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Abstract The main objective of this work is the nonparametric estimation of the
regression function with correlated errors when observations are missing in the
response variable. Two nonparametric estimators of the regression function are pro-
posed. The asymptotic properties of these estimators are studied; expresions for the
bias and the variance are obtained and the joint asymptotic normality is established.
A simulation study is also included.

Keywords Local polynomial regression · Missing response and correlated errors

1 Introduction

The local polynomial fitting is a attractive technique used for estimating the regres-
sion function. Many authors have studied the asymptotic properties of the local poly-
nomial fitting in a context of dependence (Masry 1996a,b; Masry and Fan 1997;
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86 A. Pérez-González et al.

Härdle and Tsybakov 1997; Härdle et al. 1998; Vilar and Vilar 1998, etc.). A broad
study of the local polynomial modelling can be found in Fan and Gijbels (1996).

Most of the statistical methods are designed for complete data sets and problems
arise when missing observations are present, which is a common situation in biomedi-
cal, environmental or socioeconomic studies, for example. Classic examples are found
in the field of social sciences with the problem of non-response in sample surveys, in
Physics, in Genetics (Meng 2000), etc.

In the regression context, a common method is to impute the incomplete observa-
tions and then proceed to carry out the estimation of the conditional or unconditional
mean of the response variable with the completed sample. The methods considered
include linear regression (Yates 1933), kernel smoothing (Cheng 1994; Chu and Cheng
1995; González-Manteiga and Pérez-González 2004), nearest neighbor imputation
(Chen and Shao 2000), semiparametric estimation (Wang et al. 2004), nonparametric
multiple imputation (Aerts et al. 2002), empirical likelihood over the imputed values
(Wang and Rao 2002), etc.

For dependent data, the problem of missing observations has been studied using
various techniques like the likelihood estimation (Peña and Tiao 1991; Jones 1980),
least squares (Beveridge 1992; Chow and Lin 1976; etc.) and kernel estimation
(Robinson 1984), among others.

The objective of this paper is to introduce a nonparametric estimator of the regres-
sion function with correlated errors when observations are missing in the response
variable. The observations can be missed for various reasons, for example in a time
series: the fault of an equipment of measurement, the inability of to observe the series
at some instants, for example on holidays or due to a tempest, etc.

In this paper, we propose two nonparametric estimators when we have missing
observations in the response variable based on the local polynomial estimator for
complete data studied by Francisco-Fernández and Vilar-Fernández (2001) for fixed
design and correlated errors.

The first one is the simplified local polynomial smoother (SLPS), which only uses
complete observations. The second one is based on the techniques of simple imputation
already used by Chu and Cheng (1995) or González-Manteiga and Pérez-González
(2004). This estimator, that we will refer to as imputed local polynomial smoother
(ILPS), consists in using SLPS to estimate the missing observations of the response
variable Y ; then, the local polynomial estimator for complete data is applied to the
completed sample.

Let us consider the fixed regression model where the functional relationship
between the design points, xt,n , and the responses, Yt,n , can be expressed as

Yt,n = m(xt,n) + εt,n, 1 ≤ t ≤ n,

where m(·) is a regression function defined in [0, 1] , without any loss of generality, and
εt,n, 1 ≤ t ≤ n, are unobserved random variables with zero mean and finite variance,
σ 2

ε . We assume, for each n, that
{
ε1,n, ε2,n, . . . , εn,n

}
have the same joint distribution

as {ε1, ε2, . . . , εn}, where {εt , t ∈ Z} is a strictly stationary stochastic process. In this
way, it is assumed that the errors of the model can be in general dependent.
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The design points xt,n, 1 ≤ t ≤ n, follow a regular design generated by a density
f . So, for each n, the design points are defined by

∫ xt,n

0
f (x)d(x) = t − 1

n − 1
, 1 ≤ t ≤ n,

where f is a positive function, defined in [0, 1] and its first derivative is continuous.
For simplicity, we are going to avoid the subindex n in the sample data and in the

errors notation, that is, we are going to use xt , Yt and εt .
The response variable Y can have missing data. To check whether an observation

is complete ((xt , Yt ) ∈ R
2) or not ((xt , ?)), a new variable δ is introduced into the

model as an indicator of the missing observations. Thus, δt = 1 if Yt is observed, and
zero if Yt is missing for t = 1, . . . , n.

Following the patterns in the literature (see Little and Rubin (1987), etc), we need
to establish whether the loss of an item of data is independent or not of the value of
the observed data and/or the missing data. In this paper we suppose that the data are
missing at random (MAR), i.e.:

P (δt = 1/Yt , xt ) = P (δt = 1/xt ) = p(xt ), (1)

p being a positive function, defined on [0, 1] and its first derivative is continuous. We
suppose that the variables δt are independent.

In the next section we present the regression model with missing data, as well as the
nonparametric estimators used. The mean squared error and the asymptotic distribu-
tion of the estimators are shown in Sect. 3. In Sect. 4, a simulation study is presented.
The conclusions are shown in Sect. 5. And, finally Sect. 6 contains the proofs of the
asymptotic results.

2 The regression model and the nonparametric estimators

Our goal is to estimate the unknown regression function m(x) and its derivatives us-
ing weighted local polynomial fitting. We assume that the (p + 1)th derivative of the
regression function at point x exist and are continuous. As indicated previously, two
nonparametric estimators are studied, the first (Simplified estimator) arises from using
only complete observations and is a generalization of the local polynomial estimator.
If we assume that the (p + 1)th derivatives of the regression function at point x exist
and are continuous, the parameter vector β(x) = (β0(x), β1(x), . . . , βp(x))T, where
β j (x) = m( j)(x)/( j !), with j = 0, 1, . . . , p, can be estimated by minimizing the
function

�(β(x)) = (Yn − Xnβ(x))T Wδ
n (Yn − Xnβ(x)) ,
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where

Yn =
⎛

⎜
⎝

Y1
...

Yn

⎞

⎟
⎠ , Xn =

⎛

⎜
⎝

1 (x1 − x) · · · (x1 − x)p

...
...

...
...

1 (xn − x) · · · (xn − x)p

⎞

⎟
⎠ ,

Wδ
n = diag

(
n−1 Khn (x1 − x) δ1, .., n−1 Khn (xn − x) δn

)

with Khn (u) = h−1
n K

(
h−1

n u
)
, K being a kernel function and hn the bandwidth or

smoothing parameter that controls the size of the local neighborhood and so the de-
gree of smoothing.

