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Abstract The modeling of the dynamic relationship between the changes of the
wind and the waveheight has been an important topic from various standpoints such
as oceanography, technology and navigation safety. Generally, when we apply the
standard statistical models for the waveheight prediction, the observation of wind
direction has been treated as the ordinary time series data, not reflecting unique pro-
perties as directional data. In this article, we develop a time series model with linear and
angular–linear variables, by extending the angular–linear regression model considered
by Johnson and Wehrly. Our prediction test based on extrapolation suggested the pos-
sibility that the angular–linear time series structure gave positive effect on improving
the prediction accuracy of the time series model, in which the original wind direction
is included as a linear variable.

Keywords Directional time series model · Angular–linear regression ·
ARIMA model · Prediction · Waveheight · Wind direction

1 Introduction

The modeling and prediction of the sea condition and the wind motion is of importance
not only in estimating the safety of the ship navigation, but also in considering various
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physical phenomena on the sea, such as the motion of floating objects and the diffusion
of oil pollution. In the last few decades, the statistical methodologies to predict the
change of sea condition, based on the observations measured on the research ship or
buoy, have been researched from the various aspects.

Traditional researches on the prediction of the sea condition have been mainly
focused on the statistical modeling of the changes of the physical factors, such as
the significant waveheight, wave period, wind speed and wind direction. In general,
it is not necessarily reasonable to assume that the original process of the sea surface
movement follows Gaussian process. However, it is often possible to regard the time
series to follow Gaussian process, by applying Box–Cox or Rosenblatt transformation
to the original time series of the sea surface movement. For the time series data of this
class, the linear stationary time series models proposed by Box and Jenkins (1976),
such as autoregressive (AR) model or autoregressive moving average (ARMA) model,
have been widely used to construct the predictor. Under the background that various
methodologies related to their modeling have been developed as well as their statistical
properties (for example, Brockwell and Davis 1991), many applications to the wind
data (Brown et al. 1984; Daniel and Chen 1991), and the waveheight data (Cunha and
Guedes 1999; Yim et al. 2002) have been reported by many authors. However, as for
the observed time series data in the nonstationary aspect, such as the wave development
process, these stationary models cannot give us reasonable interpretations.

The researches on the nonstationary time series model to predict the change of the
observation in the exogenous aspect of the sea state is classified into two categories.
One is to apply the standard linear nonstationary models, and the other is to develop the
original model with nonstationary structure. As for the former, there are literatures on
the various applications. Among them, ARIMA model proposed by Box and Jenkins
(1976) is one of the widely used models in the practical aspect. The model is identified
by fitting a stationary ARMA model to the differenced series of the original time
series data. Also, the autoregressive model with time varying coefficients (Kitagawa
and Gersch 1985) is also one of the widely used nonstationary models. Since this
model has the state space representation, the predicted values can be obtained by
applying Kalman filter. If the speed in changing statistical structure can be regarded to
be slow, it may be reasonable to fit a stationary AR model to the time series data in the
segment which can be regarded to be locally stationary (the theoretical background is
given in Dahlhaus 1997; Dahlhaus and Giraitis 1998, and so forth). Hokimoto et al.
(2003) developed the nonstationary spectral model of the sea surface movement in the
wave development process, based on the idea of local stationarity. We can also find
the application of generalized autoregressive conditional heteroscedascity (GARCH)
model to the wind speed observations (Toll 1997). On the other hand, as for the latter,
we can find some nonstationary time series models based on the decomposition of the
trend and the other components have been proposed (Athanassoulis and Stefanakos
1995; Walton and Borgman 1990; Stefanakos et al. 2002).

When we apply these models in the practical aspect, the observation of the wind
direction has been usually treated as general time series data, just the same as those
of the wind speed or the sea surface movement. Angular data have a unique property
that they take the values on the circle. It is expected, therefore, to be able to express
the interaction relationship between the wind motion and the sea surface movement

123



An angular–linear time series model for waveheight prediction 783

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  10  20  30  40  50  60  70  80  90

Time(*1min.)

Fig. 1 Changes of the measured data per 1 min (from the top, wind speed, m/s), 1/3 significant waveheight
(m), wind direction, rad.)

more reasonably, by reflecting this unique property. In the framework of directional
statistics, various methodologies for statistical inferences on the directional data have
been proposed (for example, Marida and Jupp 2000). Among them, multivariate
regression models, including circular and linear variables, have been often propo-
sed in environment studies. Johnson and Wehrly (1978) considered the theoretical
background of the linear parametric regression, which has the linear variable and the
angular variable. And the extension of their model has given in Fisher and Lee (1992);
SenGupta (2004); SenGupta and Ugwuowo (2006), and so forth. However, there have
been only limited attempts to model multivariate angular–linear data. In this paper, we
are interested in the modeling of the dynamic dependencies on the multivariate linear
variables and the circular variables. Our goal here is to develop an angular–linear time
series model to express the dynamic structure among the waveheight, the wind speed
and the wind direction, by extending the multiple regression model by Johnson and
Wehrly (1978), and to show the effectiveness of the model structure through the test
of prediction based on extrapolation (for example, Makridakis et al. 1984, Chapter 4).

