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Abstract The limiting joint distribution of correlated Hotelling’s T 2 statistics asso-
ciated with multiple comparisons with a control in multivariate one-way layout model
is a multivariate central nonsingular chi-square distribution with one-factorial corre-
lation matrix, which has the distribution function expressed in a closed form as an
integral of a product of noncentral chi-square distribution functions with respect to
a central chi-square density function. For pairwise comparisons, it is a multivariate
central singular chi-square distribution whose distribution function is generally intri-
cate. To overcome the complexity of the (exact or asymptotic) distribution theory
of T 2

max-type statistics appeared in simultaneous confidence intervals of mean vec-
tors, improved Bonferroni-type inequalities are applied to construct asymptotically
conservative simultaneous confidence intervals for pairwise comparisons as well as
comparisons with a control.

Keywords Multiple comparisons · Bonferroni-type inequality · Maximum of
correlated Hotelling’s T 2 statistics · Multivariate central nonsingular or singular
chi-square distribution

1 Introduction

Given q ≥ 2 levels, let X
(a)
i = (X (a)

1i , . . . , X (a)
pi )′ be the i-th observation on the a-th

level and assume the linear model (one-way layout model)

X
(a)
i = θ (a) + U

(a)
i , a = 1, . . . , q ; i = 1, . . . , Na, (1)
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2 Y. Kakizawa

where U
(a)
i s are (unobservable) independent p × 1 random vectors with mean zero

vector and positive definite covariance matrix �, which is assumed to be unknown. The
total number of such vectors is

∑q
a=1 Na = N (say). In the model (1), the least squares

estimates of the θ (a)’s are given by the sample mean vector X
(a) = N−1

a
∑Na

i=1 X
(a)
i ,

a = 1, . . . , q. Due to the equality of covariance matrices, a usual unbiased estimate
of � is given by the pooled sample covariance matrix

Spool,X = 1

N − q

q∑

a=1

(Na − 1) S(a)
X ,

where S(a)
X = (Na − 1)−1∑Na

i=1(X
(a)
i − X

(a)
)(X

(a)
i − X

(a)
)′, a = 1, . . . , q.

We consider the problem of constructing simultaneous confidence intervals among
mean vectors. We focus on the multivariate case p > 1 and deal with (I) comparisons
with a control when the q-th level is regarded as a control and (II) pairwise com-
parisons. Roy and Bose (1953; (4.3.1)) and Siotani (1960; (12) and (13)) gave exact
100(1 − α)% simultaneous confidence intervals of the form

�′(θ (a) − θ (q))∈�′ (X(a) − X
(q)
)

±
{

N−1
aq t2

max,I(α)(�′Spool,X�)
}1/2

for all � ∈ R p − {0} , a = 1, . . . , q − 1 (2.I)

and

�′(θ (a) − θ (b))∈�′ (X(a) − X
(b)
)

±
{

N−1
ab t2

max,II(α)(�′Spool,X�)
}1/2

for all � ∈ Rp − {0}, a, b = 1, . . . , q ; a < b, (2.II)

where Nab = Na Nb/(Na + Nb). Here, t2
max,I(α) and t2

max,II(α) are, respectively, the
upper 100α% point of maximum of correlated Hotelling’s T 2 statistics

T 2
max,I = max

a=1,...,q−1
(T 2

aq) and T 2
max,II = max

1≤a<b≤q
(T 2

ab), (3)

where

T 2
ab = Nab

(
U

(a) − U
(b)
)′

S−1
pool,U

(
U

(a) − U
(b)
)

, a, b = 1, . . . , q; a �= b. (4)

Obviously, we have T 2
ab = T 2

ba for a �= b.
To implement (2.I) and (2.II) practically, even in the normal populations, one

encounters the difficulty of computing exact two percentiles t2
max,I(α) and t2

max,II(α),

for which one requires an expression for the joint distribution of (T 2
ab)a,b=1,...,q;a<b

or its marginal distribution of (T 2
aq)a=1,...,q−1. For any pair (a, b) ∈ {(a, b) : a, b =

1, . . . , q; a < b} ≡ J , let λab ∈ Rq be a column vector with {Nb/(Na + Nb)}1/2 at the
a-th position, −{Na/(Na + Nb)}1/2 at the b-th position and zero at other position. By
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Multiple comparisons in one-way MANOVA 3

virtue of the multivariate sampling theory (e.g. Anderson 2003; p. 77), we know only
that given a subset {(ai , bi ) : i = 1, . . . , K } ⊂ J for some K = 1, . . . , q(q−1)/2, the
distribution of (T 2

ai bi
/(N −q))i=1,...,K under normality is characterized as the distribu-

tion of (Z′
ai bi

W −1Zai bi )i=1,...,K with Zab = (λ′
ab ⊗ Ip)U , where W is distributed as

Wishart distribution Wp(Ip, N − q), independent of U ∼ Npq(0, Ipq). A better char-
acterization for the distribution of (Z′

ai bi
W −1Zai bi )i=1,...,K is not available at present

for either p > 1 or K > 1. Hence, the exact percentiles t2
max,I(α) and t2

max,II(α),
equivalently, the distribution functions of the maximum statistics (3), given by

P(T 2
max,I ≤ x) = P(T 2

aq ≤ x, a = 1, . . . , q − 1) (5.I)

and
P(T 2

max,II ≤ x) = P(T 2
ab ≤ x, a, b = 1, . . . , q; a < b), (5.II)

are not generally computable. It may be noted that letting �K be a K ×q matrix whose
i-th row is λ′

ai bi
, (Z′

a1b1
, . . . ,Z′

aK bK
)′ = (�K ⊗ Ip)U is distributed as a nonsingular

or singular normal NK p(0,�K �′
K ⊗ Ip) according as the rank of �K is equal to K

or less than K (hence the case K > q is singular).
Historically, many authors discussed the distribution of (Z′

ai bi
Zai bi )i=1,...,K , where

(Z′
a1b1

, . . . ,Z′
aK bK

)′ ∼ NK p(0,�K ⊗ Ip). Provided that �K (K × K ) is the correla-
tion matrix, the distribution of (Z′

ai bi
Zai bi )i=1,...,K is referred to as a K -variate central

nonsingular or singular chi-square distribution with p degrees of freedom according
as �K is nonsingular or singular (e.g. Krishnaiah 1965). See also Krishnamoorthy and
Parthasarathy (1951) and Royen (1991b) on a multivariate Gamma-type distribution
for the nonsingular case (apart from some special cases, the multivariate Gamma-type
distribution is complicated to handle numerically). We say that the K × K correlation
matrix �K has a product (or one-factorial) structure if �K = DK +ρK ρ′

K , where ρK
is a K × 1 column vector whose i-th element is ρai bi ∈ (−1, 1) and DK is a K × K
diagonal matrix whose i-th diagonal is 1−ρ2

ai bi
. The following formula due to Royen

(1984, 1991a) is available:

P
(
Z′

ai bi
Zai bi ≤ xai bi , i = 1, . . . , K |�K = DK + ρK ρ′

K

)

=
∫ ∞

0
gp(s)

K∏

i=1

G p

(
xai bi

1 − ρ2
ai bi

,
ρ2

ai bi
s

1 − ρ2
ai bi

)

ds, (6)

where gp(x) is the density function of the central chi-square distribution with p degrees
of freedom, and G p(x, ω2) denotes the distribution function of the noncentral chi-
square distribution with p degrees of freedom and noncentrality parameter ω2 (e.g.
Anderson (2003; p. 82));

G p(x, ω2) =
∞∑

�=0

1

�!
(

ω2

2

)�

exp

(

−ω2

2

)

G p+2�(x).
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4 Y. Kakizawa

Fujikoshi and Seo (1999) attempted to derive an asymptotic expansion up to order
ν−2 of P(Z′

a S−1Za ≤ xa, a = 1, . . . , K ), where νS is distributed as Wishart distri-
bution Wp(�, ν), independent of (Z′