Assuming the invertibility of Xt
nWδ

nXn , the estimator is

β̂S,n(x) = (
XT

n Wδ
nXn

)−1
XT

n Wδ
nYn = S−1

n Tn, (2)

where Sn is the array (p + 1) × (p + 1) whose (i, j)th element is si, j,n = si+ j−2,n

with

sk,n = 1

n

n∑

t=1

(xt − x)k Khn (xt − x) δt , 0 ≤ k ≤ 2p

and Tn = (
t0,n, t1,n, . . . , tp,n

)t , being

ti,n = 1

n

n∑

t=1

(xt − x)i Khn (xt − x) Ytδt , 0 ≤ i ≤ p. (3)

A second estimator (imputed estimator) is computed in two steps. In the first step,
the Simplified estimator with degree q, kernel L and smoothing parameter gn , is used

to estimate the missing observations. In this way, the sample
{(

xt , Ŷt

)}n

t=1
is com-

pleted, where Ŷt = δt Yt +(1 − δt ) m̂S,gn (xt ), with m̂S,gn (x) = et
1β̂S,n(x) and e j is the

(p + 1) × 1 dimensional vector with 1 at the jth coordinate and zero at the rest. Now,

the simplified estimation is applied to the data
{(

xt , Ŷt

)}n

t=1
with degree p(p ≥ q),

kernel K and smoothing parameter hn . The expression of this estimator is

β̂ I,n(x) = (
XT

n WnXn
)−1 XT

n WnŶn = U−1
n Vn, (4)

where Ŷ = (
Ŷ1, .., Ŷn

)T
, Wn = diag

(
n−1 Khn (x1 − x) , .., n−1 Khn (xn − x)

)
.

3 Asymptotic properties

In this section asymptotic expressions for the bias and variance/covariance array and
the asymptotic normality of the estimate defined in (2) and (4) are obtained. The
following assumptions will be needed in our analysis:
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Asymptotic properties of local polynomial regression 89

A.1. Kernel functions K and L are symmetric, with bounded support, and Lipschitz
continuous.

A.2. The sequence of smoothing parameters, {ln}, with ln satisfies that ln > 0,
ln ↓ 0, nln ↑ ∞, where ln = hn or gn .

A.3. Denote Cov (εi , εi+k) = σ 2
ε ν (k) , k = 0, 1, 2 . . . then

∑∞
k=1 k |ν(k)| < ∞.

3.1 Asymptotic properties of the simplified estimator

The following notations will be used. Let µK, j = ∫
u j K (u) du and νK , j = ∫

u j K 2(u)

du and let us denote µK = (
µK ,p+1, . . . , µK ,2p+1

)T and SK and S̃K are the arrays
whose (i, j)th elements are sK ,i, j = µK ,i+ j−2 and s̃K ,i, j = νK ,i+ j−2, respectively.

In the following theorem, expressions for the bias and the variance array of the
estimator β̂S,n(x) are obtained.

Theorem 1 If assumptions A1, A2 and A3 are fulfilled, for every x ∈ (hn, 1 − hn),
we have

Hn

(
E

(
β̂S,n(x)/δ

)
− β(x)

)
= m(p+1)(x)

(p + 1)! h p+1
n S−1

K µK + op(h
p+1
n 1), (5)

with 1 = (1, . . . , 1)T and

Var
(

Hnβ̂S,n(x)/δ
)

= 1

nhn

cδ (ε)

p(x)2 f (x)
S−1

K S̃K S−1
K

(
1 + op (1)

)
, (6)

where Hn = diag
(
1, hn, h2

n, . . . , h p
n
)
, δ = (δ1, . . . , δn)T and

cδ (ε) = p(x)2c (ε) + p(x)q(x)ν(0)σ 2
ε ,

with c (ε) = σ 2
ε

(
ν(0) + 2

∑∞
k=1 ν (k)

)
and q(x) = (1 − p(x)) .

Remarks

• From expressions (5) and (6) it is deduced that the AMSE of the estimator
m̂( j)

S,hn
(x) = ( j !) eTj+1β̂S,n(x) is

AMSE
(

m̂( j)
S,hn

(x)/δ
)

=
(

( j !) m(p+1) (x)

(p + 1)! h p+1− j
n eTj+1S−1

K µK

)2

+ ( j !)2

nh2 j+1
n

cδ (ε)

p(x)2 f (x)
eTj+1S−1

K S̃K S−1
K e j+1,

j = 0, . . . , p.

• The existence of missing observations has no influence on the bias but does on the
variances of the estimators m̂( j)

S,hn
(x) through the term
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cδ (ε)

p(x)2 =
(

c (ε) + q(x)

p(x)
ν (0) σ 2

ε

)
≥ c (ε) ,

which decreases as p(x) increases, and therefore, decreases the variance.
• Expressions (5) and (6) generalize those obtained by Francisco-Fernández and

Vilar-Fernández (2001) for the case of complete data (p(x) = 1) under depen-
dence.

• If the observations are independent, considering that cδ (ε) = p(x)ν (0) σ 2
ε , one

obtains

AMSE
(

m̂( j)
S,hn

(x)/δ
)

=
(

( j !) m(p+1) (x)

(p + 1)! h p+1− j
n eTj+1S−1

K µK

)2

+ ( j !)2

nh2 j+1
n

ν (0) σ 2
ε

p(x) f (x)
eTj+1S−1

K S̃K S−1
K e j+1.

To establish the asymptotic normality of β̂S,n(x), the following additional assump-
tions are necessary:

A.4. The process of the random errors {εt } has a moving average MA(∞)-type
dependence structure, so

εt =
∞∑

i=0

φi et−i , t = 1, 2, . . .

where {et } is a sequence of independent identically distributed random vari-
ables with zero mean and variance σ 2

e , and the sequence {φi } verifies that∑∞
i=0 |φi | < ∞.

A.5. E |et |2+γ < ∞ for some γ > 0
A.6. hn = O(n−1/(2p+3))

A.7. The sequences of smoothing parameters {hn} and {gn} are the same order, this

is, lim
n→∞

hn

gn
= λ.