Our motivation of this research is based on the measured observations of the sea
surface movement and the wind motion in the wave development process. We have
measured the simultaneous changes of the relative sea surface level, the wind speed
and wind direction, on a research ship at Hunka-bay, Hokkaido, Japan. For the rela-
tive sea surface movement, we measured relative displacement from the mean of the
sea surface movement for 10 min by an ultrasonic waveheight meter of the research
ship. Also, for the changes of the wind speed and wind direction, we measured their
changes at about 15 m height from the sea surface, by using an ultrasonic wind
meter.

In this paper, we focus on the analysis of the changes of the mean values for every
1 min on the wind speed, the wind direction and the waveheight, which is defined
as the mean value of the one-third of the amplitudes which were sorted from the
maximum. Figure 1 shows a record of their changes for every 1 min, measured on 2
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December, 1999. It is noted that the horizontal axis denotes the time in minutes, a
dotted line denotes the wind speed (m/s), a solid line denotes the wind direction (rad.)
and a bold line denotes the 1/3 significant waveheight (m), where each sample size
is 90. According to the weather maps of the sampling day, as well as the days before
and after, the location of atmospheric pressure formed typical pattern of winter in
Japan; the high pressure area is extending over the west of Japan Islands and the low
pressure area is extending over the south. Under the background of this location, the
observation in Fig. 1 showed the tendency that the wind direction changed slowly from
north-west to true north, and the wind speed rapidly increased approximately from 6
to 13 m/s in 40–50 min, and then changed slowly in the range approximately from 12
to 15 m/s. Also, the waveheight gradually grew up to 2.5 m under the condition that
the wind direction changed slowly and the wind speed increased. The record of Fig. 1
can be regarded as a typical measurement of the wave development process, because
the waveheight increases, under the situation that the wind speed becomes faster and
the wind direction does not change so much.

This paper is composed as follows. In the next section, we make preliminary ana-
lyses on the correlation structure of the measured data. In Sect. 3, we propose a multi-
variate time series model as an extension of the model by Johnson and Wehrly (1978).
The effect on prediction based on the model is examined by numerical experiment in
Sect. 4, and the results are summarized to conclude in the final section.

2 Correlation structures of the wind and the waveheight data

In this section, we make basic investigations on the correlation structure of the obser-
vation shown in Fig. 1, in order to consider the class for our model. We first analyze the
sample circular autocorrelation and the sample autocorrelation of the wind direction
time series data. And then, we investigate the cross correlation between the observed
variables.

2.1 Circular autocorrelation of the wind direction data

Let {WDt ; t = 1, . . . , N } be a set of measurements of wind direction, where N is the
sample size and t is the time point. As a basic concept of exploratory circular data
analysis, we refer to a book by Fisher (1993, Chapter 2) and use the following two
transformations of WDt

xt = cos(WDt ), yt = sin(WDt )

In order to explore the possibility of detecting changes of direction, we use two sta-
tistics; one is the cumulative sum (CUSUM) plot displayed by the points

Ct =
t∑

i=1

xi , St =
t∑

i=1

yi

and the other is the cumulative mean direction plot {�c
t ; t = 1, . . .}, such that
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Fig. 2 Cumulative sum plot

Fig. 3 Cumulative mean directional plot

cos(�c
t ) = Ct

/√
C2

t + S2
t , sin(�c

t ) = St
/√

C2
t + S2

t (1)

are satisfied simultaneously. CUSUM plot is shown in Fig. 2, where the horizontal axis
denotes Ct and the vertical axis denotes St . Also, the cumulative mean directional plot
is displayed in Fig. 3, where the horizontal axis denotes the time point t and the vertical
axis denotes �c

t . It is noted that the change in statistical structure of the directional
time series data is admitted, when the trend of plots in Fig. 2 is clearly different from
the straight line whose slope is one, and when the value of {WDc

t } in Fig. 3 is clearly
different from the constant value. Figure 3 suggests the possibility that the directional
time series data have a change point of statistical structure at t = 40 roughly, and in
this case the time series exhibits nonstationarity. We also checked the statistical test
of change in mean direction by using CircStats (Chapter 11 of Jammalamadaka and
SenGupta 2001). The result showed that there exists a change point at the time point
t = 42, which suggested that the data exhibit nonstationarity.

Now we are interested in whether there is clear difference in the correlation struc-
tures, between the cases when we regard the wind direction data to be circular data and
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linear time series data. Before the calculation of correlation, it is necessary to subtract
the trend of the data. For estimating trend, we obtain the smoothed series of {xt } and
{yt } by using the locally weighted regression (LOWESS). And then, based on the
smoothed series, say {x∗

t } and {y∗
t }, we obtain the smoothed trend of wind direction

T∗
t , such that

x∗
t√

(x∗
t )2 + (y∗

t )2
= cos(T∗

t ),
y∗

t√
(x∗

t )2 + (y∗
t )2

= sin(T∗
t ) (2)

are satisfied simultaneously. On the other hand, we also estimate the trend of {WDt }
by applying the trend model,

WDt = T ∗∗
t + ζt , ζt ∼ N (0, σ 2

ζ )

and

T ∗∗
t − T ∗∗

t−1 = vt , vt ∼ N (0, σ 2
v )

where T∗∗
t is the random variable to express the trend, σ 2

ζ andσ 2
v are unknown variances

of ζt and vt , respectively (The detail of this model is shown in Kitagawa and Gersch
1985). Figure 4 shows the changes of {T ∗

t } (dotted curve) and {T ∗∗
t } (bold curve).