1, . . . ,Z
′
K )′ ∼ NK p(0, 	 ⊗ �). In view of their

derivation, their matrix 	 must be nonsingular, although they did not mention it. But,

their results were restricted to a special case of 	 =
(

1 ρ

ρ 1

)

with K = 2 (see also

Siotani 1959) or 	 = IK (this case is referred to as being quasi-independent). Under
elliptical populations with equal sample sizes N1 = · · · = Nq = N0 (say) or unequal
sample sizes N1, . . . , Nq satisfying maxa=2,...,q Na ≤ N1 = N0 (say), Seo (2002) and
Okamoto (2005) gave an asymptotic expansion up to order N−1

0 of the joint probabil-
ity P(T 2

ab > x, T 2
cd > x) for (a, b), (c, d) ∈ J satisfying (a, b) �= (c, d), which was

extended by Kakizawa (2006) to a situation where the underlying population distri-

butions satisfy U (a) d= −U (a), a = 1, . . . , q. Recently, Kakizawa (2005) derived an
asymptotic expansion up to order N−1 for the joint distribution of quasi-independent

Hotelling’s T 2 statistics NaU
(a)′

S−1
pool,U U

(a)
, a = 1, . . . , q under nonnormality.

2 Background

2.1 Improved Bonferroni inequality

An easy idea to overcome the distributional complexity of the statistics (3) is based on
the Bonferroni inequality, which provides upper and lower bounds for the probability
of the union of a sequence of events A1, . . . , Am ;

m∑

i=1

P(Ai ) −
∑

1≤i1<i2≤m

P(Ai1 ∩ Ai2) ≤ P

(
m⋃

i=1

Ai

)

≤
m∑

i=1

P(Ai ). (7)

If Ai is, for each i = 1, . . . , q − 1, the event that Hotelling’s T 2 statistic T 2
iq is greater

than a certain positive value x , we have from (7) with m = q − 1

1 −
q−1∑

a=1

Paq(x) +
∑

1≤a<b≤q−1

Paq:bq(x) ≥ P(T 2
max,I ≤ x) ≥ 1 −

q−1∑

a=1

Paq(x), (8)

where

Paq(x) = P(T 2
aq > x) and Paq:bq(x) = P

(
T 2

aq > x, T 2
bq > x

)
.

Suppose that the exact or asymptotic formulae on Paq(x)’s are available. Then, replac-
ing the critical value t2

max,I(α) in (2.I) with the solution t2
I,0 of

q−1∑

a=1

Paq(x) = α, (9)
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Multiple comparisons in one-way MANOVA 5

we have conservative or asymptotically conservative 100(1 −α)% simultaneous con-
fidence intervals for comparisons with a control (the conservative property follows
from the lower bound in (8)). It is obvious that equating other lower bound L(x) for
P(T 2

max,I ≤ x) to 1−α yields also conservative simultaneous confidence intervals. The
sharper the bound L(x) is, the closer to 1−α the coverage probability of the resulting
simultaneous confidence intervals is. We remark that equating the left hand side of (8)
to 1 − α, that is, solving the equation

∑q−1
a=1 Paq(x) −∑

1≤a<b≤q−1 Paq:bq(x) = α,
is useless for q > 3, since the coverage probability in this case is less than or equal
to 1 − α. Instead, the upper bound in (8) or another improved upper bound U (x) for
P(T 2

max,I ≤ x) should be used to estimate the accuracy of any approximation to the

true critical value t2
max,I(α).

On the other hand, the modified second approximation that Siotani’s (1959, 1960,
1964) proposed is a creative but ad-hoc approximation method in such a way that the
critical value t2

I,S is calculated as the solution of the equation

q−1∑

a=1

Paq(x) = α +
∑

1≤a<b≤q−1

Paq:bq(t2
I,0), (10)

where t2
I,0 is the solution of (9). Unfortunately, there will be no theoretically support

whether the coverage probability of Siotani’s simultaneous confidence intervals with
the critical value t2

I,S is larger than or equal to 1−α for the case q > 3. Seo and Siotani
(1993) gave an extensive simulation study in order to examine the accuracy of their
proposal t2

I,S (see also Seo and Siotani 1992, Seo 2002, Okamoto 2005 for pairwise
comparisons).

The aim of this paper is to construct simultaneous confidence intervals (2.I) and
(2.II) with some critical values in place of the exact percentiles t2

max,I(α) and t2
max,II(α)

of T 2
max,I and T 2

max,II, respectively. We will develop an easily computable procedure by
applying improved Bonferroni-type lower bounds for (5.I) and (5.II), which is essential
for the conservative property of the resulting procedure. We drop some multiplicative
probability inequalities (e.g. Hochberg and Tamhane 1987; Appendix 2) from consid-
eration, since they are valid only under somewhat restrictive distributional assump-
tions. To the author’s knowledge, the Bonferroni-type inequalities for the probability
of the union of a sequence of events A1, . . . , Am (m ∈ N) have been proposed in the
literature by introducing a general framework based on the concepts of graphs. A graph
is a pair G = (V, E), where V = V(G) is the set of vertices and E = E(G) is the set
of edges, each described as an unordered pair of vertices. A weighted graph is a graph
which has a value associated with each edge (given m vertices v1, . . . , vm represent-
ing events A1, . . . , Am , respectively, the probability P(Ai1 ∩ Ai2) = P(Ai2 ∩ Ai1),
i1 �= i2, is regarded as the weight of edge (i1, i2) = (i2, i1) between vertices vi1 and
vi2 ). In a complete graph, each pair of vertices is assumed to be joined by an edge. We
now consider the complete graph on m vertices, denoted by Km = (V(Km), E(Km)),
where V(Km) = {v1, . . . , vm} and E(Km) = {(i1, i2), i1, i2 = 1, . . . , m; i1 < i2}. A
spanning tree T of Km is a connected subgraph of Km satisfying V(T ) = V(Km),
E(T ) ⊂ E(Km) and |E(T )| = m − 1. The Hunter-Worsley inequality, which was
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6 Y. Kakizawa

established independently by Hunter (1976) and Worsley (1982), provides a more
general bound

P

(
m⋃

i=1

Ai

)

≤
m∑

i=1

P(Ai ) −
∑

(i1,i2)∈E(T )

P
(

Ai1 ∩ Ai2

)
(11)

for any spanning tree T of Km (there are different M = mm−2 spanning trees
T 1, . . . , T M according to a theorem of A. Cayley), where

∑
(i1,i2)∈E(T ) denotes sum-

mation over all edges (i1, i2) ∈ E(T ). Remarkably, the inequality

P

(
m⋃

i=1

Ai

)

≤
m∑

i=1

P(Ai ) − max
T ∈{T }

∑

(i1,i2)∈E(T )

P
(

Ai1 ∩ Ai2

)

for any subset {T } ⊂ {T 1, . . . , T M } is a class of sharper upper bounds than (7), and
the sharpest upper bound in this class is given by

P

(
m⋃

i=1

Ai

)

≤
m∑

i=1

P(Ai ) − max
T ∈{T 1,...,T M }

∑

(i1,i2)∈E(T )

P
(

Ai1 ∩ Ai2

)

=
m∑

i=1

P(Ai ) −
∑

(i1,i2)∈E(T ∗)
P
(

Ai1

⋂
Ai2

)
, (12)

where T ∗ is the maximal spanning tree, having the property

∑

(i1,i2)∈E(T ∗)
P
(

Ai1 ∩ Ai2

) ≥
∑

(i1,i2)∈E(T )

P
(

Ai1 ∩ Ai2

)

for T = T 1, . . . , T M .
It is worth describing the following two subclasses of spanning trees T of Km . One

subclass is a class of m trees T (i ′) = ({v1, . . . , vm}, Ei ′), where Ei ′ = {(i, i ′), i =
1, . . . , m ; i �= i ′} for i ′ = 1, . . . , m. The other subclass consists of m!/2 trees
T (i1 . . . im) = ({v1, . . . , vm},Pi1...im ), where Pi1...im = {(i1, i2), (i2, i3), . . . ,

(im−1, im)} is an elementary path of length m − 1, with i1, . . . , im being a permu-
tation of the first m positive integers but i1 < im .

