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Abstract In the framework of the game-theoretic probability of Shafer and
Vovk it is of basic importance to construct an explicit strategy weakly forcing the
strong law of large numbers in the bounded forecasting game. We present a sim-
ple finite-memory strategy based on the past average of Reality’s moves, which
weakly forces the strong law of large numbers with the convergence rate of
O(

√
log n/n). Our proof is very simple compared to a corresponding measure-

theoretic result of Azuma (The Tôhoku Mathematical Journal, 19, 357–367,
1967) on bounded martingale differences and this illustrates effectiveness of
game-theoretic approach. We also discuss one-sided protocols and extension of
results to linear protocols in general dimension.

Keywords Azuma-Hoeffding-Bennett inequality · Capital process ·
Game-theoretic probability · Large deviation

1 Introduction

The book by Shafer and Vovk (2001) established the whole new field of game-
theoretic probability and finance. Their framework provides an attractive alter-
native foundation of probability theory. Compared to the conventional measure
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theoretic probability, the game theoretic probability treats the sets of measure
zero in a very explicit way when proving various probabilistic laws, such as
the strong law of large numbers. In a game-theoretic proof, we can explicitly
describe the behavior of the paths on a set of measure zero, whereas in measure-
theoretic proofs the sets of measure zero are often simply ignored. This feature
of game-theoretic probability is well illustrated in the explicit construction of
Skeptic’s strategy forcing SLLN in Chap. 3 of Shafer and Vovk (2001).

However the strategy given in Chap. 3 of Shafer and Vovk (2001), which we
call a mixture ε-strategy in this paper, is not yet satisfactory, in the sense that it
requires combination of infinite number of “accounts” and it needs to keep all
the past moves of Reality in memory. In fact in Sect. 3.5 of their book, Shafer
and Vovk pose the question of required memory for strategies forcing strong
law of large numbers (SLLN). In a forthcoming paper we will study the problem
of various ways of mixing ε-strategies in a somewhat more general form than
in Chap. 3 of Shafer and Vovk (2001).

In this paper we prove that a very simple single strategy, based only on the
past average of Reality’s moves is weakly forcing SLLN. Furthermore it weakly
forces SLLN with the convergence rate of O(

√
log n/n). In this sense, our result

is a substantial improvement over the mixture ε-strategy of Shafer and Vovk.
Since ε-strategies are used as essential building blocks for the “defensive fore-
casting” (Vovk et al. 2005b) the performance of defensive forecasting might be
improved by incorporating our simple strategy.

Our thinking was very much influenced by the detailed analysis by Takeuchi
(2004b) and Chap. 5 of Takeuchi (2004a) of the optimum strategy of Skeptic
in the games, which are favorable for Skeptic. We should also mention that the
intuition behind our strategy is already discussed several times throughout the
book by Shafer and Vovk (see e.g. Sect. 5.2). Our contribution is in proving that
the strategy based on the past average of Reality’s moves is actually weakly
forcing SLLN.

In this paper we only consider weakly forcing by a strategy. A strategy weakly
forcing an event E can be transformed to a strategy forcing E as in Lemma 3.1
of Shafer and Vovk (2001). We do not present anything new for this step of the
argument. An extension of the present paper to unbounded games is presented
in Kumon et al. (2006).

The organization of this paper is as follows. In Sect. 2 we formulate the
bounded forecasting game and motivate the strategy based on the past aver-
age of Reality’s moves as an approximately optimum ε-strategy. In Sect. 3 we
prove that our strategy is weakly forcing SLLN with the convergence rate of
O(

√
log n/n). In Sect. 4 we consider the one-sided protocol and prove that the

one-sided version of our strategy weakly forces the one-sided SLLN with the
same order. In Sect. 5 we treat a multivariate extension to linear protocols.

2 Approximately optimum single ε-strategy for the bounded forecasting game

Consider the bounded forecasting game in Sect. 3.2 of Shafer and Vovk (2001).
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Bounded Forecasting Game
Protocol:

K0 := 1.
FOR n = 1, 2, . . . :

Skeptic announces Mn ∈ R.
Reality announces xn ∈ [−1, 1].
Kn := Kn−1 + Mnxn.

END FOR

For a fixed ε, |ε| < 1, the ε-strategy sets Mn = εKn−1. Under this strategy
Skeptic’s capital process Kn is written as Kn = ∏n

i=1(1 + εxi) or

log Kn =
n∑

i=1

log(1 + εxi).

For sufficiently small |ε|, log Kn is approximated as

log Kn � ε

n∑

i=1

xi − 1
2
ε2

n∑

i=1

x2
i .