Theorem 2 If assumptions A1–A6 are fulfilled, for every x ∈ (hn, 1 − hn), we have
the asymptotic normality of β̂S,n(x) conditional on δ:

√
nhn

(

Hn

((
β̂S,n(x)

)
−β(x)

)
− m(p+1)(x)

(p + 1)! h p+1
n S−1

K µK

)
L−→ N(p+1) (0,�S) (7)

where �S = cδ (ε)

p(x)2 f (x)
S−1

K S̃K S−1
K , and N(p+1) (0,�S)denotes a multivariate nor-

mal distribution of dimension p + 1.
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Asymptotic properties of local polynomial regression 91

The asymptotic normality conditional on δ of the individual components m̂( j)
S,hn

(x) =
( j !) β̂S, j (x) is directly derived from Theorem 2. We have, for j = 0, . . . , p,

√
nh1+2 j

n

(
(

m̂( j)
S,hn

(x) − m( j)(x)
)

− h p+1− j
n

m(p+1)(x)

(p + 1)! ( j !)eTj+1S−1
K µK

)
L−→ N

(
0, σ 2

j

)
,

where σ 2
j = ( j !)2 cδ (ε)

p(x)2 f (x)
et

j+1S−1
K S̃K S−1

K e j+1.

The condition of dependence given in assumption A.4. is very general and a large
class of stationary processes have MA(∞) representations (see Sect. 5.7 of Brockwell
and Davis (1991)). This condition is taken on to be able to use a Central Limit Theo-
rem for sequences with m(n)-dependent main part of Nieuwenhuis (1992). A different
strategy can be used to obtain the asymptotic normality of the estimator β̂S,n(x). For
this, assuming that the process of the errors {εt } is strong mixing (α -mixing) and
imposing bound conditions on the mixing coefficients, following a similar approach
to that employed in Masry and Fan (1997) or Francisco-Fernández and Vilar-Fernández
(2001) one can obtain the asymptotic normality of β̂S,n(x) using the well known a
“small-blocks and large-blocks” method.

3.2 Asymptotic properties of the imputed estimator

Considering that

Ŷi = δi (Yi − m (xi )) + (1 − δi )
(
m̂S,gn (xi ) − m (xi )

) + m (xi )

where m̂S,gn (xi ) = m̂(0)
S,gn

(xi ) , the following basic decomposition is obtained

β̂ I,n(x) − β(x) = (
XT

n WnXn
)−1 XT

n Wn

⎛

⎜
⎝

δ1 (Y1 − m (x1))
...

δn (Yn − m (xn))

⎞

⎟
⎠

+ (
XT

n WnXn
)−1 XT

n Wn

⎛

⎜
⎝

(1 − δ1)
(
m̂S,gn (x1) − m (x1)

)

...

(1 − δn)
(
m̂S,gn (xn) − m (xn)

)

⎞

⎟
⎠

+ (
XT

n WnXn
)−1 XT

n Wn

⎛

⎜
⎝

m (x1)
...

m (xn)

− XT
n β(x)

⎞

⎟
⎠

= �1 + �2 + �3. (8)
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Using it as basis, the conditional asymptotic mean square error of β̂I,n(x) is obtained
as follows. The following notations will be used. Let L∗

gn ,q(v) = eT1 S−1
L (1, . . . , vq)T

Lgn (v) and A j,q(v) = gn
∫

u j K (u)L∗
gn ,q(hn (v − u)) du, and let us denote Z and Z̃ as

the arrays whose (i, j)th elements, i, j = 1, . . . , p+1, are zi, j = ∫
Ai−1,q(v)A j−1,q

(v)dv and z̃i, j = ∫
vi−1 K (v)A j−1,q(v)dv, respectively.

Theorem 3 Let us suppose that assumptions A1, A2, A3 are verified. Then, for every
x ∈ (rn, 1 − rn), with rn = max {hn, gn} , we have

Hn

(
E

(
β̂ I,n(x)/δ

)
− β(x)

)
= m(p+1)(x)

(p + 1)! h p+1
n S−1

K µK

+q (x)
m(q+1) (x)

(q + 1)! gq+1
n S−1

K µ̃K e1S−1
L µL

+op

(
1(h p+1

n + gq+1
n )

)
(9)

and, if hn and gn verify A7, then

Var
(

Hnβ̂ I,n(x)/δ
)

= 1

nhn

cδ (ε)

f (x)
S−1

K

×
(

S̃K + λ2 q(x)2

p(x)2 Z + 2λ
q(x)

p(x)
Z̃

)
S−1

K

(
1 + op (1)

)
, (10)

where µ̃K = (
µK ,0, . . . , µK ,p

)t
.

Remarks

• From expressions (9) and (10) it is deduced that the two smoothing parameters
used to calculate the estimator β̂I,n(x) have influence in the expressions of the

bias and asymptotic variance. The conditional AMSE of the estimator m̂( j)
I,hn

(x) =
( j !) eTj+1β̂ I,n(x) is the following:

AMSE
(

m̂( j)
I,hn

(x)/δ
)

=

⎛

⎜
⎜
⎜
⎝

( j !) m(p+1) (x)

(p + 1)! h p+1− j
n eTj+1S−1

K µK +
( j !) m(q+1) (x)

(q + 1)! q (x)
gq+1

n

h j
n

eTj+1S−1
K µ̃K e1S−1

L µL

⎞

⎟
⎟
⎟
⎠

2

+ ( j !)2

nh2 j+1
n

cδ (ε)

f (x)
eTj+1S−1

K

×
(

S̃K + h2
n

g2
n

q(x)2

p(x)2 Z + 2
hn

gn

q(x)

p(x)
Z̃

)
S−1

K e j+1,

j = 0, . . . , p.

• The existence of missing observations has influence in the bias and the variances
of the estimator m̂( j)

I,hn
(x). The expressions (9) and (10) generalize those obtained
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by Francisco-Fernández and Vilar-Fernández (2001) for the case of complete data
(p(x) = 1) under dependence.

• The dependence of the errors influences the variance of the estimator m̂( j)
I,hn

(x)

through the term cδ (ε) . If the observations are independent one obtains that

AMSE
(

m̂( j)
I,hn

(x)/δ
)

=

⎛

⎜
⎜
⎜
⎝

( j !) m(p+1) (x)

(p + 1)! h p+1− j
n eTj+1S−1

K µK +
( j !) m(q+1) (x)

(q + 1)! q (x)
gq+1

n

h j
n

eTj+1S−1
K µ̃K e1S−1

L µL

⎞

⎟
⎟
⎟
⎠

2

+ ( j !)2

nh2 j+1
n

c (0) p(x)σ 2
ε

f (x)
eTj+1S−1

K

×
(

S̃K + h2
n

g2
n

q(x)2

p(x)2 Z + 2
hn

gn

q(x)

p(x)
Z̃

)
S−1

K e j+1.

This expression generalizes those obtained by González-Manteiga and Pérez-
González (2004) who used local linear regression (p = q = 1) for the case of
incomplete data under independence.

