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Abstract We investigate the behaviour of Poisson point processes in the
neighbourhood of the boundary ∂K of a convex body K in R

d, d ≥ 2. Mak-
ing use of the geometry of K, we show various limit results as the intensity of
the Poisson process increases and the neighbourhood shrinks to ∂K. As we shall
see, the limit processes live on a cylinder generated by the normal bundle of
K and have intensity measures expressed in terms of the support measures of
K. We apply our limit results to a spatial version of the classical change-point
problem, in which random point patterns are considered which have different
distributions inside and outside a fixed, but unknown convex body K.

Keywords Poisson point process · Convex body · Empirical process · Support
measure · Normal cylinder · Change-set problem · Limit process

1 Introduction

Let Ψn be a Poisson point process in finite-dimensional Euclidean space R
d

which has two homogeneous components; there is a compact set K ⊂ R
d such

that the intensity of Ψn inside K is nc− while it is nc+ outside K, c+, c− ≥ 0.
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We are interested in the limit behaviour of the processes Ψn, as n → ∞, in the
neighbourhood of the boundary ∂K of K. To be more precise, we let

(∂K)ε =
{

z ∈ R
d : min

x∈∂K
‖z − x‖ ≤ ε

}

be the ε-neighbourhood of ∂K and consider the restriction of Ψn to (∂K)ε. We
call this a local Poisson process (in the neighbourhood of K). Assume now that
the neighborhood shrinks, as n → ∞, in such a way that nε → const. Since the
intensity measures of the local Poisson processes stay bounded, after a suitable
rescaling, we can expect that the rescaled local processes converge to a limit
which should be a Poisson process as well. The main questions are: Where does
this limit process live and what is its intensity measure?

In the following, we consider this situation for Poisson processes Ψn with
rather general intensity measures and we study the corresponding local proces-
ses in more detail. We concentrate on the case where K is a convex body (a
compact convex set with interior points). For the description of points in the
neighbourhood of ∂K, the generalized normal bundle Nor(K) of K is then a
natural choice. It consists of pairs (x, u), where x ∈ ∂K and u is an outer normal
vector to K at x. As we shall show, the natural space where the limit processes
of Ψn live is the normal cylinder R×Nor(K). A basic tool, both for the existence
of limit processes as well as for the form of their intensity measures, is the gen-
eralized Steiner formula which yields a decomposition of the (d-dimensional)
Lebesgue measure µd on R

d in terms of the support measures Θj(K; ·) of K,
j = 0, . . . , d − 1. The latter are finite measures on Nor(K) (see Schneider, 1993,
for these and other notions from convex geometry which we shall use).

After collecting the basic geometric notions and results in Sect. 2, we show
in Sects. 3 and 4 various limit theorems for local processes in total variation. In
these results, the intensity measures of the limit processes Ψ are generated by
the support measure Θd−1(K; ·) of K. In the final Sect. 5 we extract certain higher
order components of Ψn, which are asymptotically driven by the support mea-
sures Θj(K; ·), j = 0, . . . , d−2, and determine the rate of their standard deviation.

The concentration on convex bodies K has a long tradition in statistics (see,
for example, the paper by Ripley and Rasson, 1977). However, in the present
context it may seem to be restrictive. In fact, a recent extension of the Steiner
formula to arbitrary closed sets K ⊂ R

d (see Hug et al., 2004) would allow
to transfer some of the results to this more general setting. However, for the
limit results in Sect. 5 we need the non-negativity of Θj(K; ·) as well as the
fact that the Steiner formula yields a polynomial expansion. For closed sets K,
the support measures Θj(K; ·), j ∈ {0, . . . , d − 2}, are signed measures and the
expansion given by the Steiner formula is not of polynomial type, in general. In
fact, recent results in Heveling et al. (2004) and Hug et al. (2006) show that the
convexity of K is a natural condition, if the polynomial behaviour is important.

The motivation for this work arose from the statistical aspects of local empir-
ical processes. For random points in R, the local empirical processes in the
neighbourhood of a given point (or in the neighbourhood of ∞) form a very
old and important object of statistical theory. The theory of extremal processes
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and exceedences, estimation of end-points, behaviour of moduli of continuity
of empirical and related processes are all strongly connected with the theory
of local empirical processes (we refer to Cooke, 1979; Dekkers et al., 1989;
Resnick, 1986; Stute, 1982, among many other papers). Higher dimensional
analogues, i.e. local empirical processes for random points in R

d, but again in
the neighbourhood of a given point (see, for example, the papers by Deheuvels
and Mason, 1994, 1995; Einmahl, 1997; and Khmaladze, 1998) or in the neigh-
bourhood of ∞ (see, for example, Einmahl et al. (2001)), have been studied
relatively recently. Local empirical processes in the neighbourhood of a set K
seem to be new objects and were not studied previously, to the best of our
knowledge. However, as far as a set is an immensely richer object than a point,
the investigation of local point processes in the neighbourhood of a set must
be much more diverse and fruitful. In this paper, we hope to make a first step
towards it.

Local empirical processes play also a prominent role in the change-set
problem, a natural generalization of the classical change-point problem. Con-
sider the two-level process Ψn, introduced at the beginning of this Introduction,
and assume that the subset K, the change-set, is unknown to the statistician. If
K and K′ are two possible change-sets, the logarithm of likelihood ratio of the
process Ψn under K and K′ can be easily seen to be

Ln(K′; K) = ln
c−
c+

[Ψn(K′ \K) − Ψn(K\K′)]
−n(c− − c+)[µd(K′ \K) − µd(K\K′)] , (1)

where µd denotes the Lebesgue measure in R
d. The natural way of looking at

this likelihood ratio is to consider the change-set as a parameter of interest and
to study (1) as a process indexed by K′.

For both, parametric and semi-parametric situations, when the parameter of
interest is a vector or a function (respectively), the asymptotic theory of statisti-
cal inference is essentially connected with the local behaviour of the likelihood
ratio. It is equaly desirable to develop a similar “local” theory for the likeli-
hood ratio when the parameter is a set. The stochastic part of the likelihood
(1) is Ψn(K′\K) − Ψn(K\K′) which, as soon as the symmetric difference K′	K
satisfies K′	K ⊂ (∂K)ε, is simply another version of the local Poisson process
connected with Ψn. Therefore, the local analysis of (1) requires the analysis of
local point processes. As an application of our limit theorems, we will use a
result of Khmaladze et al. (2006), for a class of convex change-sets, to describe
in Corollary 3 the limit distribution of the random variable nµd(K̂n∆K), where
K̂n is the maximum likelihood estimator.

2 Basic definitions from geometry

Let K ⊂ R
d be a convex body, a compact convex set in d-dimensional Euclidean

space R
d with interior points. For ε > 0, let



816 E. Khmaladze, W. Weil

Kε = {z ∈ R
d\K : ‖z − p(z)‖ ≤ ε} ∪ K = K + εBd

be the outer parallel body of K. Here, Bd = B(0, 1) denotes the unit ball in R
d

and p(z) = p(∂K, z) is the metric projection of z onto the boundary ∂K of K,
that is, p(z) is the nearest point to z from ∂K. For z ∈ R

d \K this point p(z)

is unique. For almost all points z ∈ K the metric projection onto ∂K is also
unique. Namely, if we consider the set SK of points in K which have more than
one metric projection onto ∂K, then µd(SK) = 0 (see, for example, Hug et al.,
2004). SK is called the (inner) skeleton of K. In order to use the function p on
the whole space R

d, we define p(z), for z ∈ K, as the projection point which is
smallest in the lexicographic order.

For ε ≥ 0, the set

K−ε = {z ∈ K : z + εBd ⊂ K}

is the inner parallel body of K (note that K0 = K−0 = K). The set K−ε can also
be represented as K−ε = {z ∈ K : ‖z − p(z)‖ ≥ ε}. Note that the set (∂K)ε of
the Introduction is just (∂K)ε = Kε\K−ε.