It looks that there is no clear difference between {T∗
t } and {T ∗∗

t }. So we estimate
circular autocorrelation coefficient based on the subtracted series, WD∗

t ≡ WDt −T∗
t .

Based on circular–circular association (Fisher 1993, Chapter 6), the sample circular
autocorrelation coefficient is given by

ρ̂∗(τ ) = 4(Aτ Bτ − Cτ Dτ )
[
(N 2 − E2

τ − F2
τ )(N 2 − G2

τ − H2
τ )

]1/2 , τ = 0, 1, . . .

where τ is the time lag, and

Aτ =
N−τ∑

t=1

cos WD∗
t cos WD∗

t+τ , Bτ =
N−τ∑

t=1

sin WD∗
t sin WD∗

t+τ ,

Cτ =
N−τ∑

t=1

cos WD∗
t sin WD∗

t+τ ,

Dτ =
N−τ∑

t=1

sin WD∗
t cos WD∗

t+τ , Eτ =
N−τ∑

t=1

cos(2WD∗
t ),

Fτ =
N−τ∑

t=1

sin(2WD∗
t ), Gτ =

N−τ∑

t=1

cos(2WD∗
t+τ ),

Hτ =
N−τ∑

t=1

sin(2WD∗
t+τ ).
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Fig. 4 An example on the estimation of trend
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Fig. 5 Sample circular autocorrelation and sample autocorrelation

On the other hand, the sample autocorrelation function of the time series data WD∗
t is

given by

ρ̂∗∗(τ ) =
∑N−τ

t=1 (WD∗
t+τ − WD∗)(WD∗

t − WD∗)
∑N

t=1(WD∗
t − WD∗)2

, WD∗ = 1

N

N∑

t=1

WD∗
t .

Figure 5 displays the estimates of ρ̂∗(τ ) and ρ̂∗∗(τ ) (0 ≤ τ ≤ 30), where the vertical
axis denotes the correlation, the horizontal axis denotes τ in minutes, and the bold
and dotted lines correspond to ρ̂∗(τ ) and ρ̂∗∗(τ ), respectively. We observe that they
change similarly with the same tendency, although |ρ̂∗(τ )| takes slightly larger values
than |ρ̂∗∗(τ )| when τ is small. We can evaluate from this result that the sample
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Fig. 6 Cross correlation between {WSt } and {WLt }
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Fig. 7 Cross correlations between (1) {WDt } and {WLt }, (2) {sin(WDt )} and {WLt }

circular autocorrelation coefficient can be approximated by the linear correlation to
some extent.

2.2 Cross correlation among observed variables

Next, we investigate the features on the cross correlations among the wind direction
WDt , the wind speed WSt , and the waveheight WLt . We estimated the cross correlation
function among the variables WLt , WSt , WDt and sin(WDt ), based on the time series
data after subtraction of their trends estimated by LOWESS method. Figure 6 shows
the cross correlation between WSt and WLt and Fig. 7 displays the cross correlations
between (1) WDt and WLt (dotted line) and (2) sin(WDt ) and WLt (bold line), where
the horizontal axis is the time lag in minutes and the two parallel lines in each figure

123



An angular–linear time series model for waveheight prediction 789

Table 1 Estimates of the cross
correlations

Lag(s) WDt sin(WDt ) WSt sin(WDt)

0 0.038 0.084 0.063

1 −0.096 −0.085 −0.110

2 0.102 0.093 0.098

3 0.006 −0.014 −0.017

4 −0.227 −0.214 −0.194

5 −0.139 −0.133 −0.092

6 0.067 0.087 0.073

7 0.076 0.119 0.150

8 0.040 0.050 0.034

9 −0.139 −0.147 −0.153

10 −0.039 −0.050 −0.071

11 0.174 0.173 0.125

12 0.156 0.184 0.178

13 0.183 0.228 0.158

14 0.176 0.188 0.153

15 0.155 0.171 0.126

16 0.025 0.032 0.060

17 0.300 0.335 0.388

18 0.046 0.016 0.049

19 −0.080 −0.058 −0.024

20 −0.070 −0.042 0.014

denote Bartlett’s bounds (i.e., ±1.96N−1/2). It is noted that the positive time lag can
be interpreted as the time which is necessary to give impact on the change of the
waveheight. Figure 6 suggests the possibility that the change of wind speed affects the
waveheight after 10–20 min. Also, Fig. 7 shows the possibilities that (1) the change
of wind direction (and its sine transformation) affect the waveheight after 15–20 min
and (2) the cross correlation between sin(WDt ) and WLt tends to become higher than
does that between WDt and WLt .