• In the case
gn

hn
→ 0, the expression of the bias is that given in (9) although note

that if q = p, the second summand is asymptotically null with respect to the first
since gn = o (hn) . With respect to the asymptotic variance, its expression is the
following

Var
(

Hnβ̂ I,n(x)/δ
)

= 1

nhn

cδ (ε)

p(x)2 f (x)
S−1

K S̃K S−1
K

(
1 + op (1)

)
.

This expression coinciding with that obtained for the variance of the Simplified
estimator β̂S,n(x) (see 6), hence, if q = p, the estimators, Simplified m̂( j)

S,hn
(x)

and Imputed m̂( j)
I,h(x), have the same asymptotic mean squared error. But if q < p,

the second term of the bias of the Imputed estimator can be dominant, and there,
the bias of estimator m̂( j)

I,hn
(x) is greater than that of m̂( j)

S,h(x) and also has greater
AMSE.

• In the case of hn
gn

→ 0, again, the expression of the asymptotic bias is that given

in (9), but in this case because q ≤ p, the second summand on the right side of
Eq. (9) is the dominant term of the bias. To obtain the expression of the variance
of the estimator, let us denote R and R̃ as the arrays whose (i, j)th elements,
i, j = 1, . . . , p + 1, are

ri, j =
(∫

vi+ j−2 L2(v)dv

) (∫
vi−1 K (v)dv

) (∫
v j−1 K (v)dv

)
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94 A. Pérez-González et al.

and

r̃i, j =
(∫

vi−1 K (v)dv

) (∫
v j−1 K (v)dv

)
,

respectively. Then, the expression of the variance, in this case, is the following

Var
(

Hnβ̂ I,n(x)/δ
)

= 1

nhn

cδ (ε)

f (x)
S−1

K

×
(

S̃K + hn

gn

q(x)2

p(x)2 R+2
hn

gn

q(x)

p(x)
R̃L∗

q(0)

)
S−1

K

(
1+op (1)

)

≈ 1

nhn

cδ (ε)

f (x)
S−1

K S̃K S−1
K

(
1 + op (1)

)
.

In this case, the imputed estimator provides better asymptotic variance than the
simplified estimator due to the oversmoothing of the bandwidth parameter gn . But
the bias for the imputed estimator is bigger than that for the simplified one.

• From the above, it is deduced that the imputed estimator gives good results if
hn = ξgn is chosen. A selection method of these parameters consists of to find

hn and ξ that minimize the AMSE
(

m̂( j)
I,hn

(x)/δ
)

. For example, using p = q and

considering hn = ϕn−1/(2p+3) as the usual selection one obtains

AMSE
(

m̂( j)
I,hn

(x)/δ
)

= AMSE (ϕ, ξ)

=
⎛

⎜
⎝

( j !) m(p+1) (x)

(p + 1)! ϕ p+1− j n
j−p−1
2p+3

(
eTj+1S−1

K µK + q (x) ξq+1eTj+1S−1
K µ̃K e1S−1

L µL

)

⎞

⎟
⎠

2

+ ( j !)2 cδ (ε)

f (x)
ϕ2 j+1n

2(p+1− j)
2p+3 eTj+1S−1

K

×
(

S̃K + ξ2 q(x)2

p(x)2 Z + 2ξ
q(x)

p(x)
Z̃

)
S−1

K e j+1. (11)

• From expression (11), plug-in selections of ϕ and ξ can be obtained as values that
minimize one estimation of the previous function, ÂMSE (ϕ, ξ). This estimation
is obtained when substituting in (11) the values m(p+1) (x) , cδ (ε) , p(x) and f (x)

for estimations of these.
Taking into account p(x) = P(δ = 1/x) = E(δ/x), this function can be estimated
from sample

{
(xt , δt )

n
t=1

}
by a nonparametric regression method. The estimator

of c (ε) = ∑∞
k=−∞ E (εt , εt+k) = ∑∞

k=−∞ γ (k), and therefore, the estimation
of cδ (ε) can be obtained in several ways. In any case, we will use the completed

sample
{(

xt , Ỹt

)n

t=1

}
, where Ỹt = δt Yt + (1−δt )m̂S,gpilot (xt ), and m̂S,gpilot (xt )

was computed with pilot bandwidth gpilot. Using this sample, several procedures
can be used to estimate c (ε) .
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Müller and Stadtmüller (1988) suggested an estimator for γ (k) based on first order
differences of sequence ξt,r = Ỹt − Ỹt−r , t = 1, . . . , n, with lag r (r ≥ 1) . Sup-
posing that εt is an m-dependent process, Müller and Stadtmüller (1988) proved
the asymptotic properties of the proposed estimator, γ̂MS(k). Now an estimator
ĉM S(ε) for c(ε) is defined as follows:

ĉMS(ε) =
r(n)∑

k=r(n)

γ̂MS(k),

where r(n) is a sequence of positive integers, with r (n) → ∞ as n → ∞.

Under more general conditions of dependence, εt is α−mixing. Herrmann et al.
(1992) used second order differences of Ỹt , defined as

ηt,α,β = Ỹt − α

α + β
Ỹt+β − β

α + β
Ỹt−α,

and they proposed estimators γ̂HGK(k) for the covariances of the process εt based
on these differences ηt,α,β . Again, an estimator ĉHGK(ε) for c(ε) is defined as
follows:

ĉHGK(ε) =
r(n)∑

k=r(n)

γ̂HGK(k).

The consistency of this estimator is proven in Herrmann et al. (1992). Also, Hall
and Van Keilegom (2003) suggested a new difference-based method for estimating
error autocovariance with time series errors.

The asymptotic normality of the estimator β̂ I,n(x) is established in the following
theorem.

Theorem 4 Assume A1–A7. Then, for every x ∈ (rn, 1 − rn), we have the asymptotic
normality of β̂ I,n(x) conditional on δ:

√
nhn

(
Hn

((
β̂ I,n(x)

)
− β(x)

)
− BI

) L−→ N(p+1) (0,� I ) ,

where

BI = m(p+1)(x)

(p + 1)! h p+1
n S−1

K µK + q (x)
m(q+1) (x)

(q + 1)! gq+1
n S−1

K µ̃K e1S−1
L µL ,

and

� I = cδ (ε)

f (x)
S−1

K

(
S̃K + λ2 q(x)2

p(x)2 Z + 2λ
q(x)

p(x)
Z̃

)
S−1

K .
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The asymptotic normality of the individual components m̂( j)
I,hn

(x) = ( j !) β̂I, j (x)

is directly derived from Theorem 2. Moreover, the considerations made in Theorem 2
with respect to the dependence structure of the errors process are also valid for this
estimator.

