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Abstract The unknown matrix M is the mean of the observed response matrix in
a multivariate linear model with independent random errors. This paper constructs
regularized estimators of M that dominate, in asymptotic risk, least squares fits to the
model and to specified nested submodels. In the first construction, the response matrix
is expressed as the sum of orthogonal components determined by the submodels; each
component is replaced by an adaptive total least squares fit of possibly lower rank; and
these fits are then summed. The second, lower risk, construction differs only in the
second step: each orthogonal component is replaced by a modified Efron-Morris fit
before summation. Singular value decompositions yield computable formulae for the
estimators and their asymptotic and estimated risks. In the asymptotics, the row dimen-
sion of M tends to infinity while the column dimension remains fixed. Convergences
are uniform when signal-to-noise ratio is bounded.

Keywords Total least squares · Efron-Morris fit · Penalized least squares ·
Regularization · Rank reduction

1 Introduction

Consider the multivariate linear model

Y = M + E, M = X B. (1)
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844 R. Beran

Here the observation matrix Y and the constant matrix M are both n × q with n ≥ q.
The n × d design matrix X is known and has rank p ≤ max{d, n} while the d × q
matrix B is unknown. The elements of the n × q error matrix E are independent,
identically distributed random variables, each having a N (0, σ 2) distribution with
unknown positive variance σ 2. A basic problem is to estimate M and σ 2 under this
model. Section 5 will extend the results to a multivariate linear model with correlated
errors.

The Frobenius norm of a matrix D is defined by |D|2 = tr(DD′) = tr(D′D). Let
M̂ denote any estimator of M . The quality of M̂ is assessed through the normalized
quadratic loss

L(M̂, M) = p−1|M̂ − M |2. (2)

The risk of M̂ is then

R(M̂, M, σ 2) = EL(M̂, M), (3)

the expectation being evaluated under model (1). Let X+ denote the pseudoinverse
of X . The least squares estimator M̂ls = X X+Y of M has risk qσ 2. It is known
from Stein (1956) that M̂ls is inadmissible under quadratic loss when pq exceeds 2.
This paper develops regularized estimators of M that trade off bias against variance
so as to achieve lower risk, asymptotically in p, than M̂ls under model (1). The pro-
posed estimators also dominate specified least squares submodel fits used in their
construction.

We begin by considering a set of nested least squares submodel fits to the linear
model. It is not assumed that any of the proper submodels is true. All risk calculations
in this paper are done under model (1), except those for those done in Sect. 5 under a
more general error model. Suppose that X1, X2, …Xs−1 are submodel design matrices
whose range spaces are nested as follows:

R(X1) ⊂ R(X2) ⊂ · · · ⊂ R(Xs−1) ⊂ R(X). (4)

Define

P1 = X1 X+
1 , P2 = X2 X+

2 − X1 X+
1 , . . . , Ps = X X+ − Xs−1 X+

s−1. (5)

The {Pk} are orthogonal projections that are mutually orthogonal: each Pk is sym-
metric, idempotent and Pi Pj = 0 whenever i �= j . Because

∑s
k=1 Pk = X X+ and

M = X B under model (1), it follows that

M =
s∑

k=1

Pk M, M̂ls =
s∑

k=1

PkY =
s∑

k=1

Pk M̂ls. (6)

Rank reduction. The first fundamental idea in this paper is to estimate each Pk M
more efficiently by reducing, in a data-based manner, the rank of PkY = Pk M̂ls.
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Multiple affine shrinkage estimators 845

The rank-reduced estimators of the {Pk M} are then summed to obtain the adaptive
projection estimator of M . More fully, suppose that the singular value decomposition
of PkY is

PkY = Ûk L̂k V̂ ′
k =

q∑

j=1

l̂k j ûk j v̂
′
k j , (7)

where Ûk = [ûk1, . . . ûkq ] is n × q, V̂k = [v̂k1, . . . , v̂kq ] is q × q, Û ′
kÛk = V̂ ′

k V̂k =
V̂k V̂ ′

k = Iq and L̂k = diag(l̂k1, . . . , l̂kq) with l̂k1 ≥ · · · ≥ l̂kq ≥ 0. Let σ̂ 2 be a
consistent estimator of σ 2. For each k, define

τ̂k = p−1σ̂ 2 tr(Pk), W̆k = p−1(PkY )′ PkY − τ̂k Iq . (8)

Note for later use that
∑s

k=1 τ̂k = σ̂ 2. Equation (7) implies the spectral representation

W̆k =
q∑

j=1

w̆k j v̂k j v̂
′
k j , w̆k j = p−1l̂2

k j − τ̂k . (9)

Let w̆k j+ = max{w̆k j , 0} and w̆k j− = min{w̆k j , 0}. Define ŵk j = w̆k j+ and

Ŵk = W̆k+ =
q∑

j=1

ŵk j v̂k j v̂
′
k j , W̆k− =

q∑

j=1

w̆k j−v̂k j v̂
′
k j . (10)

Note that Ŵk is positive semidefinite. The adaptive projection estimator of M is

M̂pro =
s∑

k=1

PkY
∑

j :ŵk j >τ̂k

v̂k j v̂
′
k j =

s∑

k=1

∑

j :ŵk j >τ̂k

l̂k j ûk j v̂
′
k j , (11)

the last expression using (7). Because M̂pro = ∑s
k=1 Pk M̂pro = X X+M̂pro, it satis-

fies the linear model constraint on M in model (1). The derivation of estimator (11)
from the risk considerations in Sects. 2 and 3 justifies its name.