The interaction between the wind speed and the wind direction may be expected,
too. Based on the above results, the cross correlations between the variables sin(WDt )

and cos(WD) and WLt take higher values than that between WDt and WLt . Under the
interaction, we may expect that the variables WSt sin(WDt ) and WSt cos(WDt ) and
WLt will exhibit higher cross correlation than that between WDt and WLt . Table 1
shows the estimation result on the cross correlations between WLt and (1) WDt ,
(2) sin(WDt ) and (3) WSt sin(WDt ). We observe that WSt sin(WDt ) gives higher
cross correlation than sin(WDt ) when the time lag is 17, although we cannot find
strong correlation when the time lag is small up to about 15 min. As a result, it is also
expected to improve the prediction accuracy by using the variables transformed by sine
and cosine functions such as sin(WDt ) and WSt sin(WDt ) as explanatory variables,
instead of using the original WDt .
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3 An angular–linear time series model for waveheight prediction

In this section, we develop a time series model taking account of angular–linear
variables of wind direction. Our preliminary analysis in Sect. 2 has suggested that
there is no clear difference between the structures of the circular autocorrelation and
the standard linear autocorrelation, and that we may expect to obtain larger correlation
by using the wind speed transformed by sine and cosine functions as variables. Based
on these results, we develop the model in the class of linear time series.

3.1 The linear regression including angular change as explanatory variables

We describe our theoretical motivation on how we construct a general linear regression
model for the above situation, based on the result of Johnson and Wehrly (1978). Let
� = (�1, . . . , �p)

′ be a p-dimensional angular variable and X = (X1, . . . , Xq)′
be a q-dimensional linear variable (throughout this paper, the symbol ′ indicates the
transposition of vectors or matrices). Also put

H(�) =

⎛

⎜⎜⎜⎝

cos �1 · · · cos n�1 sin �1 · · · sin n�1

...

cos �p · · · cos n�p sin �p · · · sin n�p

⎞

⎟⎟⎟⎠ .

Johnson and Wehrly (1978) gave the following result on a multivariate angular–linear
distribution.

Theorem (Johnson and Wehrly, 1978)
Suppose (�, X ) has the joint density function

f (θ, x) = C exp

[
−1

2
x ′�−1x + λ′�−1x + a(θ)′�−1x

]
,

θ = (θ1, . . . , θp)
′ ∈ [0, 2π)p, x = (x1, . . . , xq)′ ∈ Rq

where C is a normalizing constant, � is a q × q positive definite dispersion matrix of
X , λ= (λ1, . . . , λq)′ is a constant vector and a(θ ) = (a1(θ), . . . , aq(θ))′ such that

ai (θ) =
p∑

j=1

n∑

k=1

ai jk cos(k(θ j − µi jk))

=
p∑

j=1

n∑

k=1

[
αi jk cos(kθ j ) + βi jk sin(kθ j )

]
, i = 1, . . . , q

where n is a positive integer, (aik j , αi jk, βi jk) are constants, and µi jk ∈ [0, 2π).
Then it maximizes theentropy of the multivariate angular–linear distribution under the
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condition that the values of E(X X ′), E(X), E(X ⊗ H(�)) are given, where ⊗ is the
Kronecker product.

Let (Z , X,�) be random variables to express the change of the waveheight, wind
speed and wind direction, respectively. Our interest here is on the distribution which
Z follows. Based on this theorem, the conditional distribution of Z , given (X,�) =
(x, θ ), is

N

(
β0 + β1x +

n∑

k=1

[β2k cos(kθ) + β3k sin(kθ)] , σ 2
1 (1 − ρ2)

)

where (β·, β··) are constants and n is a positive integer. This suggests that we can use
a linear regression model for waveheight,

Z = β0 + β1 X +
K∑

k=1

[β2k cos(k�) + β3k sin(k�)] + δ, (3)

where δ is a random variable which follows Normal distribution. In our analysis,
however, the variables Z , X and � have time series structures. Therefore, the model
(3) should be extended so that the time series structures of (Z , X,�) have been
reflected.

3.2 Building a time series structure including angular–linear variables

Suppose that, based on the N samples {WLt , WSt , WDt } (t = 1, . . . , N ), we predict
the future values of the waveheight {WLN+l; l = 1, . . . , L}. We assume that the time
series {WLt }, {WSt } and {WDt } are stationary, by applying a proper transformation
(the detail is given in the next section). By analogy with (3), we write the model
relating to WLt as

WLt = mL +
p∑

i=1

β
(1)
i WLt−i +

p∑

i=1

K∑

k=1

β
(3)
i,k cos(k · WDt−i )

+
p∑

i=1

K∑

k=1

β
(4)
i,k sin(k · WDt−i )

+
p∑

i=1

β
(2)
i WSt−i + ε

(1)
t , ε

(1)
t ∼ WN(0, σ 2

WL)

where p and K are orders, mL is the unknown mean, β’s are unknown weights, and
ε
(1)
t is a random variable, which follows a white noise process. In the same manner,

we write WSt as
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WSt = mS +
p∑

i=1

γ
(1)
i WLt−i +

p∑

i=1

K∑

k=1

γ
(3)
i,k cos(k · WDt−i )