The largest value r∗ of ε such that K−ε is non-empty is the inradius of K.
Note that (K−ε)ε ⊆ K, for all ε ≥ 0. The largest value r = r(K) ≥ 0, for which
(K−r)r = K, that is

K−r + rBd = K,

is called the interior reach of K. If r(K) > 0, we say that K is of positive interior
reach. If K is of interior reach r, then (K−ε)ε = K, for all 0 ≤ ε ≤ r. The set K
is of positive interior reach r if ∂K is of positive reach r in the usual sense (see
Federer, 1959). It is possible that r(K) = 0, for example if K is a polytope.

Now we introduce a local reach function for general convex bodies K. For
x ∈ ∂K, we define the local (interior) reach r(x) = r(K, x) as the largest r′ ≥ 0
such that x is in the boundary of a ball B(y, r′) (with center y and radius r′) and
B(y, r′) ⊂ K (here r(x) = 0 means that there is no such ball). We remark that the
inradius of K fulfills r∗ = maxx∈∂K r(x) whereas r(K) = minx∈∂K r(x) is, again,
the interior reach. For each z ∈ K\(∂K ∪ SK), we have ‖z − p(z)‖ < r(p(z)).

Let Sd−1 be the unit sphere in R
d. For a point x ∈ ∂K, a unit vector u ∈ Sd−1

is an outer normal of K at x, if there is some z ∈ R
d \K, such that x = p(z)

and u = (z − p(z))/‖z − p(z)‖. The (generalized) normal bundle Nor(K) of K
is then defined as

Nor(K) = {(x, u) : x ∈ ∂K, u is an outer normal of K at x}.

Clearly, Nor(K) ⊂ ∂K × Sd−1. The mapping z 
→ (p(z), u(z)) with u(z) =
(z − p(z))/‖z − p(z)‖ maps R

d\K onto the normal bundle Nor(K). In general,
the outer normal u at a point x ∈ ∂K is not unique. In case of uniqueness,
x is called a regular boundary point of K and the outer normal is denoted
by u(x). It is well known that almost every boundary point (with respect to
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the (d − 1)-dimensional Hausdorff measure Hd−1 on ∂K) is regular. If x has
positive local interior reach r(x) > 0, then x is regular and we define u(x) =
u(z) = (p(z) − z)/‖z − p(z)‖, for any z ∈ K\(∂K ∪ SK) such that x = p(z). In
this way, the mapping z 
→ (p(z), u(z)) extends to K\(∂K ∪ SK). The unit vector
−u(z) = (z − p(z))/‖z − p(z)‖ may be called an inner normal. We remark that
this also provides us with an alternative representation of the inner skeleton
SK, namely as SK = {x − r(x)u(x) : x ∈ ∂K, r(x) > 0}. Although there may be
regular boundary points x with r(x) = 0, we have

Hd−1({x ∈ ∂K : x regular}) = Hd−1({x ∈ ∂K : r(x) > 0}) = Hd−1(∂K)

(see Schneider, 1993). Also, we denote by d(z) = d(∂K, z) = ‖z−p(z)‖, z ∈ R
d,

the distance of z from ∂K.
We use these notions now to introduce local outer and inner parallel sets.

For a Borel set A ⊂ ∂K × Sd−1 and ε > 0, let

Aε = {z ∈ Kε\K : (p(z), u(z)) ∈ A}

and

A−ε = {z ∈ K\(K−ε ∪ SK) : (p(z), u(z)) ∈ A}.

For completeness, we also define A0 as the projection of A onto the first coordi-
nate. For small ε > 0, we interpret the sets Aε and A−ε as small neighbourhoods
of the subset A ⊂ ∂K×Sd−1 (see an example of Aε in Fig. 1). In the next section,
we will consider the behaviour of a point process on these and various other
small shells around a set A and therefore we need to clarify the behaviour of
the Lebesgue measure on the sets Aε and A−ε.

It is well known and easy to see that, for a Borel set A ⊂ ∂K × Sd−1, the sets
Aε and A−ε are Borel sets in R

d and that A 
→ µd(Aε) and A 
→ µd(A−ε) define
measures on ∂K × Sd−1. A local version of the classical Steiner formula (see
Schneider, 1993) shows that µd(Aε) is a polynomial in ε ≥ 0 of degree at most d,

µd(Aε) = 1
d

d∑
j=1

(
d
j

)
εjΘd−j(K; A), (2)

where the coefficients Θi(K; A) (abbreviated in the next sections to Θi(A))
define finite Borel measures Θ0(K; ·), . . . , Θd−1(K; ·) on ∂K × Sd−1 (and con-
centrated on Nor(K)). They are called the support measures of K and carry
most of the geometric information about K. In particular, the projection of
Θd−1(K; ·) onto ∂K is the Hausdorff measure Hd−1 on ∂K. We refer to Schnei-
der (1993), for further properties of support measures and their relations to
curvature measures and surface area measures of convex bodies. Extensions of
these measures to more general set classes (like finite unions of convex sets and
others) have been studied by various authors (Hug, 1999; Hug and Last, 2000;
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Fig. 1 The set K, on the left, is a semicircle in R
2. The shaded set is Aε . The bold part of the

boundary is the projection A0 of A onto ∂K. The polygonal line in the right figure describes the
normal bundle Nor(K) and the bold parts represent the subset A. Here, ∂K has been identified with
the interval [0, 0] on the x-axis and the unit sphere S1 with the interval [0, 2π ] on the y-axis

Rataj and Zähle, 2001; Schneider, 1993; Zähle, 1986), a quite general result was
recently obtained in Hug et al. (2004).

For a body K with interior reach r, one can show that, for 0 ≤ ε ≤ r, µd(A−ε)

has the same polynomial devselopment (2) with εj replaced by (−1) j−1εj. For
arbitrary convex bodies K, (2) generalizes in the form of an integral involving
the local interior reach function. The following theorem gives the most general
version of such a Steiner formula for convex bodies. It has been proved (in more
general form, for closed sets) in Hug et al. (2004), a special case was obtained
earlier by Sangwine-Yager (1994).

Theorem 1 For a convex body K and a µd-integrable real function f on R
d, we

have

∫

Rd
f (z) µd(dz) =

d∑
j=1

(
d − 1
j − 1

) ∫

Nor(K)

∫ ∞

−r(x)

t j−1f (x + tu) dt Θd−j(K; d(x, u)).

In particular, we get

µd(A−ε) =
d∑

j=1

(
d − 1
j − 1

)∫

A

∫ 0

− min(r(x),ε)
t j−1dt Θd−j(K; d(x, u))

= 1
d

d∑
j=1

(
d
j

)
(−1) j−1

∫

A
(min(r(x), ε)) jΘd−j(K; d(x, u)). (3)
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The support measure Θd−1(K; ·) is concentrated on the pairs (x, u), where x
is a regular boundary point of K (see Schneider, 1993, Theorem 2.2.4). As we
already mentioned, Hd−1-almost all points x ∈ ∂K are regular, and thus the
mapping N : ∂K → Nor(K), x 
→ (x, u(x)), is defined almost everywhere and
is measurable. As it turns out, Θd−1(K; ·) is the image measure of the curva-
ture measure Cd−1(K; ·) (which equals the restriction of Hd−1 to ∂K) under N
(conversely, Cd−1(K; ·) is the projection of Θd−1(K; ·) onto the first coordinate).
More generally, the curvature measure Cd−j(K; ·) is the projection of Θd−j(K; ·)
onto the first coordinate, j = 1, . . . , d. Hence, if r(x) > 0, then x is a regular
boundary point and therefore

∫

Nor(K)

∫ 0

−r(x)

t j−1f (x + tu) dt Θd−j(K; d(x, u))

=
∫

∂K

∫ 0

−r(x)

t j−1f (x + tu(x)) dt C c
d−j(K; dx), j = 1, . . . , d,

where C c
d−j(K; ·) denotes the absolutely continuous part of Cd−j(K; ·) with

respect to Cd−1(K; ·).
There is a useful relationship between the support measures of K and of Kt,

t ∈ R. In order to describe this relationship, we consider the homeomorphism
Tt : R

d × Sd−1 → R
d × Sd−1, defined by Tt(x, u) = (x + tu, u), and let TtA

denote the image of a Borel set A ⊂ R
d × Sd−1 (TtA is again a Borel set). For

t ≥ −r(K), Tt maps Nor(K) one-to-one onto Nor(Kt).