Let ĥk = #{ j : ŵk j > τ̂k}). By the Eckart–Young matrix approximation theorem,
the kth summand on the right side of (11),

∑
j :ŵk j >τ̂k

l̂k j ûk j v̂
′
k j , gives, among matri-

ces of rank not exceeding ĥk , the best approximation in Frobenius norm to PkY . In
other words, the kth summand is the total least squares approximation to PkY of rank
not exceeding ĥk . For accounts of the total least squares problem and of its solution
through the singular value decomposition, see Golub and Van Loan (1980, 1996), Van
Huffel and Vandewalle (1991), and Van Huffel (2004). The latter references relate
total least squares to the extensive statistical literature on errors-in-variables regres-
sion, including Gleser (1981) and Fuller (1987). Section 4 shows that M̂pro implements
the asymptotically minimum risk strategy for estimating M through rank reduction of
each PkY as p tends to infinity.
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846 R. Beran

Suppose, for 1 ≤ k ≤ s, that the singular value decomposition of Pk M is

Pk M = Uk Lk V ′
k =

q∑

j=1

lk j uk jv
′
k j , (12)

where Uk = [uk1, . . . ukq ] is n × q, Vk = [vk1, . . . , vkq ] is q × q, U ′
kUk = V ′

k Vk =
Vk V ′

k = Iq and Lk = diag(lk1, . . . , lkq) with lk1 ≥ · · · ≥ lkq ≥ 0. For each k, define

τk = p−1σ 2 tr(Pk), Wk = p−1(Pk M)′ Pk M. (13)

Note for later use that
∑s

k=1 τk = σ 2. Equation (12) implies the spectral representation

Wk =
q∑

j=1

wk jvk jv
′
k j , wk j = p−1l2

k j . (14)

It is shown in Sect. 4 that the risk R(M̂pro, M, σ 2) converges asymptotically, as p
tends to infinity, to

s∑

k=1

q∑

j=1

min{τk, wk j } ≤ qσ 2 = R(M̂ls, M, σ 2). (15)

The convergence is uniform when p−1|M |2 is bounded. It will be seen that M̂pro
asymptotically dominates each of the submodel least squares estimators {Xt X+

t Y : 1 ≤
t ≤ s} for M .

Symmetric affine shrinkage. It is evident from the right side of (11) that M̂pro applies
a shrinkage factor that is either 0 or 1 to each summand in the singular value decom-
position (7) of PkY . Can a more sophisticated shrinkage strategy reduce asymptotic
risk below that of M̂pro? The answer is yes. The second fundamental idea in this paper
is to estimate each Pk M more efficiently by applying data-based, symmetric affine
shrinkage to the right side of each PkY = Pk M̂ls. These affinely shrunk estimators of
the {Pk M} are then summed to estimate M .

The adaptive symmetric affine estimator of M is

M̂sym =
s∑

k=1

PkY
q∑

j=1

ŵk j (τ̂k + ŵk j )
−1v̂k j v̂

′
k j =

s∑

k=1

q∑

j=1

ŵk j (τ̂k +ŵk j )
−1l̂k j ûk j v̂

′
k j ,

(16)

the last expression using (7). Because M̂sym = ∑s
k=1 Pk M̂sym = X X+M̂sym, it

satisfies the linear model constraint on M in model (1). In view of (16), M̂sym applies
a shrinkage factor that lies between 0 and 1 to each summand in the singular value
decomposition (7) of PkY . The derivation of estimator M̂sym from the risk consider-
ations in Sects. 2 and 3 justifies its name. Section 3 further shows that (16) is equivalent
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Multiple affine shrinkage estimators 847

to estimating each Pk M by a modified Efron and Morris (1972) estimator based on
PkY and then summing over all k.

Section 4 shows that the risk R(M̂sym, M, σ 2) converges asymptotically, as p tends
to infinity, to

s∑

k=1

q∑

j=1

τkwk j (τk + wk j )
−1. (17)

The convergence is uniform when p−1|M |2 is bounded. It follows algebraically from
(17) and (15) that the asymptotic risk of M̂sym lies between the asymptotic risk of
M̂pro and one half that asymptotic risk.

2 Oracle estimators

This section studies classes of candidate linear estimators for M , constructing within
each class an estimator that minimizes the quadratic risk (3). These best candidate
estimators are oracle estimators in that they depend on functions of the unknown
parameters M and σ 2. The labeling of the oracle estimators foreshadows their link-
age, in Sect. 3, with the adaptive projection and symmetric affine shrinkage estimators
described in Sect. 1.

2.1 Oracle linear estimators

For 1 ≤ k ≤ s, let Ak be an arbitrary q × q matrix and let A denote the concatenated
matrix A = [A1, A2, . . . , As]. As candidate estimators for M , we first consider the
linear estimators

M̂(A) =
s∑

k=1

PkY Ak =
s∑

k=1

Pk M̂ls Ak . (18)

Because M̂(A) = ∑s
k=1 Pk M̂(A) = X X+M̂(A), it satisfies the linear model con-

straint on M in (1). The loss (2) of candidate estimator M̂(A) is

L(M̂(A), M) = p−1|M̂(A) − M |2 = p−1
s∑

k=1

|PkY Ak − Pk M |2. (19)

The corresponding risk is

R(M̂(A), M, σ 2) = EL(M̂(A), M)

=
s∑

k=1

tr[τk Ak A′
k + Wk(Ak − Iq)(Ak − Iq)′]. (20)
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848 R. Beran

Using derivative formulae compiled by Lütkepohl (1996),

∂ R(M̂(A), M, σ 2)/∂ Ak = 2(τk Ak + Wk Ak − Wk). (21)

The derivative in (21) vanishes if and only if Ak equals

Ãk = (τk Iq + Wk)
−1Wk = Iq − τk(τk Iq + Wk)

−1 = Wk(τk Iq + Wk)
−1, (22)

a symmetric matrix whose eigenvalues all lie in [0, 1]. Let Ã = [ Ã1, . . . , Ãs]. Because
the risk R(M̂(A), M, σ 2) is convex in A, it is minimized by setting A = Ã.

2.2 Oracle affine shrinkage and projection estimators

Let Asym denote the set of all symmetric q × q matrices whose eigenvalues lie in
[0, 1]. The concatenated matrix A = [A1, . . . , As] then lies in As

sym. By the preced-
ing paragraphs, it is reasonable to limit the search for low risk linear estimators to the
symmetric affine shrinkage candidate estimators {M̂(A) : A ∈ As

sym}. Let Apro be the
subset of matrices in Asym that are orthogonal projections. These projections are the
elements of Asym whose eigenvalues are either 0 or 1.

