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Abstract One of the most important research fields in marketing science is the
analysis of time series data. This article develops a new method for modeling mul-
tivariate time series. The proposed method enables us to measure simultaneously
the effectiveness of marketing activities, the baseline sales, and the effects of con-
trollable/uncontrollable business factors. The critical issue in the model construction
process is the method for evaluating the usefulness of the predictive models. This
problem is investigated from a statistical point of view, and use of the Bayesian pre-
dictive information criterion is considered. The proposed method is applied to sales
data regarding incense products. The method successfully extracted useful information
that may enable managers to plan their marketing strategies more effectively.

Keywords Bayesian method · General state-space models · Marketing

1 Introduction

A central concern in the planning of any marketing strategy is the creation of a
sustainable competitive advantage. To create and possess a competitive advantage,
understanding the structure and nature of the market from long-term perspective is
an important research area in marketing science. This paper tries to shed light on
the following research question: how can we measure the effectiveness of marketing
activities, the baseline sales, and the effects of controllable/uncontrollable business
factors using available information sources?
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764 T. Ando

One of the major sources of information that measures the past performance of
an individual firm is time series data, which can include sales, market shares, and
additional marketing-mix variables such as advertising, pricing promotion, display
promotion, etc. Various types of models were applied to investigate the relationship
between marketing activities and their effects on performance (Bass 1969; Beckwith
1972; Wildt 1974; Hanssens 1980; Blattberg et al. 1981; Leone 1983; Neslin et al.
1985; Gupta 1988; Neslin 2002).

In marketing research fields, baseline sales—the amount of sales when there are
no marketing promotions (Abraham and Lodish 1993)—have received considerable
attention in recent years (Abraham and Lodish 1993; Tellis et al. 1995; Ando 2006a).
Marketing managers widely use baseline sales to assess the profitability and effec-
tiveness of marketing activities by investigating how promotions can impact baseline
sales over time.

The main aim of this paper is to develop a method for modeling multivariate
time series within the general framework of state-space modeling (Kitagawa 1996;
Kitagawa and Gersch 1996). State-space models have been applied to a number of
studies to investigate the effectiveness of marketing activities (Kondo and Kitagawa
2000; Kitagawa et al. 2003; Lee et al. 2003; Pauwels et al. 2004; Sato et al. 2004;
Van Heerde et al. 2004a,b; Yamaguchi et al. 2004; Ando 2006a). For instance,
Xie et al. (1997) and Naik et al. (1998) employed state-space models to estimate
the Bass model and the modified Nerlove–Arrow model. Introducing the concept of
the ‘half-life’ of an advertising campaign, Naik (1999) also utilized a state-space
model. Neelamegham and Pradeep (1999) and Ando (2006a) applied a general state-
space model to predict sales for movies and everyday foods. For the use of time series
techniques in a wide range of marketing research, we refer to Dekimpe and Hanssens
(2000).

Ando (2006a) developed the method that simultaneously measures the baseline
sales and the effectiveness of marketing activities within the framework of Bayesian
general state-space modeling. The method is also useful for predicting future sales
through the consideration of several factors, such as marketing promotions (tempo-
rary price cuts, display promotions, points-of-purchase, advertising catalogs, etc.) and
certain uncontrollable business factors (the day of the week, the weather conditions,
the season, events, etc.). Such information assists managers not only in planning their
marketing strategy but also in planning their strategies for research and development,
inventory management, manpower use, and so on.

In contrast to Ando’s (2006a) study, where Poisson distribution is employed for
predicting the sales, this paper extends this method by allowing various types of
distributions. An empirical analysis clearly shows an improvement of Ando’s (2006a)
method in the sense that the proposed model obtained better model evaluation score,
described below.