The right-hand side is maximized by taking

ε =
∑n

i=1 xi
∑n

i=1 x2
i

.

In particular in the fair-coin game, where xn is restricted as xn = ±1, approx-
imately optimum ε is given as

ε = x̄n = 1
n

n∑

i=1

xi.

Actually, as shown by Takeuchi (2004b), it is easy to check that ε = x̄n exactly
maximizes

∏n
i=1(1 + εxi) for the case of the fair-coin game. Recently Kumon

et al. (2005) give a detailed analysis of Bayesian strategies for the biased-coin
games, which include the strategy ε = x̄n as a special case.

Of course, the above approximately optimum ε is chosen in hindsight, i.e.,
we can choose optimum ε after seeing the moves x1, . . . , xn. However it sug-
gests choosing Mn based on the past average x̄n−1 of Reality’s moves. Therefore
consider a strategy P = Pc

Mn = cx̄n−1Kn−1. (1)

In the next section we prove that for 0 < c ≤ 1/2 this strategy is weakly forcing
SLLN. The restriction 0 < c ≤ 1/2 is just for convenience for the proof and in
Kumon et al. (2005) we consider c = 1 for biased-coin games.
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Compared to a single fixed ε-strategy Mn = εKn−1 or the mixture ε-strategy
in Chap. 3 of Shafer and Vovk (2001), letting ε = cx̄n−1 depend on x̄n−1 seems
to be reasonable from the viewpoint of effectiveness of Skeptic’s strategy. The
basic reason is that as x̄n−1 deviates more from the origin, Skeptic should try
to exploit this bias in Reality’s moves by betting a larger amount. Clearly this
reasoning is shaky because for each round Skeptic has to move first and Reality
can decide her move after seeing Skeptic’s move. However in the next sec-
tion we show that the strategy in (1) is indeed weakly forcing SLLN with the
convergence rate of O(

√
log n/n).

3 Weakly forcing SLLN by past averages

In this section we prove the following result.

Theorem 1 In the bounded forecasting game, if Skeptic uses the strategy (1) with
0 < c ≤ 1/2, then lim supn Kn = ∞ for each path ξ = x1x2 · · · of Reality’s moves
such that

lim sup
n

√
n|x̄n|√
log n

> 1. (2)

This theorem states that the strategy (1) weakly forces that x̄n converge
to 0 with the convergence rate of O(

√
log n/n). Therefore it is much stronger

than the mixture ε-strategy in Chap. 3 of Shafer and Vovk (2001), which only
forces convergence to 0. A corresponding measure theoretic result was stated in
Theorem 1 of Azuma (1967) as discussed in Remark 2 at the end of this section.
The rest of this section is devoted to a proof of Theorem 1.

By comparing 1, 1/2, 1/3, . . . , and the integral of 1/x we have at first

log(n + 1) =
∫ n+1

1

1
x

dx ≤ 1 + 1
2

+ 1
3

+ · · · + 1
n

≤ 1 +
∫ n

1

1
x

dx = 1 + log n.

Next with sn = x1 + · · · + xn we have the relation

sn−1xn = (x1 + · · · + xn−1)xn = 1
2
(s2

n − s2
n−1 − x2

n). (3)

Now by denoting ci = c/(i − 1), the capital process Kn = KP
n of (1) is written

with the convention c1 = 0, s0 = 0 as

Kn =
n∏

i=1

(1 + ci−1si−1xi).

As in Chap. 3 of Shafer and Vovk (2001) we use

log(1 + t) ≥ t − t2, |t| ≤ 1/2.



Strong law for bounded forecasting game 805

Then for 0 < c ≤ 1/2 we have

log Kn =
n∑

i=1

log(1 + cisi−1xi)

≥
n∑

i=1

cisi−1xi −
n∑

i=1

c2
i s2

i−1x2
i

≥
n∑

i=1

cisi−1xi −
n∑

i=1

c2
i s2

i−1.

By substituting (3) into the right-hand side, we can further bound log Kn from
below as

log Kn ≥ 1
2

n∑

i=1

ci(s2
i − s2

i−1 − x2
i ) −

n∑

i=1

c2
i s2

i−1

= 1
2

n∑

i=1

ci(s2
i − s2

i−1 − 2cis2
i−1) − 1

2

n∑

i=1

cix2
i

≥ 1
2

n∑

i=1

ci(s2
i − (1 + 2ci)s2

i−1) − 1
2

n∑

i=1

ci

= 1
2

n−1∑

i=1

[ci − ci+1(1 + 2ci+1)]s2
i + cn

2
s2

n − 1
2

n∑

i=1

ci.

