhd

n∑

i=1

Kd

( s( i
n ) − t

hd

){
ŝ(

i
n

) − s(
i
n

)
}

, (43)

�(2)
n (t) = 1

nh3
d

n∑

i=1

∫ t

−∞
K′′

d

(ξi − u
hd

){
ŝ(

i
n

) − s(
i
n

)
}2

du, (44)

with |ξi − s( i
n )| < |ŝ( i

n ) − s( i
n )| (i = 1, . . . , n). With an appropriate modification

at the boundary it follows by similar arguments as in Müller and Stadtmüller
(1993) for the second term
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�(2)
n (t) = O

( 1
hd

(
h4

r + 1
nhr

))
. (45)

Replacing the density estimate in the denominator of ŝ( i
n ) by the positive

expressions nhrf ( i
n ) we obtain for the first term of the decomposition (42)

�(1)
n (t) =

(
�(1.1)

n (t) + �(1.2)
n (t) + �(1.3)

n (t)
)
(1 + op(1)), (46)

with

�(1.1)
n (t) = −1

n2hdhr

n∑

i,j=1

Kd

( s( i
n ) − t

hd

)
Kr

(xj − i
n

hr

) (�ε
j )

2 − s( i
n )

f ( i
n )

, (47)

�(1.2)
n (t) = −1

n2hdhr

n∑

i,j=1

Kd

( s( i
n ) − t

hd

)
Kr

(xj − i
n

hr

) (�m
j )2

f ( i
n )

, (48)

�(1.3)
n (t) = −2

n2hdhr

n∑

i,j=1

Kd

( s( i
n ) − t

hd

)
Kr

(xj − i
n

hr

)�m
j �ε

j

f ( i
n )

, (49)

where for j = 1, . . . , n − r the quantities �ε
j , �m

j are defined by

�m
j =

r∑


=0

d
m(xj+
) (50)

�ε
j =

r∑


=0

d


√
s(xj+
)εj+
, (51)

respectively, and we use the notation �ε
j = �m

j = 0, whenever j ∈ {n − r +
1, . . . , n}. A straightforward calculation and the assumption of Lipschitz conti-
nuity for the regression function show that

�m
j =

r∑


=0

d
m(xj+
) =
r−1∑


=0

( 
∑

k=0

dk

)(
m(xj+
) − m(xj+
+1)

)
= O

( 1
nγ

)

(uniformly with respect to j = 1, . . . , n), and it follows that

�(1.2)
n (t) = O

( 1
n2γ

)
. (52)
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Next, consider the first term in (47), which has expectation

E[�(1.1)
n (t)] = −1

n2hdhr

∑

i,j

Kd

( s( i
n ) − t

hd

)
Kr

(xj − i
n

hr

)∑r

=0 d2


s(xj+
) − s( i
n )

f ( i
n )

= − (1 + o(1))

hrhd

∫ 1

0

∫ 1

0
Kd

( s(x) − t
hd

)
Kr

(y − x
hr

)
f (y)

s(y) − s(x)

f (x)
dydx

= −h2
r κ2(Kr)

∫ 1

0

1
hd

Kd

( s(x) − t
hd

){
s′′(x)+ 2s′(x)f ′(x)

f (x)

}
dx · (1+o(1))

= −h2
r κ2(Kr)

( s′′f + 2s′f ′

fs′
)
(s−1(t)) · (1 + o(1)). (53)

Note that the second equality follows from (2), which yields the approximation

1
n

=
∫ xj+1

xj

f (u)du ≈ f (xj)(xj+1 − xj).

Note also that we have used the continuity of the function (s′′f + 2s′f ′)/(fs′)
(s−1(·)) for the last equality, which follows from the assumptions stated in Sect. 2.
With similar calculations the variance of this expression is given by

Var(�(1.1)
n (t)) = o

( 1
nhr

)
.