In the model building process, the Bayesian approach via the Markov chain Monte
Carlo (MCMC) method is implemented for estimating model parameters. We do
this because the likelihood function depends on integrals of high dimensions. The
MCMC method has played a major role in the recent advances in Bayesian analyses
of time series models. Fortunately, it is not a computationally intensive task—thanks
to increased access to appropriate computational tools.
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Measuring the baseline sales and the promotion effect for incense products 765

The critical issue in the model construction process is the method for evaluating
the usefulness of the constructed models. Although progress in MCMC simulation
methods has made flexible statistical modeling popular, the assessment of the useful-
ness of the estimated model is still under development. This paper investigates this
problem from a statistical point of view and uses the Bayesian predictive information
criterion (BPIC; Ando 2007). The advantage of the BPIC is that it is easily calculated
from the samples generated by a MCMC simulation. As an alternative criterion for
selecting a model, one might consider using the deviance information criterion (DIC;
Spiegelhalter et al. 2002). However, Robert and Titterington (2002) and Ando (2007)
have pointed to some theoretical problems in the DIC. One of the most crucial issues
is over-fitting. To overcome theoretical problems in the DIC, Ando (2007) proposed
the use of the Bayesian predictive information criterion.

One of contributions of this article in marketing research is the introduction of
a new Bayesian general state-space modeling method. Therefore, various types of
probability distributions are available to express the randomness of the sales. The use
of the Bayesian predictive information criterion in marketing research is also a new
concept. Thanks to this criterion, we can evaluate the goodness-of-fit of the estimated
models. Furthermore, to our knowledge, no empirical study has conducted an analysis
of the sales of Japanese incense products.

This article is organized into four sections. In Sect. 2, we present the method
for modeling multivariate time series within the framework of general state-space
modeling. Section 3 applies the proposed method to the daily sales of Japanese incense
products. Conclusions are given in Sect. 4.

2 Methodology

2.1 Preliminaries

It is useful to begin with a brief review of the general state-space models (Kitagawa
1987; Kitagawa and Gersch 1996). The general state-space model consists of two
stochastic components: an observation equation and a system equation:

{
Observation equation : yt ∼ f (yt |Ft ,ht , . . . ,h1),

System equation : ht ∼ f (ht |Ft−1,ht−1, . . . ,h1),

where Ft denotes the history of the information sequence up to time t , a sequence
y1, y2, . . . is the observable time series while a sequence h1,h2, . . ., so-called a state
vector, is unobserved. Here, yt = (y1t , . . . , ypt )

′ is the p-dimensional vector, ht =
(h1t , . . . , hqt )

′ is the q-dimensional vector, f (yt |Ft ,ht , . . . ,h1) and f (ht |Ft−1,

ht−1, . . . ,h1) are the conditional distribution of yt given Ft , ht , . . . ,h1 and of ht

given Ft−1, ht−1, . . . ,h1, respectively. The main focus concerns how to construct
these two equations so that the model captures the true structure governing the time
series of yt .
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2.2 Model description

In this paper, we focus on p-dimensional time series data for daily sales of incense
products in stores. Given a mean structure of total sales y jt , say λ j t , we shall decom-
pose it into the baseline sales and other components by incorporating the covariate
effects:

λ j t (h jt ,β j , x j t ) = h jt +
b∑

a=1

β ja x jat = h jt + β jx j t , (1)

where h jt is the baseline sales effect, whileβ j = (β j1, . . . , β jb)
′ andx j t = (x j1t , . . . ,

x jbt )
′ are the b-dimensional vector of unknown parameters to be estimated and the

b-dimensional covariate vector, respectively. The covariate vector may include the
information on some marketing-mix variables, price levels, price discount percentages,
features, advertising, displays, post-promotion dips, the day of the week, the weather,
the season, the regulatory, and so on. The dimension b therefore might depend on data
availability.