In the right-hand side for 2 ≤ i ≤ n − 1 we have

ci − ci+1(1 + 2ci+1) = c(i − 2c(i − 1))

i2(i − 1)
> 0

if 0 < c ≤ 1/2, and

n∑

i=1

ci < c(1 + log(n − 1)).

Thus log Kn is bounded from below as

log Kn ≥ −1
2

c(1 + 2c)s2
1 + c

2(n − 1)
s2

n − c
2
(1 + log(n − 1))

≥ c
n
2

x̄2
n − c

2
(3 + log n)

= c
2

log n
(

nx̄2
n

log n
− 1

)

− 3
2

c.
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Now if lim supn
√

n|x̄n|/√log n > 1, then lim supn log Kn = +∞ because
log n ↑ ∞. This proves the theorem.

Remark 1 As noted before, the same line of the proof will establish the result
for c ≤ 1 − ε for any ε > 0. It can be obtained by using

log(1 + t) ≥ t − 1
2

t2 − 1
3

( |t|
1 + t

)3

, |t| < 1,

which is also given in Chap. 15 of Shafer and Vovk (2001). Then the resulting
third order terms decrease log Kn at most with the magnitude n|x̄n|3, which is
dominated by the second order term nx̄2

n.

Remark 2 In the framework of the conventional measure theoretic probability,
a strong law of large numbers analogous to Theorem 3.1 can be proved us-
ing Azuma-Hoeffding-Bennett inequality (Appendix A.7 of Vovk et al. 2005a,
Sect. 2.4 of Dembo and Zeitouni 1998, Azuma 1967, Hoeffding 1963,
Bennett 1962). Let X1, X2, . . . be a sequence of martingale differences such
that |Xn| ≤ 1, ∀n. Then for any ε > 0

P(|X̄n| ≥ ε) ≤ 2 exp(−nε2/2).

Fix an arbitrary α > 1/2. Then for any ε > 0

∑

n

P(|X̄n| ≥ ε(log n)α/
√

n) ≤
∑

n

exp

(

−ε2

2
(log n)2α

)

< ∞.

Therefore by Borel-Cantelli
√

n|X̄n|/(log n)α → 0 almost surely. Actually
Theorem 1 of Azuma (1967) states the following stronger result

lim sup
n→∞

√
nx̄n√
log n

≤ √
2 a.s. (4)

Although our Theorem 1 is better in the constant factor of
√

2, Azuma’s result
(4) and our result (2) are virtually the same. However we want to emphasize
that our game theoretic proof requires much less mathematical background
than the measure theoretic proof. Also see the factor of

√
3/2 in the one-sided

version of our result in Theorem 2 below.
We also add a comment on the relation between “forcing” in the game the-

oretic framework and “a.s.” in the measure theoretic probability. If x1, x2, . . .
is regarded as a martingale difference sequence in a probabilistic model and if
there exist a Skeptic’s strategy for which lim sup Kn = ∞ for any of the path
ξ = x1x2 · · · belonging to a set A, then P(ξ ∈ A) = 0.
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4 One-sided protocol

In this section we consider a one-sided bounded forecasting game where Mn
is restricted to be nonnegative (Mn ≥ 0), i.e. Skeptic is only allowed to buy
tickets. We also consider the restriction Mn ≤ 0. In Chap. 3 of Shafer and Vovk,
weak forcing of SLLN is proved by combining positive and negative one-sided
strategies, whereas in the previous section we proved that a single strategy
P = Pc weakly forces SLLN. Therefore it is of interest to investigate whether
a one-sided version of our strategy weakly forces a one-sided SLLN. We adopt
the same notations as Sect. 5 of Kumon et al. (2005), where one-sided protocols
for biased-coin games are studied.

For the positive one-sided case consider the strategy P+ with

Mn = cx̄+
n−1Kn−1, x̄+

n−1 = max(x̄n−1, 0).

Similarly we consider a negative one-sided strategy P− with Mn = −cx̄−
n−1Kn−1,

x̄−
n−1 = max(−x̄n−1, 0).

For these protocols we have the following theorem.

Theorem 2 If Skeptic uses the strategy P+ with 0 < c ≤ 1/2, then lim supn Kn =
∞ for each path ξ = x1x2 · · · of Reality’s moves such that

lim sup
n

√
nx̄n√
log n

>

√
3
2

.

Similarly if Skeptic uses the strategy P− with 0 < c ≤ 1/2, then lim supn Kn = ∞
for each path ξ = x1x2 . . . of Reality’s moves such that lim infn

√
nx̄n/

√
log n <

−√
3/2.