The remaining third term has obviously expectation E[�(1.3)
n (t)] = 0, while the

second moment can be estimated similarly as in the previous paragraph, that is

E[(�(1.3)
n (t))2] = 4

n4h2
dh2

r

∑

i,i′,j,j′
Kd

( s( i
n ) − t

hd

)
Kr

(xj − i
n

hr

)

× Kd

( s( i′
n ) − t

hd

)
Kr

(xj′ − i′
n

hr

)�m
j �m

j′ E[�ε
j �

ε
j′ ]

f ( i
n )f ( i′

n )

= O
( 1

n1+2γ hr

)
, (54)

where we used the fact that �ε
i and �ε

j are uncorrelated, whenever |i − j| > r.
Therefore Markov’s inequality yields

�(1.3)
n (t) = Op

( 1

n1/2+γ h1/2
r

)
= op

( 1√
nhr

)
, (55)
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and a combination with (41), (42), (45), (53), (55) shows that

√
nhr

{
ŝ−1

I (t) − s−1(t) − κ2(Kd)h2
d(s−1)′′(t) + h2

r κ2(Kr)
( s′′f + 2s′f ′

fs′
)
(s−1(t))

}

= Zn + op(1), (56)

where the random variable Zn is defined as

Zn = −1

n3/2hd
√

hr

n∑

i,j=1

Kd

( s( i
n ) − t

hd

)
Kr

(xj − i
n

hr

) (�ε
j )

2 − E[(�ε
j )

2]
f ( i

n )
(57)

For the variance of Zn we obtain

Var(Zn) = 1

n3h2
dhr

∑

i,i′,j,j′
Kd

( s( i
n ) − t

hd

)
Kd

( s( i′
n ) − t

hd

)

×Kr

(xj − i
n

hr

)
Kr

(xj′ − i′
n

hr

) Lj,j′

f ( i
n )f ( i′

n )

= (1 + o(1))

n3h2
dhr

∑

i,i′,j
Kd

( s( i
n ) − t

hd

)
Kd

( s( i′
n ) − t

hd

)
(58)

×Kr

(xj − i
n

hr

)
Kr

(xj − i′
n

hr

) r∑

k=−r

Lj,j+k

f ( i
n )f ( i′

n )
,

where the quantities Lj,j′ are defined by

Lj,j′ = E[(�ε
j )

2(�ε
j′)

2] − E[(�ε
j )

2]E[(�ε
j′)

2]. (59)

We now calculate these expectations separately, that is

r∑

k=−r

E[(�ε
j )

2]E[(�ε
j+k)2] =

r∑

k=−r

( r∑


=0

d2

s(xj+
)

)( r∑


′=0

d2

′s(xj+k+
′)

)
(60)

= (2r + 1)s2(xj)(1 + o(1)),

uniformly with respect to j = 1, . . . , n, where we used the convention s(xi) = 0,
whenever i 	∈ {1, . . . , n}. The investigation of the first term in (59) is more
difficult, but a straightforward calculation gives
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r∑

k=−r

E[(�ε
j )

2(�ε
j+k)2] =
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d4

s2(xj+
)m4(xj+
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′
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+2
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d
d
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s(xj+
)s(xj+
′)s(xj+k+p)s(xj+k+p′)

×E[εj+
εj+
′εj+k+p′εj+k+p] · (1 + o(1))

= s2(xj)

{
(m4(xj) − 3)
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=0

d4

 + 3 + 2m4(xj)
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+k

+2
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( r∑


,s=0

 	=s+k

d2

d2

s + 2
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,s=0

 	=s

d
d
+kdsds+k
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(1 + o(1))

= s2(xj)

{
(m4(xj) − 3)

( r∑


=0

d4

 + 2
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k=1
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d2
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+k

)
+ 3

+2
r∑

k=1

([ r∑


=0

d2



]2 + 2
[r−k∑


=0

d
d
+k
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(1 + o(1))

= s2(xj)

{
m4(xj) + 2r + 4

r∑

k=1

[r−k∑


=0

d
d
+k

]2
}
(1 + o(1)), (61)

uniformly with respect to j = 1, . . . , n. Combining (58) – (61) and observing the
definition of δr in (22) we thus obtain