4 A simulation study

In this section, we compare the performance of the simplified estimator (2) and the
imputed estimator (4). For this purpose, we use the complete data estimator as ref-
erence. The simulation study was carried out using a local linear smoother (p = 1),
considering p = q = 1 for the Imputed estimator.

We consider a fixed design model in the interval [0, 1] , with equispaced data and
with random errors following an AR(1) process

εt = ρεt−1 + et

with N (0, σ = 0.3) distribution. The regression function considered is m (x) =
5(x − 0.5)3, and the missing data model (1) is p (x) = 0.8 exp

(−x2
)
. The kernel

functions used (K and L) were the Epanechnikov kernel.
To study the influence of the dependence of the observations, different degrees of

dependence were considered, specifically, the following correlation coefficient values
were considered for ρ : ρ = −0.8, −0.5, −0.25, 0, 0.25, 0.5, and 0.8.

In the first part of the study the global smoothing parameters needed for the three
estimators were estimated. For this, the mean integrated square error, MISE, was
considered as error criterion. Three hundred samples, of size 100, of the previous
model were generated, and the MISE value was approached by Monte Carlo for each
smoothing parameter value taken over a grid of size 100 of interval (0, 1). For the
Imputed estimator the minimization process was carried out using a double grid for
the smoothing parameters used (hn and gn). Table 1 shows the values obtained for the
optimal global smoothing parameters for each correlation coefficient (ρ) value.

Observing the values obtained for the case of complete data and the simplified esti-
mator, it is apparent how the missing data imply an increase in the smoothing parameter.
For another hand, for the three estimators, we can observe that when the dependence
of the observations increases, that is, the value of ρ increases, then, the variability of
the data increases, and therefore, the optimal smoothing parameter also increases.

Table 1 Optimal global bandwidth

ρ

–0.8 –0.5 –0.25 0.0 0.25 0.5 0.8

Complete 0.17 0.19 0.20 0.23 0.26 0.35 1.00

Simplified 0.38 0.32 0.31 0.32 0.36 0.47 1.00

Imputed

g 1.00 0.51 0.49 0.51 1.00 1.00 0.49

h 0.21 0.17 0.17 0.19 0.22 0.28 1.00
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Table 2 Approximated MISE for 500 samples

ρ

−0.8 −0.5 −0.25 0.0 0.25 0.5 0.8

Complete 0.0018 0.0024 0.0031 0.0045 0.0070 0.0133 0.0503

Simplified 0.0127 0.0084 0.0079 0.0086 0.0110 0.0177 0.0576

Imputed 0.0103 0.0078 0.0076 0.0084 0.0107 0.0164 0.0555

Eff. (%) 18.765 6.987 4.306 2.389 2.583 7.439 3.583
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Fig. 1 Quotient between mean squared errors for imputed and simplified estimators with ρ = −0.25,

0 and 0.25

Once the optimal bandwidths are obtained, the estimation of the regression func-
tion was carried out on another 500 different samples. For these samples, the mean
squared error and the MISE were estimated. To compare the simplified and the imputed
estimators we computed the efficiency of the latter in the following way:

Eff.(%) = MISESIMP − MISEIMPUT

MISESIMP
× 100,

obtaining the values observed in the last row of Table 2.
The results show better behavior for the imputed estimator than for the simplified,

with a benefit above 2.5%. Just as in the case of complete data, we see that as the
correlation coefficient increases, the value of the MISE increases drastically.

Figure 1 shows the quotient between the mean squared errors, MSE, for imputed
and for simplified estimators for three correlation coefficient values (ρ = −0.25, 0
and 0.25). It is apparent that at certain points the simplified estimator is better than the
imputed. This finding, along with the fact that when using global measures such as
the MISE, the imputed estimator is better, justifies that selection of a local bandwidth
(for each point) would substantially improve the results.

Figure 2 shows the boxplots of the MSE for the three estimators with ρ = −0.25,
0 and 0.25.
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Fig. 2 Boxplots of MSE for the complete (red), simplified (green) and imputed (blue) estimators with
ρ = −0.25, 0 and 0.25

It is observed that as the correlation coefficient increases, the MSE also increase.
Moreover, the good behavior of the Imputed estimator is apparent compared with the
Simplified in the three cases.

4.1 The effect of strong dependence

We were interested in studying the behavior of the estimators under strong dependence
for different sample sizes. For this reason, we performed more simulations using larger
sample size for this value (ρ = 0.8). Tables 3 and 4 show the optimal bandwidth and
the MISE obtained for several sample sizes.

We can see that as the sample size increases, the MISE decreases and the behavior
of the imputed estimator is better. The bandwidth for the imputation of the imputed
estimator (gn) is very big because when the correlation is big, the variance is big also.

Table 3 Optimal bandwidth with correlation ρ = 0.8

n

100 200 300 400 500

Complete 1 1 0.55 0.46 0.37

Simplified 1 1 0.56 0.47 0.39

Imputed
g 0.49 1 1 1 1

h 1 0.44 0.34 0.34 0.3
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Table 4 Mean integrated squared error with correlation ρ = 0.8

n

100 200 300 400 500

Complete 0.0503 0.0303 0.0235 0.0188 0.0161

Simplified 0.0576 0.0334 0.0258 0.0205 0.0174

Imputed 0.0555 0.0325 0.0244 0.0193 0.0163

Sn100 Sn200 Sn300 Sn400 Sn500

0,00

0,05

0,10

0,15

0,20

0,25

In100 In200 In300 In400 In500

0,00

0,05

0,10

0,15

0,20

0,25(a) (b)

Fig. 3 Boxplots of MSE for simplified (a) and imputed (b) estimators with ρ = 0.8 and n = 100,
200, 300, 400 and 500

In the asymptotic results we can see that if we choose hn
gn

→ 0 the variance for the

imputed estimator is lower than that for the simplified estimator. The oversmoothing
tends to decrease the variance.

Figures 3 and 4 show the boxplots of the MSE for the estimators for incomplete
data, and for five sample sizes.

The two estimators have similar behavior with respect to sample size, as long as n
grows the MSE decreases.

If we compare the three estimators (complete data case, simplified and imputed
estimators) for various sample sizes, we see the following graphs.

The complete data case has the best behavior, and the imputed estimator performs
better than the simplified estimator.