+
p∑

i=1

K∑

k=1

γ
(4)
i,k sin(k · WDt−i )

+
p∑

i=1

γ
(2)
i WSt−i + ε

(2)
t , ε

(2)
t ∼ WN(0, σ 2

WN)

and sin(h · WDt ) and cos(h · WDt ) (h = 1, . . . , K ) as

sin(h · WDt ) = mh +
p∑

i=1

δ
(1)
i WLt−i +

p∑

i=1

K∑

k=1

δ
(3)
i,k cos(k · WDt−i )

+
p∑

i=1

K∑

k=1

δ
(4)
i,k sin(k · WDt−i )

+
p∑

i=1

δ
(2)
i WSt−i + δ

(h)
t , δ

(h)
t ∼ WN(0, σ 2

h ),

and so forth, where ms , mh , γ ’s and δ’s are unknown weights. Now put the state vector
at time t by

y
(K )
t ≡ (WLt , WSt , cos (WDt ), sin (WDt ), . . . , cos (K · WDt ), sin (K · WDt ))

′
(4)

Then we can write

y
(K )
t = m(K ) + A(K )

1 y
(K )
t−1 + · · · + A(K )

p y
(K )
t−p + δ

(K )
t , δ

(K )
t ∼ WN(0, �(K )) (5)

where m(K ) is the unknown mean vector, A(K )
i (i = 1, . . . , p) is the unknown coeffi-

cient matrix. This forms a multivariate vector autoregressive model of the pth order,
and the estimates for elements of unknown matrices A(K )

i can be obtained by using
the least squares method (e.g., Brockwell and Davis 1996). Thus, we can construct an
l-step (l = 1, . . . , L) ahead predictor based on (5) by

ŷ
(K )
N+l = m̂

(K ) + Â(K )
1 z

(K )
N+l−1 + Â(K )

2 z
(K )
N+l−2 + · · · + Â(K )

p z
(K )
N+l−p (6)

and z
(K )
N+l−m = y

(K )
N+l−p (l ≤ p), z

(K )
N+l−m = ŷ

(K )
N+l−p (l > p), where Âi is the

least squares estimator of Ai , The predicted values of WLN+l (l = 1, . . . , L) can be
obtained from the prediction of ŷ

(K )
N+l .
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3.3 Principal component to include the multiple directional information

However, the model (5) with (4) has a drawback in computational aspect. Since (5)
involves (2 + 2K ) + p(2 + 2K )2 unknown parameters to be estimated, when both
K and p become large, it is probable that the accuracy of the estimates of parameter
becomes worse. For improving the prediction accuracies, the dimension of ŷ

(K )
t should

be small. In order to taking account of the multiple directional information with the
small numbers of variables, we focus on the following linear sum

˜WD
(K )

t ≡ ω1 cos(WDt ) + ω2 sin(WDt ) + · · · + ω2K−1 cos(K · WDt )

+ω2K sin(K · WDt )

where ωi (i = 1, . . . , 2K ) are unknown weights. We propose to use the model (5)
with the state vector

ỹ
(K )
t ≡

(
WLt , WSt ,˜WD

(K )

t

)′

instead of using (4).
Here, it is necessary to determine the optimum order K and the value of ωi . For

determining unknown ωi , we introduce the concept of principal component analysis.
˜WD

(K )

t can be written as

˜WD
(K )

t = �
′
K D(K )

t ,

where

�K = (ω1, . . . , ω2K )
′
,

D(K )
t = (cos(WDt ), sin(WDt ), . . . , cos(K · WDt ), sin(K · WDt ))

′
.

We select the values of �K so that

V

(
˜WD

(K )

t

)
= �

′
K �

(K )
t �K

is maximized under the constraints �
′
K �K = 1, where �

(K )
t is the dispersion matrix

of D(K )
t . �K can be obtained as the eigenvector b(K ) of the eigen equation,

�
(K )
t b(K ) = λb(K )

Let λ1 ≥ · · · ≥ λ2K be 2K eigenvalues of the eigen equation. We choose the
eigenvector which corresponds to λ1 with unit norm, say b̃(K )

M , with K fixed. We

estimate ˜WD
(K )

t by
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̂

˜WD
(K )

t = b̃ (K )
M D(K )

t (7)

As for the selection of the order K , we choose the value of K such that the squared
sum of the prediction errors,

Sl(K ) = 1

N − l − T ∗ + 1

N−l∑

t=T ∗

(
WLt+l −̂WL

(K )

t+l

)2

(8)

is minimized for every l, wherêWL
(K )

t+l is the predicted value by (6) with ỹ
(K )
t , and T ∗

is a prefixed value. For selection of p in (5), we adopted Akaike Information Criterion
(AIC), under the value of K is fixed.