The Hunter-Worsley inequality (11), with T = T (i ′) for some i ′ = 1, . . . , m,
implies not only Kounias’ (1968; (2)) inequality

P

(
m⋃

i=1

Ai

)

≤
m∑

i=1

P(Ai ) −
m∑

i=1
i �=i ′

P (Ai ∩ Ai ′) (13)
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Multiple comparisons in one-way MANOVA 7

but also two variants

P

(
m⋃

i=1

Ai

)

≤
m∑

i=1

P(Ai ) − max
i ′=1,...,m

m∑

i=1
i �=i ′

P (Ai ∩ Ai ′) (14)

≤
m∑

i=1

P(Ai ) − 2

m

∑

1≤i1<i2≤m

P
(

Ai1 ∩ Ai2

)
(15)

by minimizing Kounias’ inequality (13) over i ′ = 1, . . . , m and by noting

max
i ′=1,...,m

m∑

i=1
i �=i ′

P
(

Ai

⋂
Ai ′
)

≥ 1

m

m∑

i ′=1

m∑

i=1
i �=i ′

P (Ai ∩ Ai ′)

= 2

m

∑

1≤i1<i2≤m

P
(

Ai1 ∩ Ai2

)
.

Interestingly, the worse bound (15) than (14) (hence (12)) is optimal among all the
bounds of the type c1

∑m
i=1 P(Ai ) + c2

∑
1≤i1<i2≤m P(Ai1 ∩ Ai2), where c1 and c2

are real numbers (e.g. Galambos and Simonelli 1996; p. 20). Further, another upper
bound

P

(
m⋃

i=1

Ai

)

≤
m∑

i=1

P(Ai ) −
∑

(i,i ′)∈Pi1 ...im

P (Ai ∩ Ai ′) (16)

due to Worsley (1982; Corollary 1) and Efron (1997; the two-point formula) is a spe-
cial case of the Hunter-Worsley inequality (11) with T = T (i1, . . . , im). One may
minimize (16) over all similar m!/2 bounds. Some other Bonferroni-type inequalities
are found in Galambos and Simonelli (1996).

Remark 1 In the 1990s, Naiman and Wynn (1992, 1997) introduced the topological
concept of an abstract tube in order to get improved Bonferroni’s inequalities for a
finite family of events. Dohmen (2003) recently provided some elementary alternative
proofs (not using abstract tubes) and gave a new Bonferroni-type inequality which is
determined by a chordal graph. By varying such a graph, several known inequalities
have been illustrated in a unified way.

2.2 Contents

These Bonferroni-type bounds are applied for the distribution functions (5.I) and (5.II)
at the beginning of Sect. 3, which require the knowledge of the joint distribution of
pairs of (T 2

ab, T 2
cd), (a, b), (c, d) ∈ J ; (a, b) �= (c, d). As we saw previously, no sim-

ple exact formula for Pab:cd(x) = P(T 2
ab > x, T 2

cd > x) is known. Since the resulting

large sample procedure (P1) based on the limits of P
∞
ab(x) = limN→∞ Pab(x) and
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8 Y. Kakizawa

P
∞
ab:cd(x) = limN→∞ Pab:cd(x) requires a root finding algorithm to solve some com-

plicated nonlinear equations, we propose, in Sect. 4, a procedure (P2) as a modifica-
tion of Siotani’s (1959, 1960, 1964) procedure, which is relatively easy to implement.
Unlike Siotani, our procedures are shown to guarantee the designated simultaneous
confidence level conservatively. Section 5 reports numerical values using our large
sample procedures (P1) and (P2). Higher-order variants of (P1) and (P2) are briefly
discussed in Sect. 6. Finally, concluding remarks are given in Sect. 7.

2.3 Assumptions and notation

We set down the following assumptions on the N vectors U
(a)
i ’s:

(A1) U
(a)
i and U

(b)
j are independent if either a �= b or i �= j ;

(A2) for every fixed a, the random vectors U
(a)
1 , . . . ,U

(a)
Na

are identically distributed

as a distribution of U (a) = (U (a)
1 , . . . , U (a)

p )′ with mean zero vector, positive
definite covariance matrix � and E[||U (a)||4] < ∞;

(A3) all Na’s are large, in such a way that the total number N of observations goes to
infinity, while the ratio Na/N = η

(a)
N (say) converges to ηa > 0, a = 1, . . . , q,

where
∑q

a=1 ηa = 1.

Throughout this paper, Gν(x) is the distribution function of the central chi-square
distribution with ν degrees of freedom, whose density function and upper 100α%
point are gν(x) and χ2

ν,α , respectively, and let Gν(x) = 1 − Gν(x). For simplicity, we
write

αI = α

q − 1
and αII = α

q(q − 1)/2
,

and we use the notation

Pab(x) = P(T 2
ab > x) and Pab:cd(x) = P(T 2

ab > x, T 2
cd > x)

for any a, b, c, d ∈ {1, . . . , q} satisfying a �= b, c �= d and {a, b} �= {c, d}. We
sometimes adopt the lexicographically order (a, b) < (c, d) iff (i) a < c or (ii) a = c
and b < d.

3 Improved Bonferroni procedures

A given confidence level 1 − α, the simultaneous confidence intervals

�′ (X(a) − X
(q)
)

±
{

N−1
aq t2

I

(
�′Spool,X�

)}1/2
, � ∈ Rp − {0}, a = 1, . . . , q − 1

(17.I)
for comparisons with a control are conservative, if the critical value t2

I satisfies

P
(

T 2
max,I ≤ t2

I

)
≥ 1 − α equivalently t2

max,I(α) ≤ t2
I .
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Multiple comparisons in one-way MANOVA 9

Similarly, the simultaneous confidence intervals

�′ (X(a) − X
(b)
)

±
{

N−1
ab t2

II(�
′Spool,X�)

}1/2
, � ∈ Rp − {0}, (a, b) ∈ J (17.II)

for pairwise comparisons are conservative, if the critical value t2
II satisfies

P
(

T 2
max,II ≤ t2

II

)
≥ 1 − α equivalently t2

max,II(α) ≤ t2
II.

Furthermore, if the critical value t2
I or t2

II satisfies

lim
N→∞ P

(
T 2

max,I ≤ t2
I

)
≥ 1 − α or lim

N→∞ P
(

T 2
max,II ≤ t2

II

)
≥ 1 − α,

the corresponding simultaneous confidence intervals (17.I) or (17.II) are then referred
to as being asymptotically conservative.