Lemma 1 For a Borel set A ⊂ Nor(K), t ≥ −r(K) and j = 1, . . . , d, we have

Θd−j(Kt; TtA) =
d∑

i=j

(
d − j
i − j

)
ti−jΘd−i(K; A) (4)

and

Θd−j(K; A) =
d∑

i=j

(
d − j
i − j

)
(−t)i−jΘd−i(Kt; TtA). (5)

Proof For t ≥ 0, (4) is a simple consequence of (2) (see Theorem 4.2.2 in
Schneider, 1993) and (5) follows from (4) by inversion.

It remains to consider the case where K has positive interior reach r(K) and
−r(K) ≤ t < 0. Then, we have (Kt)−t = K and T−t(TtA) = A. Therefore, the
Steiner formula (2) applied to Kt and TtA yields

µd(At) = 1
d

d∑
j=1

(
d
j

)
(−1) j−1tjΘd−j(Kt; TtA).
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We consider Aδ with δ > 0. According to (2), µd(Aδ) has an expansion in terms
of Θd−j(K; ·), but also in terms of Θd−j(Kt; ·), j = 1, . . . , d. Namely,

µd(Aδ) = 1
d

d∑
j=1

(
d
j

)
δjΘd−j(K; A)

= 1
d

d∑
j=1

(
d
j

)
[(−t + δ) j − (−t) j]Θd−j(Kt; TtA).

Comparing coefficients of δj yields (5), and (4) follows by inversion. ��
For general t ≤ 0, (4) extends in form of an integral relation,

Θd−j(Kt; TtA) =
d∑

i=j

(
d − j
i − j

)
ti−j

∫

A
1{y:t≥−r(y)}(x)Θd−i(K; d(x, u)),

as follows from Corollary 4.4 in Hug et al. (2004). Of course, both sides vanish
for t < −r∗.

For j = 1 and t ≥ 0, (4) yields

Θd−1(Kt; TtA) =
d∑

i=1

(
d − 1
i − 1

)
ti−1Θd−i(K; A). (6)

Choosing d different values t0, . . . , td−1, we can invert this system of linear
equations and obtain Θd−i(K; A), for i = 1, . . . , d, as a linear combination of
Θd−1(Kt0 ; Tt0 A), . . . , Θd−1(Ktd−1 ; Ttd−1 A). In view of our later applications, we
will give now explicit expressions for such inversion formulas for equally spaced
t0, . . . , td−1.

For a function t 
→ ϕ(t), the operator ∆s = ∆1
s denotes the (first) forward

difference with step s,

∆sϕ(t) = ϕ(t + s) − ϕ(t),

and ∆k
s = ∆s(∆

k−1
s ), k = 2, 3, . . . (as well as ∆0

s ϕ(t) = ϕ(t)). Let Sm
n denote the

Stirling numbers of the first kind. Recall that they are defined as the coefficients
of the representation

x(n) = x(x − 1) · · · (x − n + 1) =
n∑

m=0

Sm
n xm

(see, for example, Hildebrand, 1986, Sect. 1.2 and p. 116).
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Lemma 2 For a Borel set A ⊂ Nor(K), s > 0 and i = 1, . . . , d, we have

(
d − 1
i − 1

)
Θd−i(K; A) = 1

si−1

d−1∑
k=i−1

1
k!Si−1

k ∆k
s Θd−1(Kr; TrA)|r=0 (7)

and

1
d

(
d
i

)
Θd−i(K; A) = 1

si−1

d∑
k=i

1
k!Si

k∆k
s µd(Ar)|r=0. (8)

Proof From (6), we see that Θd−1(Kt; TtA) is a polynomial in t, for t ≥ 0.
According to Newton’s formula,

Θd−1(Kt; TtA) =
d−1∑
k=0

1
k!

(
t
s

)(k)

∆k
s Θd−1(Kr; TrA)|r=0.

Let us replace the factorial moments by the sums using Stirling numbers,

(
t
s

)(k)

=
k∑

i=0

Si
k

(
t
s

)i

,

and change the order of summation. This leads to

Θd−1(Kt; TtA) =
d−1∑
i=0

(
t
s

)i d−1∑
k=i

1
k!Si

k∆k
s Θd−1(Kr; TrA)|r=0. (9)

Equating coefficients of ti in (6) and (9), we obtain (7). Similarly, the Steiner
formula for µd(At) gives the coefficients of ti explicitly while Newton’s formula
for it uses coefficients of factorial moments t(k−1). Expressing the latter through
ti and Stirling numbers leads to (8). ��

We remark that (7) and (8) can also be written in the form

Θd−i(K; A) = 1
si−1

d−1∑
m=0

amiΘd−1(Kms; TmsA) , i = 1, . . . , d, (10)

and

Θd−i(K; A) = 1
si−1

d−1∑
m=0

ãmiµd(Ams) , i = 1, . . . , d,
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with certain coefficients ami, ãmi, which can be given explicitly e.g.

ami =
d−1∑

k=max(i,m)

(−1)k−m
(

k
m

)
Si

k

k! .

In this paper, we will mostly be interested in point processes concentrated
on the neighbourhood KεT \K−εT , T > 0, of ∂K and their limit behaviour as
the neighbourhood shrinks, with ε → 0. To describe the space where the lim-
iting process will live we need to rescale the width of KεT \K−εT by ε−1. This
stretching will actually add an extra coordinate to Nor(K) and we will obtain the
cylinder ΣT = [−T, T] × Nor(K). Since we intend to let T also be variable, we
work with the infinite cylinder Σ = R × Nor(K) and let Σ+ = [0, ∞) × Nor(K)

and Σ− = (−∞, 0] × Nor(K). For ε > 0, we consider the map τε : R
d\SK → Σ ,

defined as

τεz =
(

d(z)

ε
, p(z), u(z)

)
if z ∈ R

d\K,

and as

τεz =
(

−d(z)

ε
, p(z), u(z)

)
if z ∈ K\SK.

τε is injective and maps the outside of K onto Σ+. On the other side, the image
τε(K\SK) ⊂ Σ− is bounded and in general not of rectangular form. Figure 2
shows the effect of τε on inside and outside deformations of ∂K in a simple
situation (where only regular boundary points are involved).

The mapping τε is measurable. On R
d\K, measurability follows simply from

continuity; on K\SK, it can be seen as follows. The set reg(K) of regular bound-
ary points is a Borel set (see Schneider, 1993, or Hug et al., 2004). The metric

Fig. 2 Here K is a “chopped”
circle in R

2. The picture shows
small inside and outside
deformations of ∂K along
with their images under τε .
Since only regular boundary
points are involved, the
projections on the cylinder
R × ∂K are shown



Local empirical processes 823

projection p(K, ·) is continuous on R
d \K. The interior reach function r(·) is

measurable (see, for example, Sangwine-Yager, 1994). Hence

K∗ = {z ∈ (Rd\K) ∪ ∂K : p(z) ∈ reg(K), 0 ≤ d(z) < r(p(z))}

is measurable (K∗ is the interior of K, without the inner skeleton SK, folded to
the outside). The mapping ϕ : z 
→ 2p(z) − z is also continuous on R

d\K and
one-to-one from K∗ to K\SK. Since τε is continuous on R

d\K, it is measurable
on K∗. On K\SK, τε is the composition of ϕ−1, τε (restricted to K∗) and the
reflection (t, x, u) 
→ (−t, x, u), which proves measurability of τε.