The purpose of analysis also affects the dimension of covariate vector. Consider, for
example, we want to quantify an impact of competitor’s marketing action on the total
sales y jt . In such a case, incorporating competitor’s marketing-mix variables (e.g.,
price discount rate) into the model (1), the sensitivity of the total sales to competitor’s
marketing action could be measured by its coefficient β. Although the baseline sales
h jt do not contain the effects of competitor’s marketing action explicitly, the com-
petitor’s marketing actions are implicitly affecting the each of baseline sales through
the information on total sales. Because we model the baseline sales (and also a mean
structure of total sales, λ j t ) jointly, the baseline sales and the mean structures of total
sales describe a competitive relation in the competitive market. Therefore, we can
learn the competitive market with some knowledge of interactive structure between
sales.

We are usually not sure about the distribution of daily sales y jt ; we therefore
shall consider several density functions. Because the sales data take positive values,
truncated distributions are used.

Truncated normal :
fN (y jt |µ j t , σ

2
j ) = I (y jt > 0) · 1

2
√

2πσ 2
j

exp

{
− (y jt −µ j t )

2

2σ 2
j

}
,

Truncated Student t :

fSt (y jt |µ j t , σ
2
j , ν j ) = I (y jt > 0) · �

(
ν j +1

2

)

2�
(
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2

)
�

(
ν j
2

)√
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2
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2
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Truncated Cauchy :
fC (y jt |µ j t , σ

2
j ) = I (y jt > 0) · 1

2πσ j

{
1 + (y jt −µ j t )

2

σ 2
j

}−1

,

(2)
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where I (y jt > 0) is the indicator function, takes value one if y jt > 0 and zero
otherwise, µ j t := λ j t (h jt ,β j , x j t ) is the mean parameter given in (1), s2

j is the vari-
ance parameter and ν j is the degrees of freedom of Student-t distribution. Note that
we can also consider other distributions. Hereafter, for the simplicity of presentation,
we denote these densities by f (y jt |x j , h jt , γ j ), where γ j is the unknown parameter
vector associated with each density function. In contrast to Ando’s (2006a) study,
where Poisson distribution is employed, this paper allows various types of distribu-
tions. Under the data availability, instead of the sales, we can therefore analyze the
market (also category) share of each product by using the multinomial logit/probit
density for yt .

It is assumed that the state variable h jt , the baseline sales effect for the j th store,
follows the r th order trend model:

�r h jt = ε j t ,

where � (�h jt = h jt − h j,t−1) is the difference operator (e.g., Kitagawa and Gersch
1996) and ε j t ∼ N (0, σ j j ) is a Gaussian white noise sequence. For r = 1, the baseline
sales become a well-known random walk model, h jt = h j,t−1 + ε j t , For k = 2, the
model becomes h jt = 2h j,t−1 − h j,t−1 + ε j t . Another expression of the r th order
trend model is

h jt =
r∑

s=1

cs × Bsh jt + ε j t ,

where B (B1h jt = h j,t−1) is the backshift operator and cs = (−1)s−1 ×r Ci are
binomial coefficients (e.g., Kitagawa and Gersch 1996).

It is natural to assume that the daily sales of each store are mutually dependent on
each other. Following Ando (2006a), we therefore introduce the correlation between
the noises ε j t and εkt : Cov(ε j t , εkt ) = σ jk .

Summarizing the above specifications, we then formulate the following observation
and system equations:

yt ∼ f (yt |xt ,ht ; γ ), j = 1, . . . , p,

(3)

ht ∼ f (ht |ht−1, . . . ,ht−r ;	), 	 = (σi j ),

where f (yt |xt ,ht ; γ ) with xt = (x′
1t , . . . , x

′
pt )

′ is the p-dimensional density func-
tion specified by the components f (y jt |x j , h jt ; γ j ) in (2). The system model
f (ht |ht−1, . . . ,ht−r ;	) is the p-dimensional normal density with the mean ht =∑r

s=1 cs × Bsht and covariance matrix 	.
The next problem is how to estimate unknown parameter vector θ = (γ , vech(	))′

with γ = (γ ′
1, . . . , γ

′
p)

′. This problem will be investigated in the following section.
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2.3 Bayesian inference via MCMC

As shown in the following equation, the likelihood function depends on the high-
dimensional integrals:

L(Dn|Xn, θ) =
n∏

t=1

f (yt |Ft−1, xt , θ)

=
n∏

t=1

⎡
⎣∫ p∏

j=1

f (y jt |h jt ; x j t , γ j ) f (ht |Ft−1, θ)dht

⎤
⎦ ,

where Dn = {y1, . . . , yn} and Xn = {x1, . . . , xn} and Ft−1 denotes the history of the
observation sequence up to time t − 1 (See for e.g., Chib et al. 2002; Kitagawa 1987;
Kitagawa and Gersch 1996; Tanizaki and Mariano 1998).