4 Evaluating the prediction accuracy of the waveheight

In the following, we examine the effectiveness of the methodology presented in the
last section through the evaluation of the prediction accuracy on the waveheight by
means of numerical experiments. We evaluate the accuracy by extrapolation based on
the observation shown in Fig. 1. The basic procedure is as follows. First, we fit the
model (5) and then obtain the prediction values of WLt up to five steps ahead (1 step
ahead corresponds to 1-min later) by the predictor (6), based on the time series data
{WLt , WSt , WDt } from t = 1 to t = 50. And then, under the sample size N is fixed
as 50, we obtain the prediction values in the same way from the time series data from
t = 2 to t = 51. Based on the prediction values obtained by the repetition of this
procedure, we evaluate the prediction accuracy. As criteria, we used

MAE(l) ≡ 1

M

M∑

i=1

∣∣∣∣WL(i)
N+l −̂WL

(i)
N+l

∣∣∣∣

MAPE(l) ≡ 1

M

M∑

i=1

∣∣∣∣∣∣
WL(i)

N+l −̂WL
(i)

N+l

WL(i)
N+l

∣∣∣∣∣∣

MCORR(l) ≡
∑M

i=1

(
WL (i)

N+l − WL
(i)

(l)
) (

̂WL
(i)

N+l −̂WL
(i)
(l)

)

√
∑M

i=1(WL(i)
N+l −̂WL

(i)
(l))2

√
∑M

i=1(
̂WL

(i)
N+l −̂WL

(i)
(l))2

,

WL(l) = 1

M

M∑

i=1

WL(i)
N+l ,

˜WL(l) = 1

M

M∑

i=1

̂WL
(i)

N+l

where l is the prediction step, WL(i)
t the observation at the i th experiment, ̂WL

(i)
t

the predicted value at the i th experiment, M the number of repetitions. The mean
absolute error (MAE) and the mean absolute percentage error (MAPE) give better
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evaluation as the predicted value gets closer to the observation. It is noted that MAPE
becomes more unstable when the observation gets closer to zero. However, the use
of MAPE did not cause serious problems in our experiment, because the observation
and the predicted values of the waveheight were sufficiently far from zero. The mean
correlation (MCORR) is defined as the sample correlation between the observations
and predicted values, in order to evaluate the degree of accordance to their trends.

Our prediction experiment was carried out on the basis of the vector Autoregressive
Integrated (ARI) model. This is ARIMA model with no MA parts, which was used as
a basic model to express the sea surface movement in the wave development process
in Hokimoto et al. (2003). Since the time series data of WLt , WSt and WDt in Fig. 1
exhibit nonstationarity, we follow the methodology of ARIMA model by Box and
Jenkins (1976), and regard the differenced time series to be stationary. We fit a vector
AR model of (5) to the differenced series of the original observation, and then obtain
the prediction of the original time series by “integrating” the predicted values of the
differenced time series.

4.1 The effect of angular–linear structure on the linear prediction

We first investigate whether the angular–linear structure give positive effect on the
prediction accuracy of the waveheight. For this purpose, we analyze whether it is
possible to improve the prediction accuracy by taking into account the 2K variables
{sin(k · WDt ), cos(k · WDt )} (k = 1, . . . , K ), instead of using the variable WDt

directly. In our analysis, we apply the multivariate AR model

xt = mx + B1xt−1 + · · · + Bpxt−p + εt , εt ∼ WN(0, �ε) (9)

where mx is unknown mean vector and Bi (i = 1, . . . , p) is unknown coefficient
matrix. Here, we consider the following two cases for the state vector xt . The first
case is the vector consisted from the difference of WLt , WSt and WDt ,

xt ≡ (∇WLt ,∇WSt ,∇WDt )
′

(10)

where ∇ is the back-shift operator such that ∇WDt = WDt −WDt−1, and so on. And
the second case is the difference of (4) with K = 1, viz.,

xt ≡ (∇WLt ,∇WSt ,∇ cos (WDt ),∇ sin (WDt ))
′
. (11)

Our interest is whether (11) provides more accurate prediction than (10).
Table 2 shows the values of MAE, MAPE and MCORR of (10), and Table 3 shows

the ones of (11), with M = 35. It is noted we carried out the numerical experiment
under the condition that the order p was fixed in the range from 1 to 5. Overall, the
result of (11) gives smaller MAEs and MAPEs than the result of (10). It suggests
the possibility that taking into account the angular–linear structure is effective for
improving the prediction accuracies by the predictor based on (10). The result of
MCORR also shows the similar tendency. In fact, MCORRs of (11) becomes larger
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Table 2 Prediction accuracy by ARI model based on (10)

p MAE MAPE MCORR

L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.385 0.446 0.517 0.490 0.585 0.213 0.247 0.265 0.238 0.291 0.501 0.335 0.200 0.360 0.205

2 0.394 0.454 0.464 0.490 0.582 0.215 0.248 0.240 0.240 0.290 0.450 0.292 0.258 0.366 0.201

3 0.415 0.500 0.482 0.474 0.601 0.223 0.268 0.248 0.231 0.297 0.346 0.195 0.159 0.403 0.155

4 0.428 0.518 0.505 0.487 0.613 0.229 0.274 0.257 0.235 0.300 0.322 0.123 0.081 0.357 0.152