Let W = [W1, W2, . . . , Ws] and let τ = (τ1, . . . , τs). For every A ∈ As
sym, the risk

(20) of M̂(A) simplifies to

R(M(A), M, σ 2) =
s∑

k=1

ρ(Ak, τk, Wk) = r(A, τ, W ) (say), (23)

where

ρ(Ak, τk, Wk) = tr[τk A2
k + (Iq − Ak)

2Wk]
= tr[(Ak − Ãk)

2(τk Iq + Wk)] + τk tr( Ãk). (24)

Of interest for subsequent developments are the following oracle estimators, obtained
by minimizing risk over Asym and over Apro:

• The oracle symmetric affine shrinkage estimator of M is M̃sym = M̂( Ãsym), where

Ãsym = argmin
A∈As

sym

r(A, τ, W ) = [ Ãsym,1, . . . , Ãsym,s]. (25)

• The oracle projection estimator of M is M̃pro = M̂( Ãpro), where

Ãpro = argmin
A∈As

pro

r(A, τ, W ) = [ Ãpro,1, . . . , Ãpro,s]. (26)

The next theorem provides explicit formulae for the oracle estimators and their risks.
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Multiple affine shrinkage estimators 849

Theorem 1 The following expressions hold:

Ãsym,k = Ãk =
q∑

j=1

wk j (τk + wk j )
−1vk jv

′
k j

M̃sym =
s∑

k=1

PkY Ãsym,k (27)

R(M̃sym, M, σ 2) =
s∑

k=1

τk tr( Ãsym,k) =
s∑

k=1

q∑

j=1

τkwk j (τk + wk j )
−1.

Moreover,

Ãpro,k =
∑

j :wk j >τk

vk jv
′
k j

M̃pro =
s∑

k=1

PkY Ãpro,k (28)

R(M̃pro, M, σ 2) =
s∑

k=1

q∑

j=1

min{τk, wk j }.

Proof The three equations in (28) follow easily from (22), (23), (24), and the spectral
representation (14).

Let Apro(t) denote the set of matrices in Apro whose rank is t . To find Ãpro, we first
minimize each risk component ρ(Ak, τk, Wk) over all Ak ∈ Apro(t), then minimize
further over t . For each k, using (24), let

Ãpro,k(t) = argmin
B∈Apro(t)

ρ(B, τk, Wk) = argmin
B∈Apro(t)

|W 1/2
k − BW 1/2

k |2. (29)

Evidently, rank(BW 1/2
k ) ≤ t under the constraint rank(B) = t . By the Eckart–Young

matrix approximation theorem and the spectral representation (14), the minimum norm
approximation to W 1/2

k of rank not exceeding t is
∑t

j=1 w
1/2
k j vk jv

′
k j . It follows that

Ãpro,k(t) = ∑t
j=1 vk jv

′
k j achieves the minimum in (29). From this, the second line of

(24), and (14),

ρ( Ãpro,k(t), τk, Wk) =
q∑

j=1

{[I ( j ≤ t) − wk j (τk + wk j )
−1]2(τk + wk j )}

+τk tr( Ãk). (30)

This, in turn, is minimized by selecting t so that the indicator I ( j ≤ t) equals 1 when
wk j (τk + wk j )

−1 exceeds 1/2 and equals 0 otherwise. The expression for Ãpro,k in
(28) follows.
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850 R. Beran

Using that expression, (18), (23), and the spectral representation (14) yields the
other two equations in (28). ��

2.3 Remarks on candidate and oracle estimators

Remark 1 It follows from the risk formulae in Theorem 1 that the risks of the oracle
affine projection and symmetric affine shrinkage estimators satisfy the inequalities

2−1 R(M̃pro, M, σ 2) ≤ R(M̃sym, M, σ 2) ≤ R(M̃pro, M, σ 2)

≤ R(M̂ls, M, σ 2) = qσ 2. (31)

The oracle estimators M̃pro and M̃sym are not realizable because they depend on func-
tions of the unknown parameters M and σ 2. However, Sect. 3 will construct data-based
approximations to both oracle estimators that achieve the oracle risks asymptotically
as p tends to infinity.

Remark 2 The class of candidate estimators {M̂(A) : A ∈ As
sym} considered in

Sect. 2.2 substantially enlarges the underlying set of least squares submodel fits spec-
ified in Sect. 1. Indeed, if Ak = Iq for 1 ≤ k ≤ t < s and Ak vanishes otherwise,
then M̂(A) = ∑t

k=1 PkY = Xt X+
t Y , the least squares estimator for M under the

constraint M ∈ R(Xt ). More generally, when some eigenvalues of Ak are strictly less
than 1, then PkY Ak = Pk M̂ls Ak shrinks toward 0 the corresponding components of
the projection Pk M̂ls, after the latter quantity is expanded in terms of the eigenvectors
of Ak . Consequently, if Ak = Iq for 1 ≤ k ≤ t < s and Ak �= Iq otherwise but still
lies in Asym, then M̂(A) shrinks M̂ls toward

∑t
k=1 PkY = Xt X+

t Y , the least squares
estimator of M under the constraint M ∈ R(Xt ).

Remark 3 The candidate estimators {M̂(A) : A ∈ As} are regularized estimators of M
because they can be derived as generalized penalized least squares estimators or limits
thereof. Indeed, let the {Ck : 1 ≤ k ≤ s} be specified penalty matrices of row dimen-
sion q and let C = [C1, C2, . . . , Cs]. The affinely penalized least squares candidate
estimator M̂pls minimizes

T (M) = |Y − M |2 +
s∑

k=1

|Pk MCk |2

= tr(Y ′Y ) − 2 tr(M ′Y ) + tr(M ′M) +
s∑

k=1

tr(MCkC ′
k M ′ Pk) (32)

over all M that satisfy the linear model constraint M = X B in (1). This general-
ization of ordinary penalized least squares has s penalty terms in which the matrices
{Ck : 1 ≤ k ≤ s} replace scalar penalty weights.
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Multiple affine shrinkage estimators 851

We will show that

M̂pls =
s∑

k=1

PkY (Iq + CkC ′
k)

−1. (33)

To verify this, observe that M = X B = X X+M for some d × q matrix B if and
only if M = X X+G = ∑s

k=1 Pk G for some n × q matrix G. By substituting the
last expression for M into the right side of (32) and then using derivative formulae in
Lütkepohl (1996), we obtain

∂T (M)/∂G = 2

(

−
s∑

k=1

PkY +
s∑

k=1

Pk G +
s∑

k=1

Pk GCkC ′
k

)

. (34)

The derivative in (34) vanishes if and only if
∑s

k=1 Pk[G(Iq + CkC ′
k) − Y ] = 0 or,

equivalently, if and only if Pk G(Iq + CkC ′
k) = PkY for every k. Hence, the mini-

mizing value Ĝ of G satisfies Pk Ĝ = PkY (Iq + CkC ′
k)

−1 for every k. It follows that

M̂pls = ∑s
k=1 Pk Ĝ is given by (33).