The source of the problem is that we cannot express the density f (ht |Ft−1, θ) in
the closed form. It is therefore obvious that the maximum likelihood estimation of the
models is very difficult. In contrast, the Bayesian treatment of this inference problem
relies solely on the theory of probability. It allows us to estimate the model parameters
easily because the inference can be done without evaluating the likelihood function.
In particular, the Bayesian approach via the MCMC algorithm is useful for estimating
model parameters. Details on the MCMC method can be found in Carlin and Louis
(1996), Gilks et al. (1996), Tierney (1994) and in references given therein.

In the Bayesian approach via the MCMC method, both θ and the state vector ht

are considered to be model parameters. An inference on the parameters is conducted
by producing a sample from the posterior distribution

π(θ ,h|Dn, Xn) ∝ π(θ) ×
n∏

t=1

p∏
j=1

f (y jt |h jt ; x j t , γ j ) f (ht |ht−1, . . . ,ht−r ;	).

To complete the Bayesian model, we now formulate a prior distribution on the
parameters. A prior independence of the parameters is assumed: π(θ) = π(	)π(γ ),
π(γ ) = ∏p

j=1 π(γ j ).
Decomposing the covariance matrix 	 as a product of the variance and the matrix of

correlations into 	 = RC R, where R = (ri j ) is a diagonal variance matrix and C =
(ci j ) is the correlation matrix (Barnard et al. 2000), we formulate a prior distribution
on rii (i = 1, . . . , p) and the elements {ci j , i < j}. Following Ando (2006a), we
assume that each of the elements {rii ; i = 1, . . . , p} is independently and identically
distributed. We then place a gamma prior with parameters a and b on the diagonal
entries of 	:

π(σi i ) = ba

�(a)
(σi i )

a−1 exp{−bσi i }, i = 1, . . . , p,
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which implies

π(rii ) = π(σi i )
dσi i

drii
= 2ba

�(a)
(rii )

2a−1 exp{−br2
i i }.

To make the prior uninformative, we shall take a = 10−10 and b = 10−10. For the
prior distribution of {ci j , i < j}, a uniform prior distribution U [−1, 1] is employed.

When we specify the Student-t density for y jt , the unknown parameter vector γ j

include the degree of freedom ν j as well as the coefficient β j and s2
j . For the coefficient

β j , the b-dimensional uninformative normal prior N (0, 1010 × Ib) is utilized. In
addition to σi i , a gamma prior with parameters a = b = 10−10 is used for s2

j . A
uniform prior distribution is used U [2, 100] for π(ν j ). The same prior distributions
are employed for other density cases.

The MCMC algorithm is then summarized as follows.
MCMC sampling algorithm:

Step 1. Initialize θ and h.

Step 2. Sample ht from ht |θ,h−ht , Dn , for t = 1, . . . , n.

Step 3. Sample β j from β j |θ−β j ,h, Dn , for j = 1, . . . , p.

Step 4. Sample rii from rii |θ−rii ,h, Dn , for j = 1, . . . , p

Step 5. Sample ci j from ci j |θ−ci j ,h, Dn , for i, j = 1, . . . , p (i < j)

Step 6. Sample s2
j from s2

j |θ−s2
j
,h, Dn , for j = 1, . . . , p

Step 7. Sample ν j from ν j |θ−ν j ,h, Dn , for j = 1, . . . , p,

Step 8. Repeat Step 2 ∼ Step 7 for sufficient iterations.