The rest of this section is devoted to a proof of this theorem for P+. If the x̄n
are eventually all nonnegative, then the behavior of the capital process KP

n and
KP+

n are asymptotically equivalent except for a constant factor reflecting some
initial segment of Reality’s path ξ . Then the theorem follows from Theorem 1.
On the other hand if the x̄n are eventually all negative, then KP+

n stays constant
and Theorem 2 holds trivially. Therefore we only need to consider the case that
the x̄n change sign infinitely often. Note that at time n when the x̄n change the
sign, the overshoot is bounded as

|x̄n| ≤ 1/n.

We consider capital process after a sufficiently large time n0 such that x̄n0 � 0,
and proceed to divide the sequence {x̄n} into the following two types of blocks.
For n0 ≤ k ≤ l − 1, consider a block {k, . . . , l − 1}. We call it a nonnegative block
if

x̄k−1 < 0, x̄k ≥ 0, x̄k+1 ≥ 0, . . . , x̄l−1 ≥ 0, x̄l < 0.
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Similarly we call it a negative block if

x̄k−1 ≥ 0, x̄k < 0, x̄k+1 < 0, . . . , x̄l−1 < 0, x̄l ≥ 0.

By definition, negative and nonnegative blocks are alternating.
For a nonnegative block

KP+
l = KP+

k

l∏

i=k+1

(1 + cisi−1xi) (5)

whereas for a negative block KP+
l = KP+

k . Taking the logarithm of (5) we can
bound it from below as

log KP+
l − log KP+

k =
l∑

i=k+1

log(1 + cisi−1xi)

≥ 1
2

l−1∑

i=k+1

[ci − ci+1(1 + 2ci+1)]s2
i + cl

2
s2

l

− ck+1(1 + 2ck+1)

2
s2

k − 1
2

l∑

i=k+1

ci

≥ −ck+1(1 + 2ck+1)

2
s2

k − c
2

(
1
k

+ log
l
k

)

.

In the above, we used the approximation formula

1
m

+ 1
m + 1

+ · · · + 1
n

≤
∫ n

m

dx
x

+ 1
m

= log
n
m

+ 1
m

.

Thus we obtain

log KP+
l − log KP+

k ≥ − c
k

− c
2

log
l
k

+ O(k−2). (6)

Now starting at n0, we consider adding the right-hand side of (6) for nonneg-
ative blocks and 0 = log KP+

l − log KP+
k for negative blocks. Then after passing

sufficiently many blocks, log KP+
l −log KP+

k behave as (6) during half number of
the entire blocks. Therefore at the beginning nk of the last nonnegative block,
we have

log KP+
nk

− log KP+
n0

≥ − c
2

log
nk

n0
− c

4
log

nk

n0
+ O(1) = −3c

4
log

nk

n0
+ O(1). (7)



Strong law for bounded forecasting game 809

To finish the proof of Theorem 2, let n be in a middle of the last nonnegative
block {nk, . . . nl−1}. Then as above, we have

log KP+
n − log KP+

nk
≥ cn

2
x̄2

n − c
nk

− c
2

log
n
nk

. (8)

Adding (7) and (8) we obtain

log KP+
n − log KP+

n0
≥ cn

2
x̄2

n − 3c
4

log n + 3c
4

log n0 + O(1).

Thus we can bound log KP+
n from below as

log KP+
n ≥ cn

2
x̄2

n − 3c
4

log n + O(1) = c
2

log n
(

nx̄2
n

log n
− 3

2

)

+ O(1).

This completes the proof of Theorem 2.

5 Multivariate linear protocol

In this section we generalize Theorem 1 to multivariate linear protocols. See
Sect. 3 of Vovk et al. (2005c) and Sect. 6 of Takemura and Suzuki (2005) for
discussions of linear protocols. Since the following generalization works for any
dimension, including the case of infinite dimension, we assume that Skeptic and
Reality choose elements from a Hilbert space H. The inner product of x, y ∈ H
is denoted by x ·y and the norm of x ∈ H is denoted by ‖x‖ = (x ·x)1/2. Actually
we do not specifically use properties of infinite dimensional space and readers
may just think of H as a finite dimensional Euclidean space Rm. For example
the spectral resolution below corresponds to the spectral decomposition of a
nonnegative definite matrix.

Let X ⊂ H denote the move space of Reality, and assume that X is bounded.
Then by rescaling we can say without loss of generality that X is contained in
the unit ball

X ⊂ {x ∈ H | ‖x‖ ≤ 1}.