5 Conclusions

In this paper we have proposed two nonparametric estimators of the regression
functions with correlated errors and missing observations in the response variable.

123



100 A. Pérez-González et al.
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Fig. 4 Boxplots of MSE for the complete (boxplot on the left), simplified (middle) and imputed (right)
estimators with ρ = 0.8, n = 200 (a) and n = 300 (b)

The MSE and the asymptotic normality of the estimators have been studied. We ob-
served that the performance of the estimators depends on the bandwidth parameters.
The imputed estimator needs two bandwidth parameters, and when a suitable choice
of these parameters is made, the behavior of this one is better than that of the simplified
one. In the case of the imputation and the estimation bandwidth verify gn

hn
→ 0, the

simplified estimator is better than the imputed estimator. In the case of hn
gn

→ 0, the
imputed estimator has a smaller variance but the bias can be bigger. Nevertheless, if
the bandwidth parameters are of similar order (hn = ξgn with ξ > 0) , the imputed
estimator can be better than the simplified estimator.

6 Proofs

In this section, we sketch proofs of the results presented in Sect. 3.
First, the convergence for arrays Sn and Tn are established.

Proposition 1 Under assumptions A1 and A3, for every x ∈ (hn, 1 − hn), we have

lim
n→∞ H−1

n SnH−1
n = p(x) f (x) SK

(
1 + op (1)

)
. (12)

Proposition 2 Under assumptions A1, A2 and A3, for every x ∈ (hn, 1 − hn), we
have

lim
n→∞ nhnVar

(
H−1

n Tn/δ
)

= p(x) f (x) S̃K
(
1 + op (1)

)
.
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Using Taylor’s expansion and following a similar approach to that employed in
Francisco-Fernández and Vilar-Fernández (2001) we can deduce Propositions 1 and 2.

Proof of Theorem 1. Let Mn = (m (x1) , . . . , m (xn))t . Performing a (p +1)th-order
Taylor expansion of function m in a neighborhood of x, we obtain

E
(
β̂S,n (x) /δ

)
− β (x) = (

XT
n Wδ

nXn
)−1

XT
n Wδ

n

(
Mn − Xt

nβ
)

= m(p+1)(x)

(p + 1)!
(
XT

n Wδ
nXn

)−1

⎛

⎝

⎛

⎝
sp+1,n

. . .

s2p+1,n

⎞

⎠+op

(
h p+1

n 1
)
⎞

⎠ .

Using Proposition 1 we obtain the bias of β̂S,n (x) given in (5).
Again, using (12) we have

Var
(
β̂S,n (x) /δ

)
= 1

p(x)2 f (x)1 H−1
n SK H−1

n V ar (Tn/δ) H−1
n SK H−1

n

(
1 + op (1)

)
.

(13)
From (13) and Proposition 2, we deduce the expression of the conditional variance

of β̂S,n (x) (6).

Proof of Theorem 2. First, we study the asymptotic distribution conditional on δ of
the vector

√
nhn

(
H−1

n

(
T∗

n

))
, where

(
T∗

n

) = (Tn) − E (Tn/δ). For it, let QS,n be an
arbitrary linear combination of

H−1
n

(
T∗

n

)
, QS,n = ãT

(
H−1

n

(
T∗

n

)) =
p∑

i=0

αi h
−i
n

((
ti,n

) − E
(
ti,n/δ

))

with ã = (a0, a1, . . . , ap) ∈ R
p+1.

So

√
nhn QS,n =

n∑

t=1

ξt,n,

where

ξt,n =
√

hn

n
�hn (xt − x) δtεt ,

with

� (u) = K (u)

p∑

i=0

αi u
j and �hn (u) = 1

hn
�

(
u

hn

)
.
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Using Proposition 2, the variance of QS,n is obtained

σ 2
QS = lim

n→∞ Var(QS,n/δ) = lim
n→∞ nhn ãTVar

(
H−1

n

(
T∗

n/δ
)) ˜a =p(x) f (x) S̃K < ∞.

(14)
It remains to prove the asymptotic normal distribution conditional on δ of QS,n =∑n
t=1 ξt,n . For it, we will use the following central limit theorem for sequences with

m(n)-dependent main part of Nieuwenhuis (1992).

Theorem A.5. Suppose that the array
{

Xi,n, 1 ≤ i ≤ q(n)
}

has an m(n)-dependent

main part
{

X̃i,n

}
and a residual part

{
X̄i,n

}
. Set b2

n = Var
(∑q(n)

i=1 Xi,n

)
. Assume

that the arrays
(
Xi,n/bn

)
and

(
X̄i,n/bn

)
satisfy the variance conditions C1 and C∗

1,

respectively, and that both arrays satisfy the (2 + δ)-moment condition C2 for some
δ > 0 with m(n)2+2/δ/q(n) → 0. Then

1

bn

q(n)∑

t=1

(Xt,n − E(Xt,n))
L−→ N (0, 1) as n → ∞.

The above conditions are:

Condition C1. max
i< j≤q(n)

1

j − i
Var

(
j∑

t=i+1

Xt,n

bn

)

= O

(
1

q(n)

)
as n → ∞.

Condition C∗
1. max

i< j≤q(n)

1

j − i
Var

(
j∑

k=i+1

X̄t,n

bn

)

= o

(
1

q(n)

)
as n → ∞.

Condition C2. max
1<t≤q(n)

E(
∣
∣Zt,n

∣
∣2+γ

) = O(q(n)−1−(γ /2)) as n → ∞,

with Zt,n = Xt,n
bn

or X̄t,n
bn

.

Here an array Zt,n is called m(n)-dependent if for all n ∈ N and k ∈ {2, . . . , q(n)−
m(n)} the random vectors

(
Zt,n : 1 ≤ t ≤ k − 1

)
and

(
Zi,n : k + m(n) ≤ i ≤ q(n)

)

are independent. The sequence m(n) verifies m(n)/n → 0 as n → ∞.

In our case, using assumption A.4. we have

εt =
∞∑

i=0

φi et−i =
m(n)∑

i=0

φi et−i +
∞∑

i=m(n)

φi et−i = ε̃t + ε̄t .

Then, taking into account that the kernel K has bounded support, changing the
indices and without loss of generality, it can be written as

√
nhn QS,n =

|hnn|∑

t=−|hnn|
ξt,n =

|hnn|∑

t=−|hnn|
(ξ̂t,n + ξ̄t,n),
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where q(n) = 2 |hnn| (|•| denotes the integer part), ξt,n is a triangular array with
m(n)- dependent main part ξ̂t,n and residual part ξ̄t,n , obtained when substituting in
ξt,n, εt for ε̃t and ε̄t , respectively.