Var(Zn) = (1 + o(1))

n3h2
dhr

n∑

i,i′,j=1

Kd

( s( i
n ) − t

hd

)
Kd

( s( i′
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hd

)

× Kr

(xj − i
n

hr

)
Kr

(xj − i′
n

hr

) (m4(xj) − 1 + 4δr)s2(xj)

f ( i
n )f ( i′

n )

= (1 + o(1))

h2
dhr

∫ 1

0
Kd

( s(z) − t
hd

) ∫ 1

0
Kd

( s(y) − t
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)

×
∫ 1

0
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f (y)f (z)
Kr
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hr

)
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(x − z
hr

)
f (x)dxdydz

= s2(s−1(t))(m4(s−1(t)) − 1 + 4δr)

(s′(s−1(t))2f (s−1(t))

∫ ∫ ∫
Kd(w)Kd(v)Kr(u)

× Kr

( s−1(t + hdv) − s−1(t + hdw)
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)
dudvdw · (1 + o(1))

= t2[m4(s−1(t)) − 1 + 4δr]
(s′(s−1(t))2f (s−1(t))

∫ 1
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K2

r (u)du · (1 + o(1)). (62)
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A similar calculation and an application of Orey’s (1958) central limit theorem
for arrays of m-dependent random variables finally shows that Zn is asymptot-
ically normal distributed, that is

Zn
D−→ N (0, ξ2(t)), (63)

where the asymptotic variance ξ2(t) is defined by

ξ2(t) = t2{m4(s−1(t)) − 1 + 4δr}
(s′(s−1(t))2f (s−1(t))

∫ 1

−1
K2

r (u)du,

and from (56) we have

√
nhr

{
ŝ−1

I (t) − s−1(t) − κ2(Kd)h2
d(s−1)′′(t) + h2

r κ2(Kr)
( s′′f + 2s′f ′

fs′
)
(s−1(t))

}

D−→ N (0, ξ2(t)). (64)

The final assertion regarding the asymptotic normality of the estiamte ŝI is
now obtained by similar arguments as presented in the proof of Theorem 3.2
in Dette et al. (2006), and for the sake of self-consistency we indicate the
main steps in this derivation. For this define for t ∈ (0, 1) the quantity ε =
min{(s(t) − s(0))/2, (s(1) − s(t))/2} > 0 and the set D = (s(t) − ε, s(t) + ε). It
can be shown by similar arguments as in Mack and Silverman (1982) that ŝ
converges a.s. uniformly to s and consequently the support of ŝ−1

I (essentially
given by [minx∈[0,1] ŝ(x), maxx∈[0,1] ŝ(x)]) contains the set D for all sufficiently
large n(≥ n0). We now apply Lemma 1 in the Appendix to the restrictions of
the functions s−1 and ŝ−1

I on the set D and obtain

ŝI(t) − s(t) = − (ŝ−1
I − s−1)

(s−1)′
(s(t)) + op

( 1√
nhr

)
,

which yields

√
nhr

{
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}

= −
√

nhr
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}
+ op(1)
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√

nhrs′(t)
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(ŝ−1

I − s−1) ◦ s(t)

+ κ2(Kd)
s′′(t)

(s′(t))3 h2
d + κ2(Kr)

( s′′f + 2s′f ′

fs′
)
(t)h2

r

}

D−→ N (0, (s′(t))2ξ2(s(t))),
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where we used (64) and the fact that s′′/(s′)3 = −(s−1)′′. Finally, a straightfor-
ward calculation shows that

(s′(t))2ξ2(s(t)) = s2(t){m4(t) − 1 + 4δr}
f (t)

∫ 1

−1
K2

r (u)du = β2(t),

where β2(t) is the asymptotic variance defined in (20). ��

5.2 Proof of Theorem 2

The proof of Theorem 2 is performed by similar arguments as the proof of
Theorem 1 and for this reason we will only indicate the main differences. First
we note that the arguments given at the beginning of the proof of Theorem 1
remain valid. This follows by some standard calculations using the differentiabil-
ity of the regression function and some basic properties of the Nadaraya-Watson
estimate. Therefore we obtain