As Ck varies, (Iq + CkC ′
k)

−1 generates all matrices in As
sym whose eigenvalues

lie in (0, 1]. Equations (33) and (18) indicate that each of the candidate estimators
{M̂(A) : A ∈ As

sym} can be expressed either as a penalized least squares estimator or
as a limit of such.

3 Adaptive estimators

This section devises adaptive estimators that are realizable data-based approximations
to the oracle estimators derived in Sect. 2. The oracle construction is modified by
replacing the unknown parameters τ and W in the risk function r(A, τ, W ) with esti-
mators. The resulting adaptive estimators coincide with the estimators M̂pro and M̂sym
discussed in the Introduction. It will be seen in Sect. 4 that the risk of each adaptive
estimator converges to that of its oracle counterpart as p tends to infinity.

3.1 Estimated risk and adaptation

Let σ̂ 2 be an L1-consistent estimator of σ 2 in a sense to be made precise in
Theorem 3. The strategy is to estimate the unknown risk function r(A, τ, W ) by
plugging in the estimators τ̂ and Ŵ defined by (8) and (10).

Let

Âk = (τ̂k Iq + Ŵk)
−1Ŵk = Iq − τ̂k(τ̂k Iq + Ŵk)

−1 = Ŵk(τ̂k Iq + Ŵk)
−1, (35)

a matrix that lies in Asym. Let Â = [ Â1, . . . , Âs]. For every A ∈ As
sym, define the

estimated risk of candidate estimator M̂(A) by analogy with (23) and (24):

123



852 R. Beran

r(A, τ̂ , Ŵ ) =
s∑

k=1

ρ(Ak, τ̂k, Ŵk), (36)

where

ρ(Ak, τ̂k, Ŵk) = tr[τ̂k A2
k + (Iq − Ak)

2Ŵk]
= tr[(Ak − Âk)

2(τ̂k Iq + Ŵk)] + τ̂k tr( Âk). (37)

Corresponding to the oracle estimators discussed in Sect. 2.2 are the following adaptive
estimators, obtained by minimizing estimated risk over Asym and over Apro:

• The adaptive symmetric affine estimator of M is M̂sym = M̂( Âsym), where

Âsym = argmin
A∈As

sym

r(A, τ̂ , Ŵ ) = [ Âsym,1, . . . , Âsym,s]. (38)

• The adaptive projection estimator of M is M̂pro = M̂( Âpro), where

Âpro = argmin
A∈As

pro

r(A, τ̂ , Ŵ ) = [ Âpro,1, . . . , Âpro,s]. (39)

The estimated risks of these two estimators are, respectively,

R̂(M̂sym) = r( Âsym, τ̂ , Ŵ ), R̂(M̂pro) = r( Âpro, τ̂ , Ŵ ). (40)

The next theorem shows that these adaptive estimators coincide with the adaptive
projection and adaptive symmetric affine estimators discussed in Sect. 1 and provides
formulae for their estimated risks.

Theorem 2 The following expressions hold:

Âsym,k = Âk =
q∑

j=1

ŵk j (τ̂k + ŵk j )
−1v̂k j v̂

′
k j

M̂sym =
s∑

k=1

PkY
q∑

j=1

Âsym,k =
s∑

k=1

q∑

j=1

ŵk j (τ̂k + ŵk j )
−1l̂k j ûk j v̂

′
k j (41)

R̂(M̂sym) =
s∑

k=1

τ̂k tr( Âsym,k) =
s∑

k=1

q∑

j=1

τ̂kŵk j (τ̂k + ŵk j )
−1,

with Âk defined in (35). Moreover,
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Multiple affine shrinkage estimators 853

Âpro,k =
∑

j : ŵk j >τ̂k

v̂k j v̂
′
k j

M̂pro =
s∑

k=1

PkY Âpro,k =
s∑

k=1

∑

j :ŵk j >τ̂k

l̂ j ûk j v̂
′
k j (42)

R̂(M̂pro) =
s∑

k=1

q∑

j=1

min{τ̂k, ŵk j }.

Proof Because Ŵk was constructed to lie in Asym, just like Wk , the argument that
proved Theorem 1 also works for Theorem 2. The rightmost expressions for M̂sym and
M̂pro use the singular values decomposition of PkY , given in (7). ��

It follows from the estimated risk formulae in Theorem 2 that

2−1 R̂(M̂pro) ≤ R̂(M̂sym) ≤ R̂(M̂pro) ≤ R̂(M̂ls) = qσ̂ 2. (43)

Section 4 shows that each estimated risk in (43) converges asymptotically, as p tends
to infinity, to the corresponding actual risk, which asymptotically equals the oracle
risk. In this sense, the estimated risk inequalities (43) approximate the oracle risk
inequalities (31).

3.2 Examples

The examples of model (1) in this section have two purposes:

• To relate, by specialization, the adaptive estimator M̂sym and M̂pro to earlier work
on shrinkage estimators;

• To illustrate ways in which M̂sym and M̂pro go beyond the earlier procedures. The
case study in Sect. 4.3 develops this point on data.

Example 1 (Multiple scalar shrinkage). Consider the scalar response case, q = 1. We
write Y = y, M = m, both column vectors, and Ak = ak , a scalar for each k. Then,
Ŵk is the non-negative scalar ŵk = [p−1(Pk y)′(Pk y) − τk]+. The adaptive affine
shrinkage estimator of m is

m̂sym =
s∑

k=1

ŵk(τ̂k + ŵk)
−1 Pk y (44)

and it has estimated risk

R̂(m̂sym) =
s∑

k=1

τ̂kŵk(τ̂k + ŵk)
−1. (45)

It may be verified that, as p tends to infinity, m̂sym converges to a multiple scalar
shrinkage estimator constructed by Stein (1966).