5 0.421 0.528 0.494 0.493 0.604 0.226 0.278 0.253 0.236 0.297 0.333 0.093 0.063 0.320 0.156

Table 3 Prediction accuracy by ARI model based on (11)

p MAE MAPE MCORR

L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.360 0.480 0.506 0.552 0.589 0.196 0.247 0.249 0.254 0.271 0.492 0.291 0.208 0.389 0.221

2 0.357 0.473 0.502 0.544 0.573 0.195 0.244 0.249 0.252 0.267 0.483 0.281 0.188 0.333 0.154

3 0.362 0.477 0.508 0.550 0.598 0.198 0.248 0.256 0.258 0.285 0.465 0.255 0.145 0.258 −0.078

4 0.356 0.474 0.502 0.540 0.586 0.194 0.247 0.253 0.252 0.277 0.479 0.260 0.146 0.312 −0.007

5 0.372 0.492 0.506 0.539 0.590 0.203 0.256 0.255 0.252 0.278 0.442 0.207 0.130 0.285 0.015

than the ones of (10) overall, and the difference between (10) and (11) tends to become
clear as p becomes larger. However, it is probable that, as the order p and the prediction
step L are larger, the prediction accuracy by (11) becomes worse to take negative
correlations.

4.2 The effect of the principal component structure on the linear prediction

Next, we examine whether the principal component structure in the proposed model
can improve the prediction accuracy, effectively. We carried out the numerical expe-
riment in the same way as shown in the previous subsection, by using the state vector,

x
(K )
t ≡

(
∇WLt ,∇WSt ,∇̂

˜WD
(K )

t

)′

. (12)

Tables 4, 5 and 6 show the values of MAE, MAPE and MCORR with K = 1, K = 13
and K = 25, respectively. We observe through the comparison between Tables 2 and
4 that the predictor based on (12) with K = 1 could improve about 65–75% of the
whole results using (10). However, the comparison between Tables 3 and 4 gives the
result that (12) improves only 40–60% of the whole results based on (11). As far
as the principal component with K = 1 is concerned, it is not clear whether this is
effective for the prediction accuracy. However, based on the results of Tables 4, 5
and 6, we observe the tendency that MAEs and MAPEs of (12) become smaller and
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Table 4 Prediction accuracy by ARI model based on (12) (K = 1)

p MAE MAPE MCORR

L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.379 0.443 0.517 0.483 0.578 0.209 0.247 0.265 0.235 0.298 0.502 0.334 0.209 0.365 0.213

2 0.390 0.451 0.454 0.483 0.583 0.213 0.247 0.235 0.236 0.291 0.452 0.294 0.271 0.373 0.200

3 0.415 0.493 0.486 0.477 0.600 0.223 0.265 0.245 0.232 0.297 0.349 0.204 0.173 0.409 0.152

4 0.420 0.511 0.504 0.490 0.608 0.225 0.271 0.256 0.236 0.298 0.324 0.134 0.084 0.357 0.137

5 0.411 0.520 0.484 0.495 0.601 0.222 0.274 0.249 0.240 0.295 0.336 0.099 0.079 0.312 0.156

Table 5 Prediction accuracy by ARI model based on (12) (K = 13)

p MAE MAPE MCORR

L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.391 0.449 0.489 0.502 0.602 0.219 0.247 0.255 0.242 0.297 0.478 0.320 0.237 0.346 0.158

2 0.342 0.433 0.463 0.497 0.575 0.191 0.234 0.240 0.244 0.284 0.447 0.303 0.247 0.358 0.166

3 0.381 0.463 0.484 0.485 0.582 0.201 0.244 0.247 0.238 0.283 0.379 0.236 0.154 0.376 0.144

4 0.383 0.464 0.481 0.488 0.583 0.203 0.245 0.245 0.240 0.283 0.374 0.231 0.157 0.375 0.142

5 0.381 0.467 0.482 0.487 0.586 0.201 0.247 0.245 0.239 0.285 0.375 0.231 0.162 0.367 0.159

Table 6 Prediction accuracy by ARI model based on (12) (K = 25)

p MAE MAPE MCORR

L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.378 0.445 0.490 0.485 0.600 0.209 0.245 0.254 0.236 0.296 0.481 0.338 0.234 0.370 0.163

2 0.353 0.435 0.456 0.502 0.574 0.195 0.238 0.236 0.247 0.284 0.433 0.296 0.259 0.360 0.180

3 0.367 0.440 0.478 0.493 0.575 0.195 0.234 0.245 0.242 0.281 0.380 0.256 0.174 0.381 0.146

4 0.367 0.446 0.473 0.480 0.571 0.196 0.236 0.241 0.234 0.277 0.384 0.258 0.178 0.396 0.173

5 0.365 0.439 0.475 0.488 0.576 0.194 0.233 0.243 0.238 0.280 0.381 0.260 0.171 0.387 0.147

MCORRs tend to become larger. In fact, in the both cases of K = 13 and K = 25, we
observe that (12) improves 65–75% of the whole results of the prediction using (11).
This suggests the possibility that the principal component structure of (12) worked
effectively to some extent, which contributed to the improvement of the prediction
accuracy.