We now introduce the measure µ(ε) on Σ as the image of the Lebesgue
measure µd under τε. For rectangular Borel sets [t1, t2] × A in Σ , with t2 ≥ t1 ≥
−r(K), we thus get

µ(ε)([t1, t2] × A) = µd({z ∈ Kεt2 \Kεt1 : (p(z), u(z)) ∈ A})

= 1
d

d∑
j=1

(
d
j

)
[(εt2) j − (εt1)

j]Θd−j(K; A). (11)

In general, µ(ε) is supported by a set Σ(ε) ⊂ Σ which depends on ε and is no
longer of rectangular form,

Σ(ε) = Σ+ ∪ τε(K\SK)

= Σ+ ∪
{(

−d(z)

ε
, p(z), u(z)

)
: z ∈ K\SK

}
.

The analogue of (11), for t2 = 0 and arbitrary t1 = −t < 0, can be obtained
directly from (3) and we get

µ(ε)([−t, 0] × A) = 1
d

d∑
j=1

(
d
j

)
(−1) j−1

∫

A
(min{tε, r(x)}) j Θc

d−j(K; d(x, u)).

In the rest of the paper we will shorten the notation for support measures
from Θd−j(K; ·) to Θd−j(·).

3 Poisson processes near the boundary

Suppose Ψn is a Poisson process on R
d with intensity measure Λn. We consider

Ψn in a neighbourhood of ∂K which shrinks to ∂K as ε → 0, and study the limit
behaviour of this point process as n → ∞ and ε → 0 simultaneously. In this
section, we prove first order limit theorems in the total variation norm. In the
final section, we will be interested in components of Ψn which are asymptotically
driven by each of the support measures of K.
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Although most of the following results can be proved under suitable con-
ditions on the decay of the singular part (with respect to µd) of Λn near the
boundary of K, we want to simplify the presentation and assume that Λn is
absolutely continuous in the following. Hence

Λn(·) =
∫

(·)
nfndµd, (12)

with density nfn, where fn is integrable on every bounded Borel subset in R
d.

We additionally assume asymptotic L1-convergence of fn near ∂K, in the sense
that there are measurable functions f+, f− ≥ 0 on Nor(K) such that

1
ε

∫

KεT\K
|fn(z) − f+(p(z), u(z))| µd(dz) → 0,

1
ε

∫

K\K−εT

|fn(z) − f−(p(z), u(z))| µd(dz) → 0.
(13)

for each T > 0, as n → ∞, ε → 0, with nε → 1. As a simple example of such a
sequence {Ψn}, n ∈ N, we may consider the process with intensity measure

EΨn(C) = nc+µd(C\K) + nc−µd(C ∩ K) , (14)

where c+, c− ≥ 0 and C ⊂ R
d varies through the Borel sets.

From the above assumptions and the integrability of fn it follows that
∫

KεT\K
f+(p(z), u(z)) µd(dz) → 0 as ε → 0.

Applying Theorem 1, we see that
∫

KεT\K
f+(p(z), u(z)) µd(dz)

= 1
d

d∑
j=1

(
d
j

)
(εT) j

∫

Nor(K)

f+(x, u)Θd−j(d(x, u)), (15)

and therefore all integrals on the right-hand side of (15) are finite. The same
conclusion can be obtained for the function f−.

Now let Ψn,ε be the image of Ψn under τε and let Λn,ε be its intensity measure.
Ψn,ε is a Poisson process on Σ . For t > 0 and a Borel set A ⊂ Nor(K), we have

Ψn,ε([0, t] × A) = Ψn(Atε)

and

Ψn,ε([−t, 0] × A) = Ψn(A−tε).
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In order to prove the convergence Φn → Φ in total variation, for Poisson
processes Φn, Φ on Σ with finite intensity measures, it is sufficient that the
intensity measures converge in total variation (see, for example, Reiss, 1993,
(3.8)). However, since Λn,ε(Σ) may be infinite, we will have to work with local
variants of Ψn,ε. Therefore, we say that Ψn,ε converges in locally total variation
(LTV) to a Poisson process Ψ on Σ , if the distribution of Ψn,ε(·∩ΣT) converges
in total variation to the distribution of Ψ (· ∩ ΣT), for all T > 0.

Theorem 2 Let K be a convex body and {Ψn}, n ∈ N, a sequence of Poisson pro-
cesses fulfilling (12) and (13). If nε → 1, as n → ∞, ε → 0, then Ψn,ε converges
in LTV to a Poisson process Ψ on Σ with intensity measure Λ = EΨ given by

Λ(B) =
∫

Nor(K)

∫ ∞

−∞
(
1B∩Σ+(t, x, u)f+(x, u)

+1B∩Σ−(t, x, u)f−(x, u)
)

dt Θd−1(d(x, u)), B ⊂ Σ .

Proof Let T > 0 be given. It is sufficient to show that Λn,ε(·∩ΣT) → Λ(·∩ΣT),
in total variation.

For a Borel set B ⊂ ΣT ∩ Σ+, we combine (15) with

∣∣∣∣
∫

τ−1
ε (B)

nfn(z) µd(dz) − Λ(B)

∣∣∣∣

≤
∣∣∣∣
∫

τ−1
ε (B)

nfn(z) µd(dz) − 1
ε

∫

τ−1
ε (B)

f+(p(z), u(z)) µd(dz)

∣∣∣∣

+
∣∣∣∣
1
ε

∫

τ−1
ε (B)

f+(p(z), u(z)) µd(dz)

−
∫

Nor(K)

∫ T

0
1B(t, x, u)f+(x, u) dt Θd−1(d(x, u))

∣∣∣∣∣ .

The first summand is asymptotically bounded by

∣∣∣∣
1
ε

∫

τ−1
ε (B)

fn(z) µd(dz) − 1
ε

∫

τ−1
ε (B)

f+(p(z), u(z)) µd(dz)

∣∣∣∣

≤ 1
ε

∫

KεT\K
|fn(z) − f+(p(z), u(z))| µd(dz),

and therefore tends to 0, uniformly in B, by assumption (13).
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For the second summand, we use Theorem 1 and get

∫

τ−1
ε (B)

f+(p(z), u(z)) µd(dz)

=
d∑

j=1

(
d − 1
j − 1

) ∫

Nor(K)

∫ εT

0
1B(ε−1t, x, u)t j−1f+(x, u) dt Θd−j(d(x, u))

=
d∑

j=1

(
d − 1
j − 1

)
εj

∫

Nor(K)

∫ T

0
1B(t, x, u)t j−1f+(x, u) dt Θd−j(d(x, u)),

and hence

∣∣∣∣
1
ε

∫

τ−1
ε (B)

f+(p(z), u(z)) µd(dz)

−
∫

Nor(K)

∫ T

0
1B(t, x, u)f+(x, u) dt Θd−1(d(x, u))

∣∣∣∣

≤
d∑

j=2

(
d − 1
j − 1

)
εj−1

∫

Nor(K)

∫ T

0
1B(t, x, u)t j−1f+(x, u) dt Θd−j(d(x, u))

≤ 1
d

d∑
j=2

(
d
j

)
εj−1Tj

∫

Nor(K)

f+(x, u)Θd−j(d(x, u)).

Since all integrals of f+ are finite, the second summand also tends to 0, uniformly
in B, as ε → 0.

The case B ⊂ ΣT ∩ Σ− is treated analogously, with f+ replaced by f−. The
only difference here is that Theorem 1 gives us

1
ε

∫

τ−1
ε (B)

f−(p(z), u(z)) µd(dz)

=
d∑

j=1

(
d − 1
j − 1

)∫

Nor(K)

∫ 0

− min{εT,r(x)}
1B(ε−1t, x, u)t j−1

×f−(x, u) dt Θd−j(d(x, u))

=
d∑

j=1

(
d − 1
j − 1

)
εj

∫

Nor(K)

∫ 0

− min{T,ε−1r(x)}
1B(t, x, u)t j−1

×f−(x, u) dt Θd−j(d(x, u)),
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and hence
∣∣∣∣
1
ε

∫

τ−1
ε (B)

f−(p(z), u(z)) µd(dz)

−
∫

Nor(K)

∫ 0

−T
1B(t, x, u)f−(x, u) dt Θd−1(d(x, u))

∣∣∣∣∣

≤
∫

Nor(K)

∫ − min{T,ε−1r(x)}

−T
1B(t, x, u)f−(x, u) dt Θd−1(d(x, u))

+
∣∣∣∣∣∣

d∑
j=2

(
d − 1
j − 1

)
εj−1

∫

Nor(K)

∫ 0

− min{T,ε−1r(x)}
1B(t, x, u)t j−1

×f−(x, u) dt Θd−j(d(x, u))

∣∣∣∣∣∣
.