123



854 R. Beran

In this scalar case, the adaptive projection estimator of m is the vector

m̂pro =
∑

k : ŵk>τ̂k

Pk y, (46)

with estimated risk

R̂(m̂pro) =
s∑

k=1

min{τ̂k, ŵk}. (47)

The projection estimator m̂pro is a multiple submodel selection estimator that simplifies
m̂sym as follows: the shrinkage factor ŵk(τ̂k +ŵk)

−1 in (44) is replaced by 1 whenever
it exceeds 1/2 and is replaced by 0 otherwise. The asymptotics in Sect. 4 establish
that the risk estimators (45) and (47) both converge to the respective true risks under
model (1).

Example 2 (Efron–Morris estimator and total least squares). Let n = p, X = Ip,
and s = 1. For simplicity, suppose that σ 2 is known to be 1, so that σ̂ 2 = 1. Then
P1 = X X+ = Ip, τ1 = 1, and Ŵ1 adjusts W̆1 = p−1Y ′Y − Iq to be positive
semidefinite. In this case,

M̂sym = Y Ŵ1(Iq + Ŵ1)
−1. (48)

is a modification of the estimator Y W̆1(Iq + W̆1)
−1 = Y [Iq − p(Y ′Y )−1]. For p much

larger than q, this second expression nearly coincides with the Efron–Morris estimator

M̂EM = Y [Iq − (p − q − 1)(Y ′Y )−1], (49)

developed from a different perspective by Efron and Morris (1972). Under asymptot-
ics where p tends to infinity while response dimension q stays fixed, M̂sym and M̂EM
have the same asymptotic risk.

Over certain neighborhoods of M = 0 that are defined in terms of the eigenvalues
of W1, the estimator M̂sym is asymptotically minimax as p tends to infinity. The least
squares estimator M̂ls is not. This result in Beran (1999) applies the Pinsker (1980)
theorem to a canonical transformation of the present example.

In the present example, M̂pro, given by (43) with s = 1, is the adaptive total least
squares estimator for M of rank ĥ1 = #{ j : ŵ1 j > τ̂1}. The total least squares problem
and its solution through the singular value decomposition were described by Golub
and Van Loan (1980, 1996), by Van Huffel and Vandewalle (1991), and by Van Huffel
(2004). The asymptotics in Sect. 4 provide a risk rationale for choosing the rank of
the total least squares fit to be ĥ1. As in Example 1, M̂pro is a simplification of the
modified Efron–Morris estimator. The risk penalty incurred by M̂pro relative to M̂sym
can be estimated asymptotically as p increases. For another treatment of this example,
see Beran (2007).
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Example 2 reveals, more generally, that M̂sym is the sum of s modified Efron–
Morris estimators, one fitted to each PkY . Similarly, M̂pro is the sum of s adaptive
total least squares estimators, one fitted to each PkY .

Example 3 (Two-way MANOVA model). Consider the two-way layout with q-variate
responses where factors 1 and 2 have, respectively, p1 and p2 levels. For each factor
level combination (i, j), the observed responses are 1×q row vectors {yi jh : 1 ≤ h ≤
ni j }. The model asserts that

yi jh = βi j + ei jh, 1 ≤ h ≤ ni j , (50)

where βi j is a constant 1 × q vector and ei jh is a random 1 × q error vector.
Let n = ∑p1

i=1

∑p2
j=1 ni j and p = p1 p2. Form the n × q response matrix Y by

stacking the row vectors {yi jh} in the following order: replication label h varies most
quickly, the level i of factor 1 varies next most quickly, and the level j of factor 2
varies most slowly. Form the error matrix E analogously. Form the p × q constant
matrix B by stacking the row vectors {βi j } in the following order: the level i of factor
1 varies most quickly, and the level j of factor 2 varies most slowly. Let X be the n × p
data incidence matrix, a matrix with orthogonal columns whose elements are either 0
or 1, that links each component of B to the corresponding responses in Y . Then Y in
this example satisfies model (1)

For i = 1, 2, consider the pi × 1 vector ui = p−1/2
i (1, . . . , 1)′ and the orthogonal

projections Ji = ui u′
i and Hi = Ipi − Ji . Let

Q0 = J2 ⊗ J1, Q1 = J2 ⊗ H1, Q2 = H2 ⊗ J1, Q12 = H2 ⊗ H1. (51)

The two-way MANOVA decomposition of the cell means B into overall means, main
effects, and interactions is the identity B = Q0 B + Q1 B + Q2 B + Q12 B. Customary
nested submodel design matrices for two-way MANOVA are

X1 = X Q0, X2 = X (Q0 + Q1) or X (Q0 + Q2), X3 = X (Q0 + Q1 + Q2).

(52)

In this example, M̂sym and M̂pro provide superior estimation of M = X B.

Example 4 (Multivariate regression). Let x = (x1, x2, . . . , xn)′ be a non-random
covariate vector associated with the rows of the response matrix Y . In model (1),
let X be the matrix [x0, x1, . . . , x p−1], the powers being computed componentwise.
For 1 ≤ k ≤ s − 1, let Xk be the submatrix consisting of the first ck columns of
X ,where 1 ≤ c1 ≤ · · · ≤ cs−1 ≤ p − 1. By construction, M̂sym asymptotically dom-
inates in risk the least squares polynomial fits of degrees c1 − 1, c2 − 1, . . . , p − 1.
The polynomial basis in this example can be replaced by other bases, such as discrete
spline bases.
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4 Asymptotic theory

This section develops conditions under which the adaptive estimators behave asymp-
totically in loss and risk like their oracle counterparts and under which the estimated
risks of the adaptive estimators converge to their actual risks. The usefulness of M̂sym

and M̂pro for data analysis is explored in the case study of Sect. 4.3. The assumption
that the rows of the error matrix E are independent N (0, σ 2 Iq) random vectors is
important to the proofs below because it ensures the distributional property that fol-
lows (56). For the special case when s = 1 and P1 = In , analogs of Theorems 4.1 and
4.2 have been proved by Beran (2007), using an empirical process approach that does
not require a multivariate normality assumption. However, the approach of that paper
does not suffice to handle the case s > 1.