√
nhr

{
ŝ−1

I (t) − s−1(t) − κ2(Kd)h2
d(s−1)′′(t) + h2

r κ2(Kr)
( s′′f + 2s′f ′

fs′
)
(s−1(t))

}

= Wn + op(1), (65)

where the statistic Wn is defined by

Wn = −1

n3/2hd
√

hr

n∑
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Kd

( s( i
n ) − t

hd

)
Kr
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n

hr

) ε̃2
j − E[ε̃2

j ]
f ( i

n )
, (66)

the quantities ε̃j are given by

ε̃j =
√

s(xj)εj −
n∑


=1

wj

√

s(x
)ε
 =
n∑


=1

wj

(√

s(xj)εj − √
s(x
)ε


)
, (67)

and

wj
 =
K

(
x
−xj

h

)

∑n
q=1 K

(
xq−xj

h

) (68)

denote the weights of the Nadaraya-Watson estimate. In the following we will
make use of the estimate

Wn = Vn + op(1), (69)

where the statistic Vn is defined by

Vn = −1

n3/2hd
√

hr

n∑

i,j=1

Kd

( s( i
n ) − t

hd

)
Kr

(xj − i
n

hr

) s(xj)(ε
2
j − 1)

f ( i
n )

. (70)
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With this representation it now follows by a similar calculation as given in the
proof of Theorem 1 that

Var(Vn) = (1 + o(1))

h2
dhr
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Kd

( s(x1) − t
hd

)
Kd

( s(x2) − t
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)
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∫
K2

r (u)du · (1 + o(1)) ,

and a straightforward application of Lindeberg’s Theorem yields

Vn
D⇒ N (0, δ̃2(t)) (72)

where the asymptotic variance δ̃2(t) is defined as

δ̃2(t) = t2{m4(s−1(t)) − 1}
(s′(s−1(t))2f (s−1(t))

∫
K2

r (u)du.

The assertion of Theorem 2 now follows by exactly the same arguments as given
at the end of the proof of Theorem 1.

We finally prove the remaining argument for (69) noting that

Wn − Vn = 2An − Bn, (73)

where

An = 1
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Obviously, we have E[An] = E[Bn] = 0, while we obtain for the variance of An

Var(An) = E[A2
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= 1
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(74)

for some constants c1, c2 > 0. Observing the definition of wij in (68) it therefore
follows

Var(An) = (1 + o(1))
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A similar but tedious calculation shows that

Var(Bn) = O
( hr

nh2

)
, (75)
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and from (73) the estimate (69) follows, which completes the proof of Theo-
rem 2. ��

Appendix: An auxilary result

The following Lemma is required in the proof of Theorem 1. The proof follows
by exactly the same arguments as given in the proof of Lemma A.1 in Dette et
al. (2006) and is therefore omitted.

Lemma 1 For fixed t ∈ R let M denote the set of all twice continuously differ-
entiable functions of the form H : D → R (for some open set D ⊆ R), which
contain t in the interior of their image, i.e. t ∈ int H(D), and have a positive
derivative in a neighbourhood of the point H−1(t). For fixed H1, H2 ∈ M the
mapping

Q :
{ [0, 1] → R

λ → (H1 + λ(H2 − H1))
−1(t)

is twice continuously differentiable with

Q′(λ) = − (H2 − H1)

h1 + λ(h2 − h1)
◦ (H1 + λ(H2 − H1))

−1(t)

Q′′(λ) = Q′(λ)

{ −2(h2 − h1)

h1 + λ(h2 − h1)
+ (H2 − H1)(h′

1 + λ(h′
2 − h′

1))

{h1 + λ(h2 − h1)}2

}
◦ Q(λ),

where h1, h2 denote the derivatives of H1, H2, respectively.
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