The first summand tends to 0 by monotone convergence (uniformly in B). For
the second sum we can use the same estimation as above,

d∑
j=2

(
d − 1
j − 1

)
εj−1

∣∣∣∣∣
∫

Nor(K)

∫ 0

− min{T,ε−1r(x)}
1B(t, x, u)t j−1f−(x, u) dt Θd−j(d(x, u))

∣∣∣∣∣

≤ 1
d

d∑
j=2

(
d
j

)
εj−1Tj

∫

Nor(K)

f−(x, u)Θd−j(d(x, u))

and, again, since all integrals on the right hand side are finite, the sum tends to
0 as ε → 0. ��
Corollary 1 Let K be a convex body and {Ψn}, n ∈ N, a sequence of Pois-
son processes with intensity measure (14). Define the measure ν on Borel sets
B ⊂ Σ as

ν(B) =
∫∫

1B(t, x, u) dt Θd−1(d(x, u)).

If nε → 1, as n → ∞, ε → 0, then Ψn,ε converges in LTV to a Poisson process Ψ

on Σ with intensity measure

Λ(B) = c+ν(B ∩ Σ+) + c−ν(B ∩ Σ−), B ⊂ Σ .

Since Θd−1 is supported by the regular boundary points x ∈ ∂K, the limit pro-
cesses Ψ in Theorem 2 and Corollary 1 actually live on the cylinder R × reg(K)

which we can think of as being embedded into Σ by (t, x) 
→ (t, x, u(x)). The
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question may arise whether it would have been sufficient to consider corre-
sponding limit theorems on the cylinder R × ∂K and, consequently, start with
functions f+ and f− depending only on x or on u (recall that the normal u is
unique for x ∈ reg(K)). The reason why this would not be enough and why we
need to consider R × Nor(K) is that we want to describe the asymptotic behav-
iour of point processes near the whole boundary of the convex body K. This not
only involves points z /∈ ∂K with p(z) ∈ reg(K) but also points z which project
onto irregular boundary points. Although those points z will not contribute
to the intensity measure of the limit process Ψ , they may very well affect the
existence of Ψ and hence the convergence of Ψn has to be established on these
parts of R

d\∂K as well. This is guaranteed by the integrability assumption (13).
Let B̃ be a class of the Borel σ -algebra on Σ and consider the set-indexed

stochastic processes

(Ψn,ε(B))B∈B̃ and (Ψ (B))B∈B̃.

Then Theorem 2 shows that the distribution of (Ψn,ε(B))B∈B̃ converges in total
variation to the distribution of (Ψ (B))B∈B̃, provided B̃ consists of suitably
bounded sets in Σ . However, if we consider the processes (Ψn,ε(B))B∈B̃ε

on
classes which now may change with ε, the convergence in total variation will
not be true anymore, even if the classes B̃ε converge to the limiting class B̃ in
quite a strong sense.

There is, however, a simple and practically convenient way to avoid this
complication.

Corollary 2 Let K be a convex body and {Ψn}, n ∈ N, a sequence of Poisson
processes fulfilling (12) and (13). For each ε > 0, let Bε be a class of Borel sets in
ΣT , T > 0. Then, the total variation between the distributions of the processes

(Ψn,ε(B))B∈Bε
and (Ψ (B))B∈Bε

converges to 0, as n → ∞, ε → 0 with nε → 1.

Corollary 2 allows us to state an analogue of an important theorem of
Ibragimov and Has’minski (see Ibragimov and Has’minskii, 1981, Chap. I,
Theorem 0.1). This theorem, loosely speaking, states the following. Let {P(n)

θ , θ ∈
Θ}, n ∈ N, be a sequence of families of distributions indexed by a finite-
dimensional parameter θ (taking values in an open set Θ). If the logarithm of
the likelihood ratio

Ln(θ + εnu, θ) = ln
dP

(n)
θ+εnu

dP
(n)
θ

,
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as a process in u, with some normalization factor εn → 0, converges in distribu-
tion to some process ξ(u), then the ML estimator θ̂ fulfills

1
εn

(θ̂ − θ)
d−→ û, û = arg max ξ(u).

Thus, we have a description of the limiting random variable for the normalized
discrepancy θ̂ − θ (although the distribution of û may not be easy to evaluate).

We consider the version of the change-set problem, as described in the Intro-
duction (see (1)), in which case the parameter is a set K′. Let C be a class
of convex bodies in R

d, which we interpret as the class of all apriori possible
change-sets, and, for given K ∈ C and all ε > 0, let Cε = Cε(K) denote the
subclass consisting of the sets K′ ∈ C such that γ s(K′, K) = µd(K′	K) ≤ ε.
Since the symmetric difference metric γ s and the Hausdorff metric generate
the same topology on C (see, for example, Shephard and Webster, 1965), it can
be seen that

Cε = {C ∈ C : K−cε ⊂ C ⊂ Kcε}

with some constant c (which may depend on K).
Let K̂n be the ML estimator for the “true” change-set K,

K̂n = arg maxK′∈C Ln(K′; K), (16)

where Ln is given by (1). The rate of convergence of K̂n to K is very sensitive
to the “richness” of the class C and, more specifically, to its local “richness” at
K. We will assume that the class C is a locally simple VC-class at K, that is, C
is totally bounded (with respect to γ s) and the covering number of Cεt satisfies
the inequality

Nδε(Cεt) ≤ c
(

t
δ

)m

(17)

for some m ∈ N and for all t ≥ 0, δ > 0, and all sufficiently small ε > 0 and with
some constant c independent of ε, δ and t (but maybe dependent on K and C).
One can show (see Khmaladze et al. 2006, Corollary 2.1) that the assumption
(17) guarantees that γ s(K̂n, K) is of order 1/n in probability.

Note that the covering number of a neighbourhood of a point in a finite
dimensional (m dimensional) space satisfies the inequality (17). Therefore, clas-
ses of sets which can be continuously labeled by a finite dimensional parameter
will also satisfy this inequality. As an example one can consider the class of all
polytopes in some fixed bounded subset of R

d with k < ∞ edges (or at most
k edges) or the class of all ellipsoids in a given bounded set. One can make a
step further and consider all intersections of no more than l < ∞ polytopes
and ellipsoids from the above classes (that is, one can intersect polytopes with
ellipsoids), etc.
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Notice that the class C of all convex bodies (in some fixed bounded subset
of R

d) does not fulfill the conditions above. Although this class is uniformly
bounded, its covering number increases with δ much faster (see, for example,
Bronstein, 1976), and consequently K̂n converges to K with a rate much slower
than 1/n. Therefore, for this class, the MLE will asymptotically lie much further
away from K than the range of Poisson convergence of the likelihood process.

Also notice that the statement on the rate of γ s(K̂n, K) is not specific to the
particular form of the change-set problem: under the same condition (17) the
rate of convergence of γ s(K̂n, K) can again be shown to be 1/n in probability
in the second change-set problem (see the Introduction). We would only need
the condition that the score function ln(dP1/dP0) is bounded (or truncated on
some fixed level), see Khmaladze et al. (2006).