4.1 Convergence of loss, risk, and estimated risk

The first theorem establishes that the loss and the estimated risk of candidate estimator
M̂(A) both converge, uniformly over A ∈ As

sym, to the estimator’s risk as p tends to
infinity.

Theorem 3 Suppose that model (1) holds and that σ̂ 2 satisfies, for every finite c > 0,

lim
p→∞ sup

p−1|M|2≤c
E|σ̂ 2 − σ 2| = 0. (53)

Then, for every finite c > 0 and fixed integers q and s,

lim
p→∞ sup

p−1|M|2≤c
E sup

A∈As
sym

|L(M̂(A), M) − r(A, τ, W ))| = 0 (54)

and

lim
p→∞ sup

p−1|M|2≤c
E sup

A∈As
sym

|r(A, τ̂ , Ŵ ) − r(A, τ, W ))| = 0. (55)

Proof Each n×n projection matrix Pk has spectral decomposition Pk = UkU ′
k , where

Uk is n × tk with tk = tr(Pk) and U ′
kUk = Itk . Let

Yk = U ′
kY, Mk = U ′

k M, Ek = U ′
k E . (56)

Under model (1), the elements of the tk ×q matrix Ek are independent identically dis-
tributed N (0, σ 2) random variables. Moreover, Wk = p−1 M ′

k Mk and τk = p−1σ 2tk .

Let F̂k = p−1 E ′
k Mk and Ĝk = p−1 E ′

k Ek − τk Iq . Using the respective definitions
(8) and (13) of W̆k and Wk gives

W̆k − Wk = p−1Y ′
kYk − τ̂k Iq − p−1 M ′

k Mk

= F̂k + F̂ ′
k + Ĝk + (τk − τ̂k)Iq . (57)
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Because the elements of Ek are independent N (0, σ 2) variables and |Mk |2 ≤ |M |2,

sup
p−1|M|2<c

E|F̂k |2 = O(p−1), sup
p−1|M|2<c

E|Ĝk |2 = O(p−1). (58)

From (53) and the definitions (8) and (13) of τ̂k and τk ,

lim
p→∞ sup

p−1|M|2≤c
E|τ̂k − τk | = 0. (59)

Recall the definitions in (10) of Ŵk = W̆k+ and W̆k−. Because the matrix Wk is
positive semidefinite, tr(Wk W̆k−) = ∑q

j=1 w̆k j−v̂′
k j Wk v̂k j ≤ 0. Consequently,

|W̆k − Wk |2 = |W̆k+ − Wk |2 + |W̆k−|2 − 2 tr(Wk W̆k−)

≥ |W̆k+ − Wk |2 + |W̆k−|2
≥ |W̆k+ − Wk |2 = |Ŵk − Wk |2. (60)

From (57) to (60),

lim
p→∞ sup

p−1|M|2≤c
E|Ŵk − Wk | ≤ lim

p→∞ sup
p−1|M|2≤c

E|W̆k − Wk | = 0. (61)

Let {Bi : 1 ≤ i ≤ h} be any q × q matrices. Then, | tr[∏h
i=1 Bi ]| ≤ ∏h

i=1 |Bi |
(cf. Lütkepohl 1996, p. 111). If Ak ∈ Asym, its spectral decomposition implies that
|A2

k | ≤ q1/2, |(Iq − Ak)
2| ≤ q1/2, and |Ak(Iq − Ak)| ≤ 4−1q1/2. It follows from (23)

that

|r(A, τ, Ŵ ) − r(A, τ, W )| =
∣
∣
∣
∣
∣

s∑

k=1

tr[(Iq − Ak)
2(Ŵk −Wk)]

∣
∣
∣
∣
∣

≤
s∑

k=1

|(Iq − Ak)
2||Ŵk −Wk | ≤ q1/2

s∑

k=1

|Ŵk −Wk |. (62)

On the other hand,

|r(A, τ̂ , Ŵ ) − r(A, τ, Ŵ )| =
∣
∣
∣
∣
∣

s∑

k=1

(τ̂k − τk) tr(A2
k)

∣
∣
∣
∣
∣
≤ q|σ̂ 2 − σ 2|. (63)

Inequalities (61), (62), (63) and theorem condition (53) together imply limit (55).
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Let J = |L(M̂(A), M) − r(A, τ, W )|. From (19) and (23),

J =
∣
∣
∣
∣
∣

s∑

k=1

{
p−1|Yk Ak − Mk |2 − tr

[
τk A2

k + (I − Ak)
2 p−1 M ′

k Mk

]}
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

s∑

k=1

tr
[

A2
k Ĝk + 2(A2

k − Ak)F̂ ′
k

]
∣
∣
∣
∣
∣
≤ q1/2

s∑

k=1

[
|Ĝk | + 2−1|F̂k |

]
. (64)

This and (58) imply limit (54). ��
From Theorem 3 follows

Theorem 4 Suppose that the assumptions of Theorem 3 hold. Let T denote any one of
L(M̂sym, M) or L(M̃sym, M) or R̂(M̂sym). Then, for every finite c > 0 and for every
fixed integers q and s,

lim
p→∞ sup

p−1|M|2≤c
E|T − R(M̃sym, M, σ 2)| = 0. (65)

Consequently,

lim
p→∞ sup

p−1|M|2≤c
E|L(M̂sym, M) − L(M̃sym, M)| = 0 (66)

and

lim
p→∞ sup

p−1|M|2≤c
|R(M̂sym, M, σ 2) − R(M̃sym, M, σ 2)| = 0. (67)

Replacing the subscript “sym” by the subscript “pro” in these assertions is valid.

Proof Recall that the adaptive affine symmetric shrinkage estimator M̂sym = M̂( Â)

with Â = [ Â1, Â2, . . . , Âk] while the oracle affine shrinkage estimator M̃sym = M̃( Ã)

with Ã = [ Ã1, Ã2, . . . , Ãk]. That (65) holds for T = L(M̃sym, M) is immediate from
(54).