The usual Bonferroni procedure is a consequence of the inequality (7); P(∪m
i=1 Ai )

≤ ∑m
i=1 P(Ai ), which implies

P
(

T 2
max,I ≤ x

)
≥ 1 −

q−1∑

a=1

Paq(x) (18.I)

for comparisons with a control and

P
(

T 2
max,II ≤ x

)
≥ 1 −

∑

1≤a<b≤q

Pab(x) (18.II)

for pairwise comparisons. The Bonferroni upper bounds t2
I,0(α) and t2

II,0(α) (say) on

the true critical values t2
max,I(α) and t2

max,II(α) are thus found by equating the lower

bounds (18.I) and (18.II) to 1 − α, respectively. That is, t2
I,0(α) is the solution of

q−1∑

a=1

Paq(x) = α (19.I)

and t2
II,0(α) is the solution of

∑

1≤a<b≤q

Pab(x) = α. (19.II)

It is important to discuss progressively less conservative upper bounds on t2
max,I(α)

and t2
max,II(α). The fundamental idea behind is to apply sharper lower bounds than

(18.I) and (18.II). From among many improvements of the inequality P(∪m
i=1 Ai ) ≤∑m

i=1 P(Ai ), we choose (12) and (15).
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10 Y. Kakizawa

(I) If Ai is, for each i = 1, . . . , q − 1, the event that Hotelling’s T 2 statistic T 2
iq is

greater than a certain positive value x , it then follows from (12) and (15) with m = q−1
that

P
(

T 2
max,I ≤ x

)
≥1 −

q−1∑

a=1

Paq(x) +
∑

(a,b)∈E(T ∗
I )

Paq:bq(x) (20.I)

≥1 −
q−1∑

a=1

Paq(x) + 2

q − 1

∑

1≤a<b≤q−1

Paq:bq(x), (21.I)

where T ∗
I corresponds to the maximal spanning tree of the complete graph on the

vertex set VI = {va : a = 1, . . . , q − 1}.
Remark 2 If Paq(x)= P1q(x) and Paq:bq(x)= P1q:2q(x) for all a, b = 1, . . . , q −1;
a < b, (20.I) and (21.I) are reduced to the same lower bound

P
(

T 2
max,I ≤ x

)
≥ 1 − (q − 1)P1q(x) + (q − 2)P1q:2q(x).

This is the case where the equality of sample sizes N1 = · · · = Nq−1 and normality
are assumed (normality is unnecessary for the large sample case).

(II) Suppose that Aab is, for each a, b = 1, . . . , q; a < b, the event that Hotelling’s
T 2 statistic T 2

ab is greater than a certain positive value x . Then, we have from (12) and
(15) with m = q(q − 1)/2

P
(

T 2
max,II ≤ x

)
≥1 −

∑

1≤a<b≤q

Pab(x) +
∑

(iab,icd )∈E(T ∗
II )

Pab:cd(x) (20.II)

≥1 −
∑

1≤a<b≤q

Pab(x) + 2

q(q − 1)/2

∑

(ab)(cd)

Pab:cd(x), (21.II)

where T ∗
II corresponds to the maximal spanning tree of the complete graph on the

vertex set VII = {viab : (a, b) ∈ J } with iab = (2q − a)(a − 1)/2 + b − a. Here,∑
(ab)(cd) denotes summations over all (a, b), (c, d) ∈ J satisfying (a, b) < (c, d).

More precisely,
∑

(ab)(cd) Pab:cd(x) is the sum of

P1(x) =
∑

1≤a<b<c<d≤q

{
Pab:cd(x) + Pac:bd(x) + Pad:bc(x)

}

and

P2(x) =
∑

1≤a<b<c≤q

{
Pab:ac(x) + Pab:bc(x) + Pac:bc(x)

}
,

where P1(x) and P2(x) consist of q(q − 1)(q − 2)(q − 3)/8 and q(q − 1)(q − 2)/2
terms, respectively.
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Multiple comparisons in one-way MANOVA 11

Remark 3 If the equality of sample sizes N1 = · · · = Nq and normality are assumed
(normality is unnecessary for the large sample case), the following three statements
hold:

(i) Pab(x) = P12(x) for all (a, b) ∈ J ,
(ii) Pab:cd(x) = P13:23(x) for all (a, b), (c, d) ∈ J such that (a, b) and (c, d) have

exactly one common index, and
(iii) Pab:cd(x) = P12:34(x) for all (a, b), (c, d) ∈ J such that a, b, c, d are all

different.

Then, letting E1(TII) = {(iab, icd) ∈ E(TII) : a, b, c, d are all different} and E2(TII) =
E(TII) − E1(TII), we have

∑

(iab,icd )∈E(TII)

Pab:cd(x) = |E1(TII)|P12:34(x) + |E2(TII)|P13:23(x)

for any spanning tree TII of the complete graph on the vertex set VII, where |E1(TII)|+
|E2(TII)| = q(q − 1)/2 − 1. There exists a spanning tree TII satisfying |E1(TII)| = 0.
Actually, we have an elementary path {VII,P1 ∪ P2 ∪ P3}, where

P1 ={(iab, ia,b+1) : 1 ≤ a < b ≤ q − 1
}
,

P2 ={(iaq , ia+1,q) : a is odd and 1 ≤ a ≤ q − 2
}
,

P3 ={(ia,a+1, ia+1,a+2) : a is even and 2 ≤ a ≤ q − 2
}
.

The following lemma is useful to check the existence of a solution of B(x) = 1−α,
where B(x) is any lower bound for P(T 2

max,I ≤ x) or P(T 2
max,II ≤ x).

Lemma 1 Suppose that U (x) ≥ I (x) > L(x) for all x ∈ (0,∞) ≡ R+, where
I (x) is a continuous function in x ∈ R+, and U (x) and L(x) are strictly increasing
functions in x ∈ R+. Assume that U (x) = c has a solution x∗ > 0 and that L(x) = c
has a solution x∗∗ > 0(x∗∗ > x∗ holds automatically). Then, I (x) = c has at least
one solution in [x∗, x∗∗) and I (x) �= c for all x ∈ R+ −[x∗, x∗∗). In addition, assume
that U (x) ≥ I2(x) ≥ I1(x) > L(x) for all x ∈ R+, where I1(x) and I2(x) are
continuous functions in x ∈ R+. Then, I2(x) �= c for all x ∈ R+ − [x∗, x∗∗) and
I2(x) = c has at least one solution in [x∗, x1], where x1 ∈ [x∗, x∗∗) is a solution of
I1(x) = c.

Proof By virtue of the intermediate value theorem, the equation I (x) = c has at
least one solution in [x∗, x∗∗). It is easy to show that the equation I (x) = c has no
solution in R+ −[x∗, x∗∗). In particular, suppose that x0 > 0 is a solution of I (x) = c.
Then, the inequality U (x0) ≥ I (x0) = c = U (x∗) implies x∗ ≤ x0, because of the
monotonicity of U (x). Similarly, the inequality L(x∗∗) = c = I (x0) > L(x0) implies
x0 < x∗∗, because of the monotonicity of L(x). ��
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12 Y. Kakizawa

3.1 Small sample procedure under normality

If the population distribution is assumed to be normal U (a) ∼ Np(0, �), a = 1, . . . , q,
it is well-known that (n/p)[T 2

ab/(N − q)], (a, b) ∈ J , is identically distributed as
a central F distribution Fp,n with (p, n) degrees of freedom (e.g. Anderson 2003;
pp. 176); P(T 2

ab > x) = 1 − P(Fp,n ≤ x), where n = N − q − p + 1 and
x = (n/p)[x/(N − q)]. It follows from (19.I) and (19.II) that the usual Bonferroni
upper bounds t2

I,0(α) and t2
II,0(α) are exactly found to be

(N − q)p

n
f p,n(αI) and

(N − q)p

n
f p,n(αII),

respectively, where fν1ν2(α) is the upper 100α% point of Fν1ν2 . As we saw in
Introduction, no simple formula for the joint probability of P(T 2

ab > x, T 2
cd > x),

(a, b), (c, d) ∈ J ; (a, b) < (c, d), is available. Therefore, we can not apply the
Bonferroni-type inequalities (20.I) and (21.I) (or (20.II) and (21.II)) directly, except
for the univariate case p = 1, in which we will have procedures based on a bivariate
central nonsingular F distribution with (1, N − q) degrees of freedom (equivalently
a bivariate central nonsingular t2 distribution with N − q degrees of freedom). We do
not discuss these topics any longer in this paper.