In the following, we shall prove that our array verifies the conditions of Theorem
A.5.

Condition C1. Under A.1, A.3 and using (14) we obtain

1

j − i
Var

(
j∑

t=i+1

ξt,n

bn

)

≤ 1

j − i

1

b2
n

j∑

t=i+1

j∑

k=i+1
E

(
ξt,nξk,n

)

≤ C

j − i

1

nhn

j−(i+1)∑

s=−( j−i−1)

( j − i − |s|) |ν(s)|

= O

(
1

nhn

)
= O

(
1

q(n)

)
,

where C is a positive constant (notation that will be used from here on). Therefore,{
ξt,n/bn

}
verifies C1.

Condition C∗
1. Reasoning in a similar way, it is easy to show that

1

j − i
Var

(
j∑

t=i+1

ξ̄t,n

bn

)

≤ 1

j − i

1

b2
n

j∑

t=i+1

j∑

k=i+1
E

(
ξ̄t,n ξ̄k,n

)

≤ C

nhn

j−(i+1)∑

s=−( j−i−1)

E
(
ε̄t,n ε̄t+s,n

)

= C

nhn

j−(i+1)∑

s=−( j−i−1)

∑

j>m(n)

φ j
∑

k>m(n)

φk E(et− j ek− j )

≤ C

nhn

∑

s

(
∑

j>m(n)

φ jφ j+s

)

σ 2
e ≤ C

nhn

(
∑

j>m(n)

φ j

)2

= o

(
1

nhn

)
= o

(
1

q(n)

)
.

Condition C2. We want to prove (2 + γ )-moment condition for the arrays ξt,n/bn and
ξ̄t,n/bn . This is done for the first one, but for the second, an similar approach is used.
Taking into account the form of the function �hn (u) , assumptions A.1. and A.5. and
using (14) we obtain

E

∣
∣
∣
∣
ξt,n

bn

∣
∣
∣
∣

2+γ

= C E

∣
∣
∣
∣

1√
nhn

εt

∣
∣
∣
∣

2+γ

= O

(
1√
nhn

)2+γ

= O(q(n)−1−(γ /2)).

Therefore, we have proven the asymptotic normality conditional on δ of

QS,n = √
nhn ãT

(
H−1

n

(
T∗

n

)) L−→ N (0, σ 2
QS).
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Now, using the Cramer-Wold Theorem we obtain the asymptotic normality condi-
tional on δ of √

nhn

(
H−1

n

(
T∗

n

)) L−→ N(p+1) (0,�S) . (16)

Finally, taking into account

√
nhnHn

((
β̂S,n (x)

)
− β (x)

)

= √
nhn

(
H−1

n SnH−1
n

)−1
H−1

n

(
T∗

n

) + √
nhnHn

(
E

(
β̂S,n (x) /δ

)
− β (x)

)

from (5) and (16) and using Proposition 1, the asymptotic normality of the estimator
β̂S,n (x) conditional on δ (given in (7)) is established.

Proof of Theorem 3. To obtain the bias of β̂ I,n (x) , from ( 8) it follows that

Hn E
(
β̂ I,n (x) /δ

)
− β (x) = Hn E(�2/δ) + Hn�3, (17)

because �3 is no random term.

From (5) and using Proposition 1 it is easy to obtain that

Hn E(�2/δ) = q (x)
m(q+1) (x)

(q + 1)! gq+1
n S−1

K µ̃K e1S−1
L µL + 1 gq+1

n . (18)

Again, using Proposition 1 we have

Hn E(�3/δ) = m(p+1)(x)

(p + 1)! h p+1
n S−1

K µK + 1 h p+1
n (19)

From (17), (18) and (19) it follows (9).
With respect to the variance of β̂ I,n (x) , we have

Var
(
β̂ I,n (x) /δ

)
= Var (�1/δ) + Var (�2/δ) + 2 Cov(�1�2/δ).

Using the same kind of arguments as those used in the proof of (6) we obtain

Var (�1/δ) = 1

nhn

cδ (ε)

f (x)
H−1

n S−1
K S̃K S−1

K H−1
n

(
1 + op (1)

)
. (20)

With respect to the variance of �2, we have

Var (�2/δ) = (
XT

n WnXn
)−1 Var(T̂n/δ)

(
XT

n WnXn
)−1

,
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where T̂n = (
t̂0,n, t̂1,n, . . . , t̂ p,n

)T, being

t̂ j,n = 1

n

n∑

i=1

(xi − x) j (1 − δi ) Khn (xi − x)
(
m̂S,gn (xi ) − m (xi )

)
, 0 ≤ j ≤ p.

(21)
Using the approximation of the local polynomial estimator by equivalent kernels

(see Sect. 3.2.2 of Fan and Gijbels 1996) m̂S,gn (xi ) can be written as

m̂S,gn (xi )=
n∑

s=1

�δ

(
xs − xi

gn

)
Ys= 1

n f (xi ) p(xi )

n∑

s=1

L∗
gn ,q(xs−xi )δsYs

(
1 + op (1)

)
.

(22)
From (21) and (22) it follows that

Cov
(

h− j
n t̂ j,n, h−k

n t̂k,n/δ
)

= 1

n4h j+k
n

∑

i

Khn (xi − x) (1 − δi ) (xi − x) j

·
∑

t

Khn (xt − x) (1 − δt ) (xt − x)k

× 1

f (xi ) p (xi )

1

f (xt ) p (xt )

·
∑

s

L∗
gn ,q (xs − xi ) δs

∑

r

L∗
gn ,q (xr − xt ) δr c (|s − r |)

= �1 + �2 + �3 + �4, (23)

where we have split Cov
(

h− j
n t̂ j,n, h−k

n t̂k,n

)
into four terms: in �1 we have considered

the case s = r and i = t; in �2, s = ri �= t; in �3, s �= r i = t; and, in �4, s �= r
and i �= t.

Developing each of these four terms, we obtain that

�1 = O

(
1

n2g2
n

)
,

�2 = σ 2
ε c (0)

f (x) q (x)2

np (x)

hn

g2
n

∫
A j,q (v) Ak,q (v) dv

(
1 + op (1)

)
,

�3 = O

(
1

n2g2
n

)
,

�4 = 1

n

(
c (ε) − σ 2

ε c (0)
)

q (x)2 hn

g2
n

f (x)

∫
A j,q (v) Ak,q (v) dv

(
1 + op (1)

)
.