In order to make use of the previous theorems, we relate now C to the cyl-
inder Σ . Namely, we choose T > 0 such for all sufficiently small ε > 0, we
have

τε(K′	K) ⊂ ΣT ,

for all K′ ∈ Cε(K), and we denote by Dε the corresponding class of sets,

Dε = {τε(K′	K) : K′ ∈ CεT(K)}.

In the following corollary, Ψ is a Poisson process on Σ with intensity measure
Λ as defined in Corollary 1.

Corollary 3 (Ibragimov-Has’minskii theorem for the change-set problem) For
the change-set problem described in (1), let the class C of all possible change-
sets be totally bounded with respect to γ s. Let K̂n be the ML estimator of the
change-set defined by (16), let K ∈ C denote the true change-set and let

D̂ε = arg maxD∈Dε

[
ln

c−
c+

· Ψ (D) − Λ(D)

]
.

If C is a locally simple VC-class at K then, as n → ∞, ε → 0 with nε → 1, the
total variation between the distributions of nγ s(K̂n, K) and Λ(D̂ε) converges to 0.

Proof As we said, see Khmaladze et al. (2006), Sect. 2, for details, the local
entropy condition (17) implies that, for arbitrarily small δ > 0, there exists T
large enough such that P{γ s(K̂n, K) > T/n} ≤ δ or

P

{
max

K′∈CT/n
Ln(K′, K) = max

K′∈C
Ln(K′, K)

}
≥ 1 − δ.

In other words, for

K̂T,n = arg maxK′∈CT/n Ln(K′; K),
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we have

P

{
γ s(K̂n, K) = γ s(K̂T,n, K)

}
≥ P

{
K̂n = K̂T,n

}
≥ 1 − δ.

On the other hand, for any x ≤ T,

P

{
γ s(K̂T,n, K) ≤ x

n

}
= P

{
max

K′∈Cx/n
Ln(K′, K) = max

K′∈CT/n
Ln(K′, K)

}
,

and both maxima are measurable functionals of the process Ψn,ε, ε = T/n, on
Dε. Therefore, γ s(K̂T,n, K) is also a measurable functional of this process and
Corollary 2 implies the result. ��

4 Unbounded perturbations of K

Theorem 2 and Corollary 1 yield instruments to control the convergence of Ψn
on the symmetric difference K′	K, as long as the collection of sets K′ is uni-
formly bounded, in the sense that K−εT ⊂ K′ ⊂ KεT , for all K′ and some T > 0.
However, one can envisage applications where it is interesting and useful to
consider small but not necessarily bounded deviations from K. In Theorem 3
we will show that we indeed may also consider classes of unbounded sets K′. For
this purpose, we make use of the fact that perturbations of K can, in a natural
way, be described by functions on Nor(K). Namely, for a function g on Nor(K),
we call

gsub = {(t, x, u) ∈ Σ+ : 0 ≤ t ≤ g(x, u)} ∪ {(t, x, u) ∈ Σ− : g(x, u) ≤ t ≤ 0}

the subgraph of g and we define K′ = K(g) as

K′ = cl{z ∈ R
d\K : τ1(z) ∈ gsub}

∪ cl{z ∈ K\(∂K ∪ SK) : τ1(z) /∈ gsub}

(here cl A denotes the closure of a set A). If, for example, g is continuous, then
K′ is compact and fulfills

K′ \K = {z ∈ R
d : 0 < d(z) ≤ g(p(z), u(z))} (18)

and

K\K′ = {z ∈ K\SK : 0 < d(z) ≤ −g(p(z), u(z))}. (19)

Moreover, if we replace g by εg, ε > 0, then K′ is close to K if ε is small and g
has appropriate integrability properties. More generally, if g1, g2 belong to the
subspace of measurable functions g, for which the integrals
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∫

Nor(K)

|g(x, u)|jΘd−j(d(x, u)), j = 1, . . . , d,

are finite, and K1 = K(εg1) and K2 = K(εg2) are corresponding perturbed sets,
then using Theorem 1 one can show that there is asymptotic isometry between
the classes of subgraphs and the corresponding functions given by

1
ε

γ s(K1, K2) =
∫

Nor(K)

|g1(x, u) − g2(x, u))|Θd−1(d(x, u)) + O(ε),

for ε → 0; recall that γ s(K1, K2) = µd(K1	K2) is the symmetric difference
metric. In general K′ = K(g) will not be convex and, conversely, not every
convex body K′ near to K can be described in this way. Nevertheless, we get
a reasonably large class of sets which seems sufficient for many purposes. This
would not be the case if we only consider functions g on ∂K in (18) and (19).
For example, if K is a polytope, the boundary of K′ would then have to be of
spherical shape on all regions outside K which project onto the same point of
k-faces of K, 0 ≤ k ≤ d − 2. For a similar reason, it is not sufficient to consider
only functions g on Sd−1. For such functions, the corresponding sets K′ would
have flat boundary parts on all regions which project onto the same (d−1)-face
of K.

In order now to extend Theorem 2 to subgraphs of not necessarily bounded
functions g on Nor(K), we will need additional assumptions on the growth of fn
(with respect to f+ and f−), namely

sup
n∈N

sup
z∈Rd\K

|fn(z) − f+(p(z), u(z))| < ∞,

sup
n∈N

sup
z∈K\SK

|fn(z) − f−(p(z), u(z))| < ∞.
(20)

Of course, both conditions are trivially fulfilled for the process with intensity
measure (14).

Theorem 3 Let K be a convex body and {Ψn}, n ∈ N, a sequence of Poisson pro-
cesses fulfilling (12), (13) and (20). Let g be a measurable function on Nor(K),
such that

∫

Nor(K)

max(f±(x, u), 1)|g(x, u)|j Θd−j(d(x, u)) < ∞, j = 1, . . . , d. (21)

Then, the distribution of Ψn,ε(· ∩ gsub) converges in total variation to the distribu-
tion of Ψ (· ∩ gsub), as n → ∞, ε → 0 with nε → 1.

Proof We have to show that

|Λn,ε(B) − Λ(B)| → 0,

uniformly in B ⊂ gsub.
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We first prove that (13) and (20) imply

1
ε

∫

τ−1
ε (gsub∩Σ+)

|fn(z) − f+(p(z), u(z))| µd(dz) → 0 (22)

(and similarly

1
ε

∫

τ−1
ε (gsub∩Σ−)

|fn(z) − f−(p(z), u(z))| µd(dz) → 0).

In fact, we have for T > 0,

1
ε

∫

τ−1
ε (gsub∩Σ+)

|fn(z) − f+(p(z), u(z))| µd(dz)

≤ 1
ε

∫

KεT\K
|fn(z) − f+(p(z), u(z))| µd(dz)

+ c
ε

∫
1{εT < d(z) ≤ εg(p(z), u(z))} µd(dz),

where

c = sup
n∈N

sup
z∈Rd\K

|fn(z) − f+(p(z), u(z))|.

By Theorem 1, the second integral on the right-hand side equals

c
ε

∫
1{εT < d(z) ≤ εg(p(z), u(z))} µd(dz)

= c
ε

d∑
j=1

(
d − 1
j − 1

)∫

Nor(K)

∫ εg(x,u)

min(εT,εg(x,u))

t j−1 dt Θd−j(d(x, u))

≤ c
d

d∑
j=1

(
d
j

)
εj−1

∫

g>T
(g(x, u)) j Θd−j(d(x, u))

and hence can be made arbitrarily small for T large enough, as follows from
the integrability condition (21). For this T, the first integral tends to 0, as
n → ∞, ε → 0 with nε → 1 (here we use (13)). The second assertion above
follows similarly.

We now proceed as in the proof of Theorem 2. We get for B ⊂ gsub ∩ Σ+,

|Λn,ε(B) − Λ(B)| =
∣∣∣∣

∫

τ−1
ε (B)

nfn(z) µd(dz) − Λ(B)

∣∣∣∣
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which is asymptotically bounded from above by

1
ε

∫

τ−1
ε (gsub)

|fn(z) − f+(p(z), u(z))| µd(dz)

+
∣∣∣∣
1
ε

∫

τ−1
ε (gsub)

f+(p(z), u(z)) µd(dz)

−
∫

Nor(K)

∫ g(x,u)

0
f+(x, u) dt Θd−1(d(x, u))

∣∣∣∣∣ .