3.2 Large sample procedure (P1) under general distributions

We next consider the large sample but possibly multivariate nonnormal case. Compared
with the notation of λab ∈ Rq given in Introduction, we define λ̃ab = limN→∞ λab,
which is a column vector in Rq with {ηb/(ηa +ηb)}1/2 at the a-th position, −{ηa/(ηa +
ηb)}1/2 at the b-th position and zero at other position. Whatever the underlying p-
variate distributions U (a), a = 1, . . . , q, the central limit theorem and Slutsky’s the-
orem tell us that (T 2

ai bi
)i=1,...,K is asymptotically distributed as (χ2

ai bi
)i=1,...,K with

χ2
ab = Z′

abZab, where (Zab)a,b=1,...,q;a<b ∼ Npq(q−1)/2(0, P̃II ⊗ Ip). Here, P̃II is

a q(q − 1)/2 × q(q − 1)/2 correlation matrix whose (iab, icd)th element is λ̃
′
abλ̃cd ,

where (a, b), (c, d) ∈ J . More precisely,

λ̃
′
abλ̃cd =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, (a, b) = (c, d)

0, if a, b, c, d are all different
ηa2a3,a1 , (a, b, c, d) = (a1, a2, a1, a3)

−ηa1a3,a2 , (a, b, c, d) = (a1, a2, a2, a3)

ηa1a2,a3 , (a, b, c, d) = (a1, a3, a2, a3)

(22)

for a1, a2, a3 ∈ {1, . . . , q}; a1 < a2 < a3, where

ηb1b2,b3 =
(

ηb1

ηb1 + ηb3

)1/2 (
ηb2

ηb2 + ηb3

)1/2

∈ (0, 1).
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Multiple comparisons in one-way MANOVA 13

Therefore,
lim

N→∞ P(T 2
max,I ≤ x) = P(χ2

max,I ≤ x) (23.I)

and
lim

N→∞ P(T 2
max,II ≤ x) = P(χ2

max,II ≤ x), (23.II)

where

χ2
max,I = max

a=1,...,q−1
(χ2

aq) and χ2
max,II = max

1≤a<b≤q
(χ2

ab).

Then, the upper 100α% points of χ2
max,I and χ2

max,II, denoted by χ2
max,I(α) and

χ2
max,II(α), yield asymptotically 100(1 − α)% simultaneous confidence intervals for

comparisons with a control and for pairwise comparisons, respectively. We notice
that χ2

max,I is the maximum of correlated chi-square distributions with p degrees of

freedom, whose correlation matrix P̃I = (̃λ
′
aq λ̃bq)a,b=1,...,q−1 has a product struc-

ture P̃I = diag(1 − ρ2
1 , . . . , 1 − ρ2

q−1) + ρρ′, where ρ = (ρ1, . . . , ρq−1)
′ with

ρa = {ηa/(ηa + ηq)}1/2. In view of (6), the critical value χ2
max,I(α) is computable as

a solution of

∫ ∞

0

s p/2−1e−s

	(p/2)

q−1∏

a=1

G p

(
x

1 − ρ2
a
,

2ρ2
a s

1 − ρ2
a

)

ds = 1 − α. (24)

This kind of the integral may be evaluated by means of the Gauss-Laguerre quadrature
formula. However, a simple formula on a multivariate singular Gamma-type distribu-
tion with p > 1 (hence the distribution of χ2

max,II) is not available. It is important to

discuss a conservative critical point for χ2
max,II(α).

Now, T 2
ab, (a, b) ∈ J , is asymptotically distributed as the central chi-square distri-

bution with p degrees of freedom, so that

lim
N→∞ P(T 2

ab > x) = P(χ2
ab > x) = G p(x). (25)

On the other hand, the limiting distribution of (T 2
ab, T 2

cd), (a, b), (c, d) ∈ J ; (a, b) <

(c, d), is the bivariate central nonsingular chi-square distribution (χ2
ab, χ

2
cd)′ =

(Z′
abZab,Z

′
cdZcd)′, where

(
Zab

Zcd

)

∼ N2p

(

0,

(
1 λ̃

′
abλ̃cd

λ̃
′
abλ̃cd 1

)

⊗ Ip

)

.

So, if a, b, c, d are all different, we have

lim
N→∞ P(T 2

ab > x, T 2
cd > x) = P(χ2

ab > x)P(χ2
cd > x) = {G p(x)}2. (26)
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14 Y. Kakizawa

We know from Siotani et al. (1985; p. 259) that the bivariate density of
(
∑p

i=1 Y 2
i1,
∑p

i=1 Y 2
i2)

′ when

vec[(Y 1, . . . ,Y p)] ∼ N2p

(

0, Ip ⊗
(

1 ρ

ρ 1

))

with Y i = (Yi1, Yi2)
′

is given by

f p(y1, y2; ρ) = f p(y1, y2;−ρ)

= (1 − ρ2)p/2
∞∑

�=0

	(p/2 + �)

�!	(p/2)
ρ2�

× (y1 y2)
(p+2�)/2−1

[2(p+2�)/2	((p + 2�)/2)(1 − ρ2)(p+2�)/2]2
exp

{

− y1 + y2

2(1 − ρ2)

}

for ρ ∈ (−1, 1), whose probability integral is

∫ xU
1

x L
1

∫ xU
2

x L
2

f p(y1, y2; |ρ|) dy1dy2

=(1−ρ2)p/2
∞∑

�=0

	(p/2+�)

�!	(p/2)
ρ2�

2∏

i=1

{

G p+2�

(
xU

i

1 − ρ2

)

−G p+2�

(
x L

i

1 − ρ2

)}

.

We have another integral expression using the formula (6) with K = 2:

∫ xU
1

x L
1

∫ xU
2

x L
2

f p(y1, y2; |ρ|) dy1dy2

=
{∫ xU

1

0

∫ xU
2

0
−
∫ x L

1

0

∫ xU
2

0
−
∫ xU

1

0

∫ x L
2

0
+
∫ x L

1

0

∫ x L
2

0

}

f p(y1, y2; |ρ|) dy1dy2

=
∫ ∞

0
gp(s)

2∏

i=1

{

G p

(
xU

i

1 − |ρ| ,
|ρ|s

1 − |ρ|

)

− G p

(
x L

i

1 − |ρ| ,
|ρ|s

1 − |ρ|

)}

ds,

by noting

(
1 |ρ|

|ρ| 1

)

=
(

1 − |ρ| 0
0 1 − |ρ|

)

+ |ρ|
(

1
1

)

(1, 1).

Remark 4 (i) Such a product (or one-factorial) structure of 2 × 2 correlation matrix
is not unique. In fact, the decomposition

(
1 |ρ|

|ρ| 1

)

=
(

1 − ρ2
1 0

0 1 − ρ2
2

)

+
(

ρ1
ρ2

)

(ρ1, ρ2)
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Multiple comparisons in one-way MANOVA 15

is valid, provided that |ρ| = ρ1ρ2. Consequently, there are infinitely many ways for
the bivariate central chi-square distribution

∫ xU
1

x L
1

∫ xU
2

x L
2

f p(y1, y2; |ρ|) dy1dy2

=
∫ ∞

0
gp(s)

2∏

i=1

{

G p

(
xU

i

1 − ρ2
i

,
ρ2

i s

1 − ρ2
i

)

− G p

(
x L

i

1 − ρ2
i

,
ρ2

i s

1 − ρ2
i

)}

ds.

(ii) It may be noted from Kimball (1951) that

∫ ∞

x L
1

∫ ∞

x L
2

f p(y1, y2; |ρ|) dy1dy2 > G p(x L
1 )G p(x L

2 ),

since 1 − G p(·, ω2) is a strictly increasing function of ω2 > 0.