Therefore,

Var(T̂n/δ) = hn

ng2
n

f (x)
q (x)2

p (x)2 cδ (ε) Z
(
1 + op (1)

)
. (24)
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From (24) and Proposition 1, we deduce that

Var (�2/δ) = hn

ng2
n

1

f (x)

q (x)2

p (x)2 cδ (ε) H−1
n S−1

K ZS−1
K H

−1
n

(
1 + op (1)

)
. (25)

Finally, we study the term Cov(�1�2/δ),

Cov(�1�2/δ) = (
Xt

nWnXn
)−1 Cov(TnT̃t

n/δ)
(
Xt

nWnXn
)−1

, (26)

where Tn is given in (3) and T̃n = (
t̃0,n, t̃1,n, . . . , t̃ p,n

)t , being

t̃i,n = 1

n

n∑

t=1

(xt − x)i Khn (xt − x)
(
m̂S,gn (xt ) − m (xt )

)
(1 − δt ) , 0 ≤ i ≤ p.

Using (22) we can expand the terms of matrix Cov(TnT̃t
n/δ), and we have

Cov
(

h− j
n t̂ j,n, h−k

n t̂k,n/δ
)

= 1

n2h− j−k
n

∑

i

Khn (xi − x) (xi − x) j δi

∑

t

Khn (xt −x)

· (xt − x)k (1 − δt )
∑

s

�δ

(
xs − xt

gn

)
Cov [εi , εs]

= �1 + �2,

where in �1 we assume that i = s, and in �1 we consider i �= s.
Simple algebraic expansions allow us to obtain that

�1 = σ 2
ε c (0) q (x)

ngn
f (x)

∫
K (v) v j Ak,q (v) dv

(
1 + op (1)

)
.

Using Taylor expansions we have

�2 =
(
c (ε) − σ 2

ε c (0)
)

n
p (x) q (x) f (x)

1

gn

(∫
K (v) (v) j Ak,q (v) dv

)
(
1+op (1)

)
,

Hence,

Cov
(

h− j
n t̂ j,n, h−k

n t̂k,n/δ
)
= 1

ngn
f (x)

q (x)

p (x)
cδ (ε)

∫
K (v) v j Ak,q (v) dv

(
1+op (1)

)
,

and

Cov(H−1
n TnH−1

n T̃t
n/δ) = 1

ngn
f (x)

q (x)

p (x)
cδ (ε) Z̃

(
1 + op (1)

)
. (27)

From (26), (27) and using again Proposition 1, we conclude that

Cov(�1�2/δ) = 1

ngn
f (x)

q (x)

p (x)
cδ (ε) H−1

n S−1
K Z̃S−1

K H−1
n

(
1 + op (1)

)
.
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By substituting (20), (25) and (27) in it follows ( 10).

Proof of Theorem 4. The same method as that used in the demonstration of Theorem 2
is followed,

√
nhnHn

((
β̂ I,n (x)

)
− β (x)

)
= √

nhn

(
H−1

n UnH−1
n

)−1
H−1

n χn,

where χ̃ = (χ0,n,χ1,n, . . . ,χ p,n), with

χ j,n = 1

n

n∑

t=1

(xt − x) j Khn (xt − x)

× (
δtεt + (1 − δt )

(
m̂S,gn (xt ) − E

(
m̂S,gn (xt ) /δ

)))
0 ≤ j ≤ p.

Using Proposition 1 it is sufficient to prove the asymptotic normality conditional on
δ of term

√
nhnH−1

n χ̃ . For it, let QI,n be an arbitrary linear combination of H−1
n χ̃n,

QI,n = ãTH−1
n χ̃n =

p∑

i=0

ai h
−i
n χ̃ i,n, with ã = (a0, a1, . . . , ap) ∈ R

p+1.

Using the approximation given in (22) we have

√
nhn QI,n = √

nhn

p∑

i=0

ai (ui,n + vi,n) = √
nhn ãT(ũn + ṽn),

where ũn = (u0,n, . . . , u p,n)T and ṽn = (v0,n, . . . , vp,n)T with

ui,n = 1

n

n∑

t=1

(
xt − x

hn

)i

Khn (xt − x) εt , 0 ≤ i ≤ p,

vi,n = 1

n

n∑

t=1

(
xt − x

hn

)i

Khn (xt − x)

·
(

1 − δt

n f (xt )p(xt )

n∑

s=1

L∗
gn ,q (xs − xt ) δsεs

)

, 0 ≤ i ≤ p.

First, we compute the variance of QI,n . By (20), (25) and (26) and using the
assumption A.7. we obtain

σ 2
I S = lim

n→∞ Var(QI,n/δ) = lim
n→∞ nhn ãt Var

(
(ũ + ṽ)(ũ + ṽ)t/δ

)
ã

= cδ (ε)

f (x)
ãt

(
S̃K + λ2 q(x)2

p(x)2 Z + 2λ
q(x)

p(x)
Z̃

)
ã. (28)
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Expanding the term QI,n we obtain

√
nhn QI,n =

n∑

t=1

ηt,n

=
√

hn

n
�hn (xt − x)

(

δtεt + 1 − δt

n f (xt )p(xt )

n∑

s=1

L∗
gn ,q (xs − xt ) δsεs

)

.

Again, taking into account the form of functions �hn (u) and L∗
gn ,q (u), that the

kernels K and L have bounded support, reordering the sums and if λ = 1, we have

√
nhn QI,n =

|hnn|∑

t=−|hnn|
ζt,n =

|hnn|∑

t=−|hnn|
(ζ̂t,n + ζ̄t,n),

with

ζt,n =
√

hn

n
�hn (xt − x) δt

⎛

⎝1 + 1 − δt

n f (xt )p(xt )

|hnn|−t∑

j=−|hnn|+t

L∗
gn ,q

(
xt − x j

)
⎞

⎠ εt ,

where q(n) = 2 |hnn| , ζt,n is a triangular array with m(n)-dependent main part ζ̂t,n

and residual part ζ̄t,n obtained when substituting in ζt,n, εt by ε̃t and ε̄t , respectively.
Under assumptions A.1. and A.7. we have

ζt,n =
√

hn

n
�hn (xt − x) δt (1 + C) εt = ξt,n(1 + C). (29)

Using (28) and (29) and reasoning in a similar way as that in the proof of Theorem 2,
it is easy to prove that the arrays ζt,n and ζ̄t,n satisfy the conditions of Theorem A.5.
Now the proof of Theorem 4 is complete.
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