Limit (55) implies that, for A = Â and for A = Ã,

lim
p→∞ sup

p−1|M|2≤c
E|r(A, τ̂ , Ŵ ) − r(A, τ, W )| = 0 (68)

and, through the respective minimizing properties of Â and Ã,

lim
p→∞ sup

p−1|M|2≤c
E|r( Â, τ̂ , Ŵ ) − r( Ã, τ, W )| = 0. (69)

Because r( Ã, τ, W ) = R(M̃sym, M, σ 2) and r( Â, τ̂ , Ŵ ) = R̂(M̂sym), (69) establishes
that limit (65) holds for T = R̂(M̂sym).
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Moreover, (68) and (69) entail

lim
p→∞ sup

p−1|M|2≤c
E|r( Â, τ, W ) − r( Ã, τ, W )| = 0. (70)

On the other hand, limit (54) gives

lim
p→∞ sup

p−1|M|2≤c
E|L(M̂( Â), M) − r( Â, τ, W )| = 0. (71)

Combining (71) with (70) yields (65) for T = L(M̂sym, M). Limit (66) is immediate
from (65) and implies (67).

Finally, because Apro ⊂ Asym, the argument just given applies as well to the
adaptive and oracle projection estimators. ��

By (66) and (67), the loss or risk of the adaptive estimator M̂sym or M̂pro converges
asymptotically to the loss or risk of the corresponding oracle estimator. Moreover, by
(65), the plug-in risk estimator R̂(M̂sym) or R̂(M̂pro) converges asymptotically to the
actual loss or risk of the corresponding adaptive estimator. Thus, it is meaningful to
compare the estimated risks of M̂sym and M̂pro, given in Theorem 2, with one another
and with the estimated risk qσ̂ 2 of the least squares estimator M̂ls = X X+Y .

4.2 Variance estimation

This section considers three estimators for the variance σ 2, giving conditions for each
under which it is L1-consistent. The first estimator is useful when n substantially
exceeds p. The other two estimators express alternative approaches available when
n = p and X = Ip.

Least squares variance estimator. Let Ê = Y − M̂ls = (In − X X+)Y be the matrix
of residuals after the least squares fit. Write Ê = [ê1, . . . , ên]′, where ê′

i denotes the

i th row of Ê . The classical least squares estimator of σ 2 is

σ̂ 2
ls = [q(n − p)]−1|Ê |2 = [q(n − p)]−1

n∑

i=1

|êi |2. (72)

Because the residual matrix Ê = (In − X X+)E , it does not depend on M . The
estimator σ̂ 2

ls is unbiased for σ 2 and has the L1-consistency property

lim
n−p→∞ sup

p−1|M|2≤c
E|σ̂ 2

ls − σ 2| = 0. (73)

First difference variance estimator. Express Y = [y1, . . . .yn]′ and M = [m1,

. . . , mn]′ in terms of their rows. When n = p, X = Ip, and row-to-row variation
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in M is expected to be slow, it is reasonable to consider the first difference variance
estimator

σ̂ 2
dif = [2q(p − 1)]−1

p∑

i=2

|yi − yi−1|2. (74)

The bias of this estimator is b(M) = ∑p
i=2 |mi − mi−1|2. Let {εp} be any sequence

such that lim p→∞ εp = 0. Then σ̂ 2
di f has the L1-consistency property

lim
p→∞ sup

p−1|M|2≤c, b(M)≤εp

E|σ̂ 2
dif − σ 2| = 0. (75)

Variance estimation based on higher-order differences of the {yi } is analogous to that
just outlined.

Smallest singular values variance estimator. When n = p, X = Ip, and M is
expected to be nearly singular, it is reasonable to consider the smallest singular values
variance estimator

σ̂ 2
ssv = p−1

s∑

k=1

l̂2
kq . (76)

Recalling (7), (12), and the definition (13) of τk , observe that

|p−1l̂2
kq − p−1l2

kq − τk |
=

∣
∣
∣
∣min|v|=1

p−1v′(PkY )′ PkYv − min|v|=1
[p−1v′(Pk M ′)Pk Mv − τkv

′v]
∣
∣
∣
∣

≤ sup
|v|=1

|v′[p−1(PkY )′ PkY − p−1(Pk M)′ Pk M − τk Iq ]v|

≤ |p−1(PkY )′ PkY − p−1(Pk M)′ Pk M − τk Iq |. (77)

By a calculation akin to (57) and (58), it follows from (76) and (77) that

lim
p→∞ sup

p−1|M|2≤c
E

∣
∣
∣
∣
∣
σ̂ 2

ssv − p−1
s∑

k=1

l2
kq − σ 2

∣
∣
∣
∣
∣
= 0. (78)

Let {εp} be any sequence such that lim p→∞ εp = 0. Then σ̂ 2
ssv is L1-consistent in the

sense that

lim
p→∞ sup

p−1|M|2≤c, p−1
∑s

k=1 l2
kq≤εp

E|σ̂ 2
ssv − σ 2| = 0. (79)

Variance estimators based on the smallest singular values of only some of the {PkY },
can be defined and analyzed similarly.
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Fig. 1 Linearly interpolated adaptive symmetric affine shrinkage and adaptive projection fits to the trivar-
iate grape yields. The {Pk } are defined in terms of a third-difference penalty basis

Theorems 3 and 4 are readily adjusted to use the consistency properties in (73) or
(75) or (79) in place of (53).

4.3 Viticultural case study

The data matrix Y in this case study is 52 × 3. Row i of Y reports the grape yields
harvested in three different years from row i of a vineyard with 52 rows. The data
is taken from Chatterjee et al. (1995). The grape yields, measured in lugs of grapes
harvested from each row, are plotted in Fig. 1, using a different plotting character for
each of the three years. Both year-to-year and row-to-row changes in viticulture affect
the observed yields. The analysis seeks to bring out patterns in the row harvest yields
that persist across years.

Let D denote a matrix with n columns such that, for any column vector x ∈ Rn , the
penalty function π(x) = |Dx |2 = x ′ D′Dx measures the roughness of x . For instance,
D may be the t-th difference operator, defined below, when the components of x are
equally spaced. If adjacent coordinates of x vary slowly in terms of the difference
operator, then the penalty π(x) is small. Construct an orthogonal penalty basis for Rn

as follows:

• Find the unit vector γ ∈ Rn that minimizes the penalty π(γ ). This smoothest vec-
tor is γn , where the {γ j : 1 ≤ j ≤ n} are the eigenvectors of D′D, ordered so that
the associated eigenvalues go from largest to smallest. In case of tied eigenvalues,
the corresponding eigenvectors are selected and ordered by imposing an additional
rule.