Anyway, if a, b, c, d have exactly one common index as in (22), we have

ρ̃ab:cd ≡ |̃λ′
abλ̃cd | =

⎧
⎨

⎩

ηa2a3,a1 , (a, b, c, d) = (a1, a2, a1, a3)

ηa1a3,a2 , (a, b, c, d) = (a1, a2, a2, a3)

ηa1a2,a3 , (a, b, c, d) = (a1, a3, a2, a3)

and

lim
N→∞ P(T 2

ab > x, T 2
cd > x)= P(χ2

ab > x, χ2
cd > x)= Sab:cd(x) > {G p(x)}2, (27)

where

Sab:cd(x)= (1 − ρ̃2
ab:cd)p/2

∞∑

�=0

	(p/2 + �)

�!	(p/2)
(ρ̃2

ab:cd)�

{

G p+2�

(
x

1 − ρ̃2
ab:cd

)}2

=
∫ ∞

0
gp(s)

{

1 − G p

(
x

1 − ρ̃ab:cd
,

ρ̃ab:cd s

1 − ρ̃ab:cd

)}2

ds

=1 − 2G p(x) +
∫ ∞

0
gp(s)

{

G p

(
x

1 − ρ̃ab:cd
,

ρ̃ab:cd s

1 − ρ̃ab:cd

)}2

ds.

Therefore, we summarize (26) and (27), as follows:

lim
N→∞ P(T 2

ab > x, T 2
cd > x)

={G p(x)}2 + Iab:cd(x), (a, b), (c, d) ∈ J ; (a, b) < (c, d), (28)
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16 Y. Kakizawa

where

Iab:cd(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if a, b, c, d are all different
Ia2a3,a1(x), (a, b, c, d) = (a1, a2, a1, a3)

Ia1a3,a2(x), (a, b, c, d) = (a1, a2, a2, a3)

Ia1a2,a3(x), (a, b, c, d) = (a1, a3, a2, a3)

for a1, a2, a3 ∈ {1, . . . , q}; a1 < a2 < a3, with

Ib1b2,b3(x)=
∫ ∞

0

s p/2−1e−s

	(p/2)

{

G p

(
x

1 − ηb1b2,b3

,
2ηb1b2,b3 s

1−ηb1b2,b3

)}2

ds−{G p(x)}2 >0.

We now define

B∞
I,1(x)= B∞

I (x) + 2

q − 1

∑

1≤a<b≤q−1

Iab,q(x), (29.I)

B∞
I,2(x)= B∞

I (x) +
∑

(a,b)∈E(T ∗
I )

Iab,q(x) (30.I)

with

B∞
I (x) = 1 − (q − 1)G p(x) + (q − 2){G p(x)}2,

and

B∞
II,1(x)= B∞

II (x)+ 2

q(q − 1)/2

∑

1≤a<b<c≤q

{
Ibc,a(x)+ Iac,b(x)+ Iab,c(x)

}
, (29.II)

B∞
II,2(x)= B∞

II (x) +
∑

(iab,icd )∈E(T ∗
II )

Iab:cd(x) (30.II)

with

B∞
II (x) = 1 − q(q − 1)

2
G p(x) + (q + 1)(q − 2)

2
{G p(x)}2.

Combining the improved Bonferroni inequalities (20.I) and (21.I) (or (20.II) and
(21.II)) with (23.I) (or (23.II)), (25) and (28), we obtain the following inequalities
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Multiple comparisons in one-way MANOVA 17

P(χ2
max,I ≤ x) ≥ B∞

I,2(x) ≥ B∞
I,1(x) > 1 − (q − 1)G p(x) (31.I)

for comparisons with a control (we notice that B∞
I,1(x) = P(χ2

max,I ≤ x) holds exactly
for the exceptional case q = 3), and

P(χ2
max,II ≤ x) ≥ B∞

II,2(x) ≥ B∞
II,1(x) > 1 − q(q − 1)

2
G p(x) (31.II)

for pairwise comparisons.
It is not difficult to see that by equating the right hand sides of (31.I) and (31.II) to

1 −α, the usual Bonferroni upper bounds on χ2
max,I(α) and χ2

max,II(α) are found to be
χ2

p,αI
and χ2

p,αII
, respectively. The lower bounds B∞

I,i (x) and B∞
II,i (x) with two options

i = 1, 2, given in (31.I) and (31.II), can be also applied to get improved upper bounds

χ2
max,I(α) ≤ t2

I,2(α) ≤ t2
I,1(α) < χ2

p,αI
(32.I)

and
χ2

max,II(α) ≤ t2
II,2(α) ≤ t2

II,1(α) < χ2
p,αII

, (32.II)

by using Lemma 1. That is,
(P1). For i = 1, 2, find a solution of B∞

I,i (x) = 1 − α, denoted by t2
I,i (α), for compar-

isons with a control, and find a solution of B∞
II,i (x) = 1 − α, denoted by t2

II,i (α), for
pairwise comparisons.

Remark 5 (I) Ifη1 = · · · = ηq−1 = η0 (say), both B∞
I,1(x) = 1−α and B∞

I,2(x) = 1−α

are then reduced to the same equation

1 − (q − 1)G p(x) + (q − 2)[{G p(x)}2 + I[2](x; ρ2)] = 1 − α with ρ2 = η0

η0 + ηq

(see also Remark 2), where

I[2](x; ρ2) =
∫ ∞

0

s p/2−1e−s

	(p/2)

{

G p

(
x

1 − ρ2 ,
2ρ2s

1 − ρ2

)}2

ds − {G p(x)}2 > 0.

(II) If η1 = · · · = ηq = 1/q, the formulae B∞
II,i (x), i = 1, 2, are then simplified to

B∞
II,1(x) = 1 − q(q − 1)

2
G p(x) + (q + 1)(q − 2)

2
{G p(x)}2 + 2(q − 2)I[2](x; 1/2)

and

B∞
II,2(x) = 1 − q(q − 1)

2
G p(x) + (q + 1)(q − 2)

2
[{G p(x)}2 + I[2](x; 1/2)]

(see also Remark 3), where B∞
II,1(x) = B∞

II,2(x) iff q = 3.
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18 Y. Kakizawa

Remark 6 The numerical computation of the infinite series is implemented by trun-
cating the infinite series to a finite series and then has the problem of estimating the
truncation error. Fortunately, our consideration is based on the lower bound, hence
(29.I) and (30.I) (or (29.II) and (30.II)) have some variants by using the truncated
series for Sab:cd(x), as follows:

Sab:cd(x)= (1 − ρ̃2
ab:cd)p/2

∞∑

�=0

	(p/2 + �)

�!	(p/2)
(ρ̃2

ab:cd)�

{

G p+2�

(
x

1 − ρ̃2
ab:cd

)}2

>(1 − ρ̃2
ab:cd)p/2

L∑

�=0

	(p/2 + �)

�!	(p/2)
(ρ̃2

ab:cd)�

{

G p+2�

(
x

1 − ρ̃2
ab:cd

)}2

= SL
ab:cd(x) (say) for an integer L ≥ 0.

4 Large sample procedure (P2) under general distributions

The procedure (P1) enable us to choose the critical values satisfying (32.I) and (32.II),
which imply that whatever the underlying population distribution, we have asymp-
totically conservative 100(1 − α)% simultaneous confidence intervals among mean
vectors. Apart from some special cases (see Remark 5), the equations B∞

I,2(x) = 1−α

and B∞
II,2(x) = 1 − α are extremely complicated to handle numerically, since they

require a root finding numerical algorithm, together with the maximization over all
spanning trees. So, it is important to develop an easily computable method.

The idea is simple, as follows: We have from (20.I)

P(T 2
max,I ≤ x)≥1 −

q−1∑

a=1

Paq(x) +
∑

(a,b)∈E(T ∗
I )

Paq:bq(x ∨ t2
I,0)

≥1 −
q−1∑

a=1

Paq(x) + 2

q − 1

∑

1≤a<b≤q−1

Paq:bq(x ∨ t2
I,0),

where x ∨ y = max(x, y) and t2
I,0 is the solution of (19.I). Hence, if the exact or

asymptotic formulae on Paq(x) and Paq:bq(x) are available, by equating the above
lower bounds to 1 − α (the existence of a solution in (t2

max,I(α), t2
I,0) is guaranteed

by Lemma 1), we can get simultaneous confidence intervals (2.I) with other critical
value, which is the solution of the equation

q−1∑

a=1

Paq(x) = α + 2

q − 1

∑

1≤a<b≤q−1

Paq:bq(t2
I,0)
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Multiple comparisons in one-way MANOVA 19

or

q−1∑

a=1

Paq(x) = α +
∑

(a,b)∈E(T ∗
I )

Paq:bq(t2
I,0).