4.3 The interaction effect between the wind and the waveheight

As shown in Sect. 2, there exists significant cross correlation between (WSt sin(WDt ),
WSt cos(WDt )) and WLt . Therefore, it is expected that the ARI model with the state
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Table 7 Prediction accuracy by ARI model based on (13)

p MAE MAPE MCORR

L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.401 0.467 0.531 0.500 0.584 0.223 0.258 0.272 0.242 0.291 0.476 0.302 0.172 0.353 0.224

2 0.439 0.469 0.459 0.513 0.611 0.238 0.252 0.237 0.251 0.302 0.401 0.299 0.279 0.356 0.193

3 0.474 0.534 0.509 0.504 0.644 0.252 0.282 0.260 0.247 0.317 0.309 0.194 0.155 0.385 0.157

4 0.477 0.531 0.510 0.487 0.639 0.253 0.281 0.261 0.238 0.315 0.307 0.173 0.155 0.406 0.164

5 0.478 0.544 0.520 0.490 0.643 0.254 0.286 0.266 0.240 0.316 0.305 0.143 0.123 0.389 0.159

Table 8 Prediction accuracy by ARI model based on (14)

p MAE MAPE MCORR

L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

1 0.379 0.453 0.482 0.486 0.596 0.212 0.249 0.252 0.236 0.294 0.479 0.331 0.247 0.367 0.186

2 0.358 0.449 0.467 0.496 0.577 0.200 0.241 0.241 0.241 0.284 0.427 0.273 0.257 0.361 0.202

3 0.369 0.436 0.471 0.495 0.575 0.202 0.231 0.242 0.243 0.282 0.403 0.262 0.199 0.363 0.180

4 0.371 0.441 0.480 0.492 0.583 0.204 0.235 0.248 0.242 0.287 0.402 0.252 0.187 0.372 0.172

5 0.371 0.441 0.481 0.493 0.582 0.203 0.235 0.249 0.242 0.286 0.402 0.252 0.186 0.372 0.179

vectors,

x
(K )
t ≡ (∇WLt ,∇(WSt cos(WDt )),∇(WSt sin(WDt )))

′
(13)

or

x
(K )
t ≡ (∇WLt ,∇(WSt ·̂˜WD

(K )

t ))
′

(14)

can also construct a reasonable predictor. Especially, (14) has an advantage in giving
more reasonable prediction accuracies than (12), because (14) requires fewer unknown
parameters of the ARI model than (12). The numerical results are shown in Tables 7 and
8. Table 7 shows that the result of (13) becomes worse than that of (12). In this sense,
the state vector based on the interaction between the wind speed and wind direction is
not necessarily effective for the waveheight prediction. The similar tendency can be
found in the comparison between (14) and (12).

Based on these results, we can evaluate that the covariation between the changes of
the wind speed and the wind direction is not remarkable (i.e., the physical processes
of the wind speed and the wind direction do not completely synchronize with each
other).

4.4 Appropriateness on the criterion of order selection

Finally, we examine whether the criterion proposed for order selection is appropriate
for the actual prediction. The numerical experiments so far have been carried out
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Table 9 Comparisons on MAE and MAPE based on the order selection

Vector MAE MAPE

L=1 L=2 L=3 L=4 L=5 L=1 L=2 L=3 L=4 L=5

(10) 0.496 0.566 0.593 0.652 0.731 0.224 0.245 0.253 0.256 0.288

(12) 0.386 0.463 0.557 0.607 0.714 0.171 0.199 0.233 0.243 0.281

(14) 0.363 0.462 0.548 0.613 0.696 0.163 0.199 0.232 0.244 0.274

under the condition that the order of K was given. However, it is probable that the
prediction accuracy becomes worse, when the order K is not selected properly. So
we examine the prediction accuracy when we used the proposed criterion for order
selection.

The results of MAEs and MAPEs when we used the state vectors (10), (12) and
(14) are given in Table 9. The prediction experiment was carried out in the range from
t = 70 to t = 85, and the value of T ∗ was fixed as 50. Also, we adopted AIC for
determination of the order p in the identification of (10). The MAEs and MAPEs
of (12) becomes smaller than those of (10), which suggests that the proposed order
selection criterion is appropriate for the actual prediction. On the other hand, we could
not find out clear difference in the comparison between (12) and (14). But we can
admit that the proposed method for order selection is available for improvement of
the prediction accuracy.

5 Conclusions

We have developed an angular–linear time series model for waveheight prediction,
based on the observations of the waveheight, wind speed, and wind direction. The
result of our numerical experiments in the last section suggested the possibility that
the time series model taking into account the angular–linear structure, based on the
sine and cosine transformations of wind direction data, can improve the prediction
accuracy of the linear nonstaionary time series model, in which the original wind
direction data is used as an explanatory variable. As for the principal component
introduced in our methodology, it is expected to improve the prediction accuracy
further, by the development of the methodology based on the principal component
analysis for the nonstationary time series structure.
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