• Find the unit vector γ ∈ Rn that, subject to the constraint γ ⊥ γn , minimizes the
penalty π(γ ). This second smoothest vector is γn−1.

• Continue sequential constrained minimization in order to obtain the orthogonal
penalty basis matrix U = [u1, u2, . . . , un], where ui = γn−i+1.
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The columns of U are the eigenvectors of D′D, ordered from the smallest to the largest
eigenvalue of D′D.

Consider the (n − 1) × n matrix 	(n) = {δi, j } in which δi,i = 1, δi,i+1 = −1 for
every i and all other entries are zero. Define the t th difference operator Dt (n) through

D1(n) = 	(n), Dt (n) = 	(n − t + 1)Dt−1(n) for 2 ≤ t ≤ n − 1. (80)

In the present case study, where n = 52 and q = 3, we set D to be the third differ-
ence operator D3(52). The penalty function π then penalizes departures from locally
quadratic behavior and the columns of U form a discrete spline basis.

To specify the multivariate linear model and the submodels, set p = 20 and s = 12.
Define X to be the first 20 columns of U . Because these columns are orthonormal,
X+ = X ′. Under this model, the least squares estimate (60) of σ 2 is σ̂ 2

ls = 1.839, with
96 degrees of freedom. For 1 ≤ k ≤ 11, define Xk to be the first k columns of X .
Then Pk = uku′

k for 1 ≤ k ≤ 11 and P12 = X X ′ − X11 X ′
11 = ∑20

k=12 uku′
k .

Figure 1 plots the adaptive estimates of mean grape yields for each year, adding
linear interpolation between adjacent estimated row means to display their trend. The
adaptive symmetric affine shrinkage and adaptive projection estimates are similar visu-
ally. Both estimates reveal shared patterns in the fitted harvests for each of the three
years. Large dips in estimated mean grape yield occur in the outermost rows and near
row 33; and smaller fluctuations occur elsewhere.

The estimated risk R̂(M̂sym) of the adaptive symmetric affine shrinkage estima-
tor is 1.504 while the larger estimated risk R̂(M̂pro) of the adaptive projection esti-
mator is 1.833. Both estimated risks are less than one third of the estimated risk
R̂(M̂ls) = 3σ̂ 2

ls = 5.517 of the least squares estimator. The ordering of the estimated
risks agrees with the inequalities (43). Moreover, Theorem 4 provides grounds for
regarding the estimated risks as useful guides to the relative performance of the three
estimators.

In this example, the shrinkage factors {ŵk j (τ̂k + ŵk j )
−1 : 1 ≤ k ≤ 12, 1 ≤ j ≤ 3}

that define M̂sym through (16) are as follows. For j = 1, their values, as k ranges
from 1 to 12 are: 1.00, 1.00, 1.00, 0.94, 0.99, 0.96, 0.96, 0.94, 0.40, 0.76, 0.90, 0.69.
For j > 1, their values are all very near 0. Thus, M̂sym essentially replaces each PkY
in the least squares fit M̂ls = ∑12

k=1 PkY by its total least squares approximation of
rank one and then shrinks these approximations by varying amounts. The shrinkage
is greatest when k = 9 and remains notable when k = 10 or 12.

The 0–1 shrinkage factors {I [ŵk j > τ̂k] : 1 ≤ k ≤ 12, 1 ≤ j ≤ 3} that define M̂pro
through (11) display a closely related pattern. For j = 1, their values as k ranges from
1 to 12 are 1 when k �= 9 and 0 when k = 9. For j > 1, their values are all 0. Thus,
M̂pro discards P9Y from the least squares fit

∑12
k=1 PkY and replaces very other PkY

by its total least squares approximation of rank one.
Setting p = 20 in specifying X was a design choice, made outside the theory of this

paper, that mediates between sufficient richness in R(X) to represent the unknown,
possibly irregular, dependence of mean grape yield on row number and sufficient
degrees of freedom to estimate σ 2 adequately.
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5 Correlated errors

The classical multivariate linear model asserts that the rows of the error matrix E in
(1) are independent, identically distributed random vectors, each having a N (0, �)

distribution. Estimation in this model with more general covariance structure can be
mapped into the special case treated in the previous sections. The least squares esti-
mator of M is still X X+Y . Suppose that the covariance matrix � is positive definite
and known. Consider the candidate affine shrinkage estimators

M̂(A, �) =
s∑

k=1

PkY�−1/2 Ak�
1/2, (81)

where A lies in As
sym or in As

pro. The quadratic risk of M̂(A, �) is defined to be

R(M̂(A, �), M, �) = p−1E
[
tr{(M̂(A, �) − M)�−1(M̂(A, �) − M)′}

]
. (82)

Let Z = Y�−1/2, N = M�−1/2, and N̂ (A, �) = M̂(A, �)�−1/2. Then

N̂ (A, �) =
s∑

k=1

Pk Z Ak (83)

and

R(M̂(A, �), M, �) = E|N̂ (A, �) − N |2 = p−1
s∑

k=1

E|Pk Z Ak − Pk N |2. (84)

The rows of Z are independent, identically distributed random vectors, each having
a N (0, Iq) distribution. Thus, when � is known, the foregoing analysis reduces the
problem of oracle or adaptive estimation of M , under the linear model and loss function
of this section, into the problem already treated in this paper when σ 2 equals 1.

If the covariance matrix � is unknown and n is substantially greater than p, we
may replace �, in the definition of candidate estimator M̂(A, �) and in its estimated
risk, by

�̂ls = (n − p)−1Y ′(In − X X+)Y. (85)

If both p and n − p tend to infinity, arguments from Sect. 4 show that the loss and
estimated risk of M̂(A, �̂ls) converge together in probability, uniformly over all A ∈
As

sym. Hence, the loss of the adaptive estimator M̂( Âsym, �̂ls), where Âsym minimizes

the estimated risk of M̂(A, �̂ls) over all A ∈ As
sym, converges in probability to the

minimum loss achievable over the candidate estimator class. Counterparts to Theo-
rems 3 and 4 hold when the estimator of � has the L1-consistency properties used in
Beran (1999).
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