The first summand tends to 0, by (22). The second summand equals

d∑
j=2

(
d − 1
j − 1

)
εj−1

∫

Nor(K)

∫ g(x,u)

0
t j−1f+(x, u) dt Θd−j(d(x, u))

≤ 1
d

d∑
j=2

(
d
j

)
εj−1

∫

Nor(K)

(g(x, u)) jf+(x, u)Θd−j(d(x, u))

= c′ε,

in view of (21).
The case B ⊂ gsub ∩ Σ− follows the same path and can be left to the reader.

��
For two functions on Nor(K), g1 ≥ 0 and g2 ≤ 0, the union (g1)sub ∪

(g2)sub does not have to be a subgraph of any function (on Nor(K)). However,
Theorem 3 immediately generalizes to finite collections of processes Ψn,ε(· ∩
(gi)sub), i = 1, . . . , m, and hence a limit theorem for

Ψnε

(
· ∩

(
m⋃

i=1

(gi)sub

))

follows.
Note that for g ≤ 0 the integrability condition (21) can be weakened, namely

we can replace the integration over Nor(K) with respect to Θd−j by an integra-
tion over the regular boundary points with respect to the absolutely continuous
part of the curvature measure Cd−j.

5 Higher order components and consistent estimators for support measures

Let us now extract higher order components of Ψn near ∂K which are asymp-
totically driven by the curvature measures Θd−j, j = 2, . . . , d, and consider limit
theorems for them. A first possibility to do this is connected with the simple
idea of thinning. This requires to change the limit behaviour of n and ε so as
to have more points to choose from. Results in this direction can be found in
Khmaladze and Weil (2005).
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A second, perhaps, more effective possibility to extract curvature driven
components of Ψn is associated with the representation (7) and uses narrow
shells of width ε near ∂K, at some distance s apart. If we choose ε ∼ 1/n, we
will be able to use Theorem 2 on each shell. But then it is necessary to keep
s fixed. Although general results similar to Theorem 2 would be possible here
(but would require some technical assumptions), we concentrate in Theorem 4
on processes Ψn which fulfill (14) and consider only the situation outside K.

The idea behind our construction is the following. For any fixed s > 0 and
m = 0, . . . , d − 1, we use the Poisson process Ψn on the shell Kms+ε \Kms to
define a Poisson process Ψn,m,ε on Nor(K),

Ψn,m,ε(A) =
∞∑

i=1

1{0 ≤ d(Zi) − ms ≤ ε, (p(Zi), u(Zi)) ∈ A}.

The intensity measure of this process is

nc+µd({z ∈ R
d\K : 0 ≤ d(Zi) − ms ≤ ε, (p(Zi), u(Zi)) ∈ A})

= nc+µd(Ams+ε\Ams) = nc+
d

d∑
j=1

(
d
j

)
εjΘd−j(Kms; TmsA)

= nc+εΘd−1(Kms; TmsA) + o(1)

as n → ∞, nε → 1. But (10) connects the measures Θd−1(Kms; TmsA), m =
0, . . . , d − 1, with the lower order support measures Θd−i(A). Therefore, if we
replace Θd−1(Kms; TmsA) on the right-hand side of (10) by Ψn,m,ε(A), we obtain
the random measure:

Ψ (i)
n,ε = 1

si−1

d−1∑
m=0

amiΨn,m,ε

on Nor(K) with measure nc+εΘd−i(K; ·) + o(1) as the expected value.

Theorem 4 Let K be a convex body, s > 0, i ∈ {1, . . . , d} and {Ψn}, n ∈ N,
a sequence of Poisson processes with intensity measure (14). If nε → 1, as
n → ∞, ε → 0 and s is fixed, then Ψ

(i)
n,ε converges in total variation to a random

measure Ψ (i) on Nor(K) with expectation measure Λ(i) given by

Λ(i) = c+Θd−i(K; ·).

Proof The map τε maps R
d\K to Σ+. For m = 0, . . . , d − 1, let

τε,m : z 
→
(

d(Kms, z)

ε
, p(Kms, z), u(Kms, z)

)
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be the corresponding map from R
d\Kms to Σ

(m)
+ = [0, ∞) × Nor(Kms) (which

can be identified with [ms, ∞) × Nor(K)). Here τε,0 = τε and Σ
(0)
+ = Σ+.

Applying Corollary 1 to the process Ψn, restricted to Kms+ε\Kms and mapped
to Σ

(m)
+ by τε,m, we obtain a process Ψ̃n,m,ε which converges in total vari-

ation to a Poisson process Ψ̃m on [0, 1] × Nor(Kms), with intensity measure
c+µ1 × Θd−1(Kms; ·). Moreover, Ψ̃0, . . . , Ψ̃d−1 are independent. Making use of
the above-mentioned identification, the projection of Ψ̃n,m,ε onto Nor(K) yields
Ψn,m,ε and we denote the corresponding projection of Ψ̃m by Ψm. Thus the Pois-
son processes Ψn,m,ε converge in total variation to the Poisson processes Ψm,
m = 0, . . . , d − 1, the latter are independent and they have intensity measure
c+Θd−1(Kms; ·). The random measure Ψ

(i)
n,ε then converges in total variation to

the random measure

Ψ (i) = 1
si−1

∑d−1
m=0 amiΨm,

and (10) shows that the latter has expectation measure c+Θd−i(K; ·). ��
The curvature driven processes Ψ

(k)
n,ε , k = 1, . . . , d, involve asymptotically

small shells (of width ε → 0) taken at multiple distances ms, m = 0, . . . , d − 1,
for some fixed s, and the rate we considered was ε ∼ 1/n. This rate, however, is
in no sense obligatory, necessary or “most natural” in problems concerning the
support measures of ∂K. If, for example, we consider the problem of estimation
of Θd−k, k = 1, . . . , d, we will see that much slower rates of ε will appear and
it is possible and interesting to consider even fixed ε. Below we clarify this
situation and derive the mean square rates of appropriate estimators of Θd−k,
k = 1, . . . , d. Again, we assume that Ψn has intensity measure (14) and, in order
to simplify the formulas slightly, we choose c+ = 1. In the following, we use the
notation ε ∝ an, if ε/an → const, 0 < const < ∞, as n → ∞. Also we write
ε = ∞(an), if ε/an → ∞ and we use the abbreviation

∆k
εϕ(A0) = ∆k

εϕ(As) |s=0,

for measures ϕ on R
d. As an estimator of the support measure Θd−k(K; A), we

consider first

∆k
εΨn(A0)

nεkck

with

ck = 1
d

(
d
k

)
∆k

1 tk |t=0= (d − 1)!
(d − k)! .

This estimator is simple and of a clear and intuitive nature.
In our first statement, we consider a class A of subsets of Nor(K). We say that

A has finite bracketing entropy, if for any δ > 0 there are finitely many pairs of
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subsets (Bi,δ , Bi,δ), i = 1, . . . , Nδ , called brackets and not necessarily belonging
to A, such that any A ∈ A can be placed in some bracket, i.e. for any A there is
a pair (Bi,δ , Bi,δ) such that Bi,δ ⊂ A ⊂ Bi,δ and µd(Bi,δ\Bi,δ) ≤ δ.

Theorem 5 Let K be a convex body and {Ψn}, n ∈ N, a sequence of Poisson
processes with intensity measure (14). Let A be a class of Borel subsets of
Nor(K) with finite bracketing entropy. For k ∈ {1, . . . , d − 1}, assume that ε → 0
and nε2k−1 = ∞(ln n). Then

sup
A∈A

∣∣∣∣∣
∆k

εΨn(A0)

nεkck
− Θd−k(K; A)

∣∣∣∣∣ → 0 a.s.

For k = d, the condition ε → 0 is not necessary.