Such a method turns out to be a modification of Siotani’s (1959, 1960, 1964) proce-
dure, except for the case q = 3 (note that for q = 3, both equations coincides with
Siotani’s proposal (10)).

Similarly, we have from (20.II)

P(T 2
max,II ≤ x)≥1 −

∑

1≤a<b≤q

Pab(x) +
∑

(iab,icd )∈E(T ∗
II )

Pab:cd(x ∨ t2
II,0)

≥1 −
∑

1≤a<b≤q

Pab(x) + 2

q(q − 1)/2

∑

(ab)(cd)

Pab:cd(x ∨ t2
II,0),

where t2
II,0 is the solution of (19.II). Equating the above lower bounds to 1 − α (the

existence of a solution in (t2
max,II(α), t2

II,0) is guaranteed by Lemma 1), the critical
value for pairwise comparisons is proposed as the solution of the equation

∑

1≤a<b≤q

Pab(x) = α + 2

q(q − 1)/2

∑

(ab)(cd)

Pab:cd(t2
II,0)

or

∑

1≤a<b≤q

Pab(x) = α +
∑

(iab,icd )∈E(T ∗
II )

Pab:cd(t2
II,0).

It may be noted that Siotani’s (1959) procedure for pairwise comparisons was to use
the solution of the equation

∑

1≤a<b≤q

Pab(x) = α +
∑

(ab)(cd)

Pab:cd(t2
II,0).

In this way, we propose an easily computable and conservative procedure (P2) for
the large sample but possibly nonnormal case, as follows:
(P2) and Siotani’s original procedure. Compute the critical values χ2

p,αI,i
and χ2

p,αII,i
with

αI,i = α + A∞
I,i

q − 1
and αII,i = α + A∞

II,i

q(q − 1)/2
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20 Y. Kakizawa

for three options i = 1, 2 and S, where

A∞
I,S = (q − 1)(q − 2)

2
α2

I +
∑

1≤a<b≤q−1

Iab,q(χ2
p,αI

), (33.I)

A∞
I,1 = (q − 2)α2

I + 2

q − 1

∑

1≤a<b≤q−1

Iab,q(χ2
p,αI

), (34.I)

A∞
I,2 = (q − 2)α2

I +
∑

(a,b)∈E(T ∗
I )

Iab,q(χ2
p,αI

) (35.I)

and

A∞
II,S = (q + 1)q(q − 1)(q − 2)

8
α2

II

+
∑

1≤a<b<c≤q

{Ibc,a(χ2
p,αII

) + Iac,b(χ
2
p,αII

) + Iab,c(χ
2
p,αII

)}, (33.II)

A∞
II,1 = (q + 1)(q − 2)

2
α2

II

+ 2

q(q − 1)/2

∑

1≤a<b<c≤q

{Ibc,a(χ2
p,αII

) + Iac,b(χ
2
p,αII

) + Iab,c(χ
2
p,αII

)},

(34.II)

A∞
II,2 = (q + 1)(q − 2)

2
α2

II +
∑

(iab,icd )∈E(T ∗
II )

Iab:cd(χ2
p,αII

). (35.II)

Apart from special cases as in Remark 5, the minimal spanning tree algorithm due
to Kruskal (see Hunter 1976) that we used here as the maximization is needed once
for the sums

∑
(a,b)∈E(T ∗

I ) Iab,q(χ2
p,αI

) and
∑

(iab,icd )∈E(T ∗
II ) Iab:cd(χ2

p,αII
), defined in

terms of the maximal spanning tree T ∗
I and T ∗

II , respectively.
The proposed critical values with two options i = 1, 2 satisfy

χ2
max,I(α) < χ2

p,αI,2
≤ χ2

p,αI,1
< χ2

p,αI

and

χ2
max,II(α) < χ2

p,αII,2
≤ χ2

p,αII,1
< χ2

p,αII
.

However, (P2) is worse than (P1), that is,

χ2
max,I(α) ≤ t2

I,i (α) < χ2
p,αI,i

and χ2
max,II(α) ≤ t2

II,i (α) < χ2
p,αII,i

for i = 1, 2.
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5 Comparison of (P1),(P2) and Siotani’s procedure

5.1 Comparisons with a control

We now compare the proposed procedures (P1) and (P2) with option i = 1 and
Siotani’s procedure to the exact percentile χ2

max,I(α), being a solution of (24). For
simplicity, we assume that the correlation matrix P̃I is equicorrelated. That is, P̃I =
(1 − ρ2)Iq−1 + ρ211′, where 1 = (1, . . . , 1)′ ∈ Rq−1 and ρ2 ∈ (0, 1), which corre-
sponds to the large sample case of Na → ∞, a = 1, . . . , q, in such a way that the total
number N of observations goes to infinity, while the ratio vector (N1/N , . . . , Nq/N )

converges to (η0, . . . , η0, ηq) satisfying (q − 1)η0 + ηq = 1 and η0/(η0 + ηq) = ρ2.
Thus, we have ρ2 = 1/2 iff N1 ≈ N2 ≈ · · · ≈ Nq . A double precision Fortran pro-
gram that yields χ2

max,I(α), t2
I,1(α), χ2

p,αI,1
, χ2

p,αI,S
for inputted values of (p, q, α, ρ2)

was written. We notice t2
I,1(α) = t2

I,2(α) and χ2
p,αI,1

= χ2
p,αI,2

for the present equicor-
related case.

For comparative purposes, it is convenient to determine the ratios of the square of the
length of simultaneous confidence intervals (17.I) using χ2

max,I(α) (the limiting proce-
dure) to those for (P1), (P2), Siotani’s procedure and the usual Bonferroni procedure;
R1,α = t2

I,1(α)/χ2
max,I(α), R2,α = χ2

p,αI,1
/χ2

max,I(α), RS,α = χ2
p,αI,S

/χ2
max,I(α) and

R0,α = χ2
p,αI

/χ2
max,I(α). These ratios, except for RS,α , are theoretically supported to

be greater than 1, which means that their procedures are asymptotically conservative.
From Tables 1, 2, 3, the improved Bonferroni procedure is more efficient than the

usual Bonferroni procedure. Also, the following observations can be made about the
efficiencies of several procedures to the limiting procedure:

A. Both (P1) and (P2) are very efficient for small ρ2 values. In fact, even the usual
Bonferroni procedure with χ2

p,αI
has a good performance.

B. The efficiencies of both (P1) and (P2) deteriorate somewhat for the larger ρ2

values, especially for large q values.
C. Remarkably, Siotani’s procedure is a good approximation for χ2

max,I(α). But,

Table 3 shows that his critical value χ2
p,αI,S

can be less than χ2
max,I(α). In other

words, his procedure is sometimes liberal.