In this case the closed convex hull co(X ) of X is contained in the unit ball.
As in Takemura and Suzuki (2005) we also assume that the origin 0 belongs
to co(X ). Note also that the average x̄n of Reality’s moves always belongs to
co(X ) and hence ‖x̄n‖ ≤ 1. In order to be clear, we write out the multivariate
linear protocol.

Bounded Linear Game in General Dimension
Protocol:

K0 := 1.
FOR n = 1, 2, . . . :
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Skeptic announces Mn ∈ H.
Reality announces xn ∈ X .
Kn := Kn−1 + Mn · xn.

END FOR

As a natural multivariate generalization of the strategy Pc given by (1), we
consider the strategy P = PA

Mn = Ax̄n−1Kn−1, (9)

where A is a self-adjoint operator in H. Then A has the spectral resolution

A =
∫ ∞

−∞
λE(dλ), (10)

where E denotes the real spectral measure of A, or the resolution of the identity
corresponding to A. Let σ(A) denote the spectrum of A (i.e. the support of E)
and let

c0 = inf{λ | λ ∈ σ(A)}, c1 = sup{λ | λ ∈ σ(A)}.

In the finite dimensional case, c0 and c1 correspond to the smallest and the
largest eigenvalues of the matrix A, respectively.

Now we have the following generalization of Theorem 1.

Theorem 3 In the bounded linear protocol game in general dimension, if Skeptic
uses the strategy (9) with 0 < c0 ≤ c1 ≤ 1/2, then lim supn Kn = ∞ for each path
ξ = x1x2 · · · of Reality’s moves such that

lim sup
n

√
n‖x̄n‖√
log n

>

√
c1

c0
.

Proof In the expression

Kn =
n∏

i=1

(1 + Ax̄i−1 · xi), (11)

we have

Ax̄i−1 · xi =
∫ c1

c0

λ(E(dλ)x̄i−1 · xi) = ȳi−1 · yi, (12)

with

ȳi−1 =
∫ c1

c0

√
λE(dλ)x̄i−1, yi =

∫ c1

c0

√
λE(dλ)xi.
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By the Schwarz’s inequality,

|Ax̄i−1 · xi| ≤ ‖ȳi−1‖‖yi‖ ≤ c1‖x̄i−1‖‖xi‖ ≤ 1
2

.

Hence as in Sect. 3, we can bound log Kn from below as

log Kn ≥
n∑

i=1

diti−1 · yi − c1

n∑

i=1

d2
i ‖ti−1‖2, (13)

where ti−1 = iȳi−1, di = 1/(i − 1). Then by using the relation

tn−1 · yn = 1
2
(‖tn‖2 − ‖tn−1‖2 − ‖yn‖2),

we can further bound log Kn from below as follows.

log Kn ≥ 1
2

n−1∑

i=1

(di − di+1(1 + 2c1di+1))‖ti‖2 + dn

2
‖tn‖2 − c1

2

n∑

i=1

di

≥ 1
2(n − 1)

‖tn‖2 − c1

2
(3 + log(n − 1))

≥ n
2
‖ȳn‖2 − c1

2
log n − 3

2
c1

= c1

2
log n

(
n‖ȳn‖2

c1 log n
− 1

)

− 3
2

c1. (14)

It follows that if lim supn
√

n‖ȳn‖/√c1 log n > 1, then lim supn log Kn = +∞.
Now the theorem follows from c0‖x̄n‖2 ≤ ‖ȳn‖2. �

Note that

c0‖x̄n‖2 ≤ ‖ȳn‖2 ≤ c1‖x̄n‖2

and the equalities hold if and only if A is a scalar multiplication operator
A = ∫ ∞

−∞ cE(dλ).

Remark 3 Suppose that {Am} is a sequence of positive definite degenerate self-
adjoint operators with finite dimensional ranges RAm(H) � RAm+1(H) · · · , and
with the supports (ranges of eigenvalues) σ(Am) � σ(Am+1) · · · ⊂ (0, 1/2].
Also suppose that A∞ is a compact operator with infinite dimensional range
RA∞(H) ⊂ H, and A∞ is obtained in the limit Am → A∞, m → ∞. Then
c0(Am) → c0(A∞) = 0, m → ∞, so that in Theorem 3,

√
c1(Am)/c0(Am) →√

c1(A∞)/c0(A∞) = ∞, implying that the strategy PA∞ cannot weakly force
SLLN with any rate. This phenomenon reflects one feature that the dimension
of Skeptic’s move space is related to the effective weak forcing of his strategy.
It is a subject we will treat in the forthcoming paper.
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