Proof ∆k
εΨn(As) |s=0 is a linear combination of increments

∆εΨn(Ajε) = Ψn(A( j+1)ε) − Ψn(Ajε)

with j = 0, . . . , k − 1. Each of these increments is a Poisson random variable
with expectation n∆εµd(Ajε). We first show that, for any A,

∆εΨn(Ajε) − n∆εµd(Ajε)

nεk
→ 0 a.s. (23)

Indeed, from the estimation of the tail of the Poisson distribution we obtain

P({|∆εΨn(Ajε) − n∆εµd(Ajε)| > cnεk}) ≤ exp

(
− c2nε2k

2∆εµd(Ajε)

)
.

The increment ∆εµd(Ajε) is bounded from above by the volume of K( j+1)ε \
Kjε, hence, for all sufficiently small ε, it is not greater than εϑ , for a suitable
constant ϑ . Therefore,

exp

(
− c2nε2k

2∆εµd(Ajε)

)
≤ exp

(
− c2

2ϑ
nε2k−1

)
≤ exp

(
− c2

2ϑ
βn ln n

)

with

βn = nε2k−1

ln n
→ ∞.

Then,

P({|∆εΨn(Ajε) − n∆εµd(Ajε)| > cnεk}) ≤ exp

(
−βnc2

2ϑ
ln n

)
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for any fixed c, and (23) follows from the Borel-Cantelli Lemma. However,
since both A 
→ ∆εΨn(Ajε) and A 
→ n∆εµd(Ajε) are positive measures on
Nor(K), we can use our assumption of finite bracketing entropy and hence the
Glivenko-Cantelli statement also follows for A (see van der Vaart and Wellner,
1996). Therefore, we proved that

sup
A∈A

∣∣∣∣∣
∆k

εΨn(A0) − n∆k
εµd(A0)

nεk

∣∣∣∣∣ → 0 a.s.

Now consider

∆k
εµd(As)|s=0

εk
− ckΘd−k(K; A) . (24)

According to the Steiner formula (2), if k = d, this difference is equal to 0 for
any fixed ε and all A and the statement follows without any further requirements
on ε. If k < d, then (24) is of order not larger than εΘd−k−1(K; A) uniformly in
A and, hence, tends to 0 as ε → 0. ��

Concerning the rate of convergence of our estimators, we will see that it
depends not only on k but also on the nature of the set A, for a fixed k. Namely,
for given A and k ≤ d − 1, let l ∈ {1, . . . , d} be such that Θd−l(K; ·) is the first
support measure (in decreasing order) which is non-zero on A,

Θd−j(K; A) = 0, j = 1, . . . , l − 1, Θd−l(K; A) �= 0, (25)

and let Θd−m(K; ·), k + 1 ≤ m ≤ d, be the first support measure “after”
Θd−k(K; ·) which is non-zero on A,

Θd−j(K; A) = 0, j = k + 1, . . . , m − 1, Θd−m(K; A) �= 0. (26)

In the following, we only consider the case where l exists, i.e. not all support
measures of K vanish on A. However, (26) need not be satisfied. Note that the
case l = m is possible (and implies Θd−k(K; A) = 0, i.e. our estimator tends to
0). It may also happen that l < k < m and still Θd−k(K; A) = 0. The case l = 1
and m = k + 1 typically occurs if the boundary ∂K of K is smooth. It can be
viewed as the worst case for the rate of convergence. Cases of sets A with l �= 1
and m �= k + 1 occur, for example, if K is a polytope.

Theorem 6 Let K be a convex body and {Ψn}, n ∈ N, a sequence of Poisson
processes with intensity measure (14). Let A ⊂ Nor(K) be a Borel set such that
(25) is satisfied.

If also (26) holds with m ∈ {k + 1, . . . , d}, then, for

ε = εn ∝ n−1/(2m−l),
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we have

n(m−k)/(2m−l)
E

[
∆k

εΨn(A0)

nεkck
− Θd−k(K; A)

]2

≤ C , (27)

for some constant C and all n, so that the rate of convergence of the mean square
error is n−(m−k)/(2m−l). For any other choice of εn, the left-hand side of (27) tends
to ∞.

If (26) is not fulfilled for any m ∈ {k + 1, . . . , d}, then we have, uniformly in
0 ≤ ε ≤ const,

nε2k−l
E

[
∆k

εΨn(A0)

nεkck
− Θd−k(K; A)

]2

≤ C ,

so that the choice ε = const is possible and leads to the fastest rate n−1 of conver-
gence for the mean square error.

Proof Let us decompose the expectation in (27) into variance and square of
bias,

E

[
∆k

εΨn(A0)

nεkck
− Θd−k(K; A)

]2

= E

[
∆k

εΨn(A0)

nεkck
− ∆k

εµd(A0)

εkck

]2

+
[

∆k
εµd(A0)

εkck
− Θd−k(K; A)

]2

.

(28)

The variance in (28) is the linear combination of variances

E

[
∆εΨn(Ajε) − n∆εµd(Ajε)

nεkck

]2

= n∆εµd(Ajε)

n2ε2kc2
k

calculated on each individual shell A( j+1)ε \Ajε, j = 0, . . . , d − 1. Under our
assumptions on the set A, we have

n∆εµd(Ajε)

n2ε2kc2
k

∝ εl

nε2k
(29)

and the variance in (28) is of the same order. At the same time, we have, under
our conditions on A,

∆k
εµd(A0)

εkck
− Θd−k(K; A) ∝ εm−k. (30)
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The optimal rate is obtained if the orders on the right-hand sides of (29) and
(30) are the same, hence

n−1εl−2k = ε2(m−k).

This yields

εn ∝ n−1/(2m−l)

and gives us the rate

εl

nε2k
∝ ε2(m−k)

n ∝ n−2(m−k)/(2m−l).

If ε = o(n−1/(2m−l)) or ε = ∞(n−(m−l)/(2m−l)) either the variance or the bias
will become ∞(n−(m−l)/(2m−l)) and the mean square error, normalized by n

m−l
2m−l ,

will diverge to ∞.
If (26) is not fulfilled for any m ∈ {k + 1, . . . , d}, then

∆k
εµd(A0)

εkck
− Θd−k(K; A) = 0 ,

which means that there is no bias term, and the rate is determined by the
variance alone. In this case, the mean square error is of order n−1εl−2k. ��

We see that for typical sets A where the support measure Θd−1(K; A) as well
as all lower order support measures are non-zero, the rate of convergence of

our estimator is only n
1

2k+1 . This situation, however, can be easily improved by
using estimators based on (8), namely

Θ̂d−k(A) = 1
nεk

d∑
j=k

b̃jk∆
j
εΨn(A0).

For example, for d = 3 we obtain

Θ̂0(A) = 3
2

∆3
εΨn(A0)

nε3 ,

Θ̂1(A) = 1
2

∆2
εΨn(A0)

nε2 − 9
2

∆3
εΨn(A0)

nε2 ,

Θ̂2(A) = ∆εΨn(A0)

nε
− 1

2
∆2

εΨn(A0)

nε
+ 4

∆3
εΨn(A0)

nε
.

For these estimators, we get immediately the following statement.
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Theorem 7 Let K be a convex body and {Ψn}, n ∈ N, a sequence of Poisson
processes with intensity measure (14). Let A ⊂ Nor(K) be a Borel set such that
(25) is satisfied. Then we have, for any bounded ε = εn,

nε2k−l
E

[
Θ̂d−k(A) − Θd−k(A)

]2 ≤ C ,

for some constant C and all n. Hence, under these assumptions, the rate of
convergence of Θ̃d−k(A) in the mean square sense is n−1.

We see that for small but fixed ε the uniform rate of convergence over A is
now achieved. This rate is essentially higher than that of ∆k

εΨn(A0)/nεkck. For
ε → 0 (the case we are still interested in), the rate of convergence of Θ̂d−k(A)

may still be different, for different types of A, but the differences have been
clarified now.
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