Table 1 Critical values for
p = 3, q = 3, α = 0.05, where
χ2

p,αI
= 9.348

ρ2 χ2
max,I(α) = t2

I,1(α) χ2
p,αI,1

= χ2
p,αI,S

(R0,α) (R2,α = RS,α)

0.125 9.315(1.004) 9.316(1.000)

0.250 9.298(1.005) 9.300(1.000)

0.333 9.278(1.008) 9.281(1.000)

0.500 9.210(1.015) 9.221(1.001)

0.667 9.081(1.029) 9.118(1.004)

0.750 8.978(1.041) 9.043(1.007)

0.875 8.726(1.071) 8.880(1.018)
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Table 2 Critical values for p = 3, q = 6, α = 0.05, where χ2
p,αI

= 11.345

ρ2 χ2
max,I(α) t2

I,1(α) χ2
p,αI,1

χ2
p,αI,S

(R0,α) (R1,α) (R2,α) (RS,α)

0.125 11.288(1.005) 11.322(1.003) 11.323(1.003) 11.290(1.000)

0.250 11.245(1.009) 11.304(1.005) 11.306(1.005) 11.248(1.000)

0.333 11.195(1.013) 11.282(1.008) 11.285(1.008) 11.199(1.000)

0.500 11.019(1.030) 11.198(1.016) 11.212(1.017) 11.026(1.001)

0.667 10.689(1.061) 11.014(1.030) 11.070(1.036) 10.712(1.002)

0.750 10.430(1.088) 10.848(1.040) 10.959(1.051) 10.484(1.005)

0.875 9.818(1.155) 10.384(1.058) 10.712(1.091) 10.011(1.020)

Table 3 Critical values for p = 3, q = 9, α = 0.05, where χ2
p,αI

= 12.359

ρ2 χ2
max,I(α) t2

I,1(α) χ2
p,αI,1

χ2
p,αI,S

(R0,α) (R1,α) (R2,α) (RS,α)

0.125 12.294(1.005) 12.343(1.004) 12.343(1.004) 12.296(1.000)

0.250 12.237(1.010) 12.328(1.007) 12.328(1.007) 12.239(1.000)

0.333 12.169(1.016) 12.308(1.011) 12.310(1.012) 12.170(1.000)

0.500 11.929(1.036) 12.230(1.025) 12.240(1.026) 11.918(0.999)

0.667 11.482(1.076) 12.046(1.049) 12.096(1.053) 11.455(0.998)

0.750 11.136(1.110) 11.872(1.066) 11.979(1.076) 11.124(0.999)

0.875 10.334(1.196) 11.361(1.099) 11.711(1.133) 10.464(1.013)

5.2 Pairwise comparisons

This subsection contains a brief comparison of the proposed procedures (P1) and (P2)
with option i = 2 and Siotani’s procedure, together with the usual Bonferroni pro-
cedure. We now consider the large sample case of Na → ∞, a = 1, . . . , q, in such
a way that the total number N of observations goes to infinity, while the ratio Na/N
converges to 1/q, a = 1, . . . , q. Contrast with the percentile χ2

max,I(α) in Sect. 5.1,

no exact tabulation of the percentile χ2
max,II(α) is available, for which the large sim-

ulations were done by Royen (1984). Only for the case p = 1, the exact value of
{χ2

max,II(α)}1/2 is computable (e.g. Hsu (1996; Tables E.1 with k = q and ν = ∞)).

A double precision Fortran program that yields χ2
p,αII,2

, t2
II,2(α), χ2

p,αII,S
for inputted

values of (p, q, α) was written. We notice t2
II,1(α) ≥ t2

II,2(α) and χ2
p,αII,1

≥ χ2
p,αII,2

,
where the equality holds iff q = 3.

From Table 4, the improved Bonferroni procedure is more efficient than the usual
Bonferroni procedure, while the difference χ2

p,αII
− t2

II,2(α) decreases as q increases.
Such a tendency also tells us that the improved Bonferroni bounds do not work well.
The values χ2

p,αII,S
based on Siotani’s (1959) proposal are, by chance, close to the val-

ues that Royen (1984; Table 2b with ν = p and m = q) gave by simulation. But, the

123



Multiple comparisons in one-way MANOVA 23

Table 4 Critical values for
p = 3, α = 0.05 q χ2

p,αII
χ2

p,αII,2
t2
II,2(α) χ2

p,αII,S
Royen

3 10.236 10.096 10.081 10.029 9.97

4 11.739 11.611 11.599 11.435 11.36

5 12.838 12.727 12.718 12.474 12.41

6 13.706 13.609 13.603 13.300 13.25

7 14.424 14.338 14.333 13.986 13.94

8 15.037 14.959 14.955 14.572 14.53

reason why Siotani’s original procedure has a good performance is not yet explained
theoretically.

6 Discussion

In principle, the formulae P
∞
ab(x) = G p(x) and P

∞
ab:cd(x) = {G p(x)}2 + Iab:cd(x)

we used in this paper may be replaced by

P
AE1
ab (x) = G p(x) + 1

N
P

[1]
ab (x), (a, b) ∈ J

and

P
AE1
ab:cd(x) = P

∞
ab:cd(x) + 1

N
P

[1]
ab:cd(x), (a, b), (c, d) ∈ J ; (a, b) < (c, d),

where

P
[1]
ab (x) = lim

N→∞ N [Pab(x) − G p(x)]

and

P
[1]
ab:cd(x) = lim

N→∞ N [Pab:cd(x) − P
∞
ab:cd(x)]

(see Seo 2002, Okamoto and Seo, Okamoto 2005, Kakizawa 2006). Then, more accu-
rate variants for (P1) and (P2) are possible. For example, (29.I) and (29.II) for the case
of option i = 1 are replaced by

BAE1
I,1 (x) = B∞

I,1(x) + 1

N
B[1]

I,1 (x) and BAE1
II,1 (x) = B∞

II,1(x) + 1

N
B[1]

II,1(x),

where

B[1]
I,1 (x)=1 −

q−1∑

a=1

P
[1]
aq (x) + 2

q − 1

∑

1≤a<b≤q−1

P
[1]
aq:bq(x)
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and

B[1]
II,1(x)=1 −

∑

1≤a<b≤q

P
[1]
ab (x) + 2

q(q − 1)/2

∑

(ab)(cd)

P
[1]
ab:cd(x).

With K = I, II, we can see that a solution of BAE1
K,1 (x) = 1 − α is expanded as

t2
K,1(α) − 1

N

B[1]
K,1{t2

K,1(α)}
d

dx
B∞

K,1{t2
K,1(α)}

+ o(N−1), (36)

where t2
K,1 is a solution of B∞

K,1(x) = 1 − α (see (P1)). To assure the positiveness, we
may use the formula

t2
K,1(α)

⎡

⎢
⎣1 − 1

2N

B[1]
K,1{t2

K,1(α)}
t2
K,1(α)

d

dx
B∞

K,1{t2
K,1(α)}

⎤

⎥
⎦

2

in place of (36) without the remainder term. Further, (34.I) and (34.II) for the case of
option i = 1 are replaced by

AAE1
I,1 = 2

q − 1

∑

1≤a<b≤q−1

P
AE1
aq:bq

{
C FI(χ

2
p,αI

)
}

and

AAE1
II,1 = 2

q(q − 1)/2

∑

(ab)(cd)

P
AE1
ab:cd

{
C FII(χ

2
p,αII

)
}

,

and using them, (P2) is now modified as C FK(χ2
p,α′

K,1
), K = I, II, where

α′
I,1 = α + AAE1

I,1

q − 1
and α′

II,1 = α + AAE1
II,1

q(q − 1)/2
,

with C FI(·) and C FII(·) being the Cornish-Fisher type polynomial (see Seo 2002,
Okamoto 2005, Kakizawa 2006).

7 Concluding remarks

The aim of this paper was to construct asymptotically conservative 100(1 − α)%
simultaneous confidence intervals among mean vectors for cases of comparisons with
a control and pairwise comparisons. This was accomplished by following two pro-
cedures (P1) and (P2) presented in Sects. 3 and 4. We emphasize that although we
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focused on the Hunter-Worsley inequalities based on the spanning tree of the complete
graph, any Bonferroni-type lower bounds are applicable. It may be true that Siotani’s
(1959, 1960, 1964) original procedure gives very close approximation to the percentile
of χ2

max-type statistic, but its mathematical property is not yet clarified theoretically
(as shown numerically in Sect. 5.1, it may be sometimes liberal).
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