Here h−ht denotes the rest of the h vector other than ht . By making a proposal draw
from a random walk sampler, the Metropolis–Hastings (MH) algorithm implements
steps 2–7. For instance, assume the first-order random walk model for the baseline
sales. In step 2, the conditional posterior density function of ht is

π(ht |θ,h−ht , Dn, Xn)

∝

⎧⎪⎨
⎪⎩

f (ht+1|ht , 	) × ∏p
j=1 f (y jt |h jt ; x j t , γ j ), (t = 1),

f (ht+1|ht , 	) × f (ht |ht−1, 	) × ∏p
j=1 f (y jt |h jt ; x j t , γ j ), (t �= 1, n),

f (ht |ht−1, 	) × ∏p
j=1 f (y jt |h jt ; x j t , γ j ), (t = n).

At the kth iteration, we make a candidate draw of h
(k+1)
t using the Gaussian proposal

density function centered at the current value h
(k)
t with the variance matrix 0.01 × Ip .

We then accept a candidate draw with the probability

α = min

{
1,

π(h
(k+1)
t |θ,h−ht , Dn, Xn)

π(h
(k)
t |θ ,h−ht , Dn, Xn)

}
.
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The remaining conditional posterior density functions are

π(β j |θ−β j ,h, Dn, Xn) ∝
n∏

t=1

p∏
j=1

f (y jt |h jt ; x j t , γ j ) × π(β j ),

π(rii |θ−rii ,h, Dn, Xn) ∝
n∏

t=2

f (ht |ht−1, 	) × π(rii ),

π(ci j |θ−ci j ,h, Dn, Xn) ∝
n∏

t=2

f (ht |ht−1, 	) × π(ci j ),

π(s2
j |θ−s2

j
,h, Dn, Xn) ∝

n∏
t=1

p∏
j=1

f (y jt |h jt ; x j t , γ j ) × π(s2
j ),

π(ν j |θ−ν j ,h, Dn, Xn) ∝
n∏

t=1

p∏
j=1

f (y jt |h jt ; x j t , γ j ) × π(ν j ).

In addition to implementing step 2, the MH algorithm implements the steps . The
outcomes from the MH algorithm can be regarded as a sample from the posterior
density function after a burn-in period.

The remaining problem is the question of how to evaluate whether the estimated
model is good. For example, we have to select the sampling density function among
a set of models in (2). In the following section, we assess whether predictions made
by the estimated model are close to those made by the true structure.

2.4 Model diagnosis: Bayesian predictive information criterion

In the previous section, we discussed the development of Bayesian models. One of
the most crucial issues is the choice of an optimal model that adequately expresses the
dynamics of the sales. In this section, we use the Bayesian predictive information cri-
terion (Ando 2007) for evaluating the success of the predictive distribution constructed
by the Bayesian methods.

Recently, Ando (2007) proposed the maximization of the posterior mean of the
expected log-likelihood

η =
∫ [∫

log L(Zn|Xn, θ)π(θ |Dn)dθ

]
g(Zn)dZn,

where π(θ |Dn) is the posterior density function and Zn = {z1, . . . , zn} is the unseen
observation generated from a true model. The best model is selected by maximizing
this quantity.

Considering a situation in which the prior is assumed to be dominated by the
likelihood as increases, and in which the specified parametric models contain the true
model, Ando (2007) showed that an estimator of η is given by η̂ − dim{θ}/n, where
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Table 1 Basic statistics

µ, the mean; σ , standard
deviation; s, skewness;
k, kurtosis

Store 1 Store 2

µ 61.9908 38.6059

σ 27.5079 19.4827

s 1.5599 1.3337

k 4.5616 3.8594

η̂ is the posterior mean of the log-likelihood:

η̂ = 1

n

∫
log L(Dn|Xn, θ)π(θ |Dn)dθ .

Multiplying −2, we then obtain a tailor-made version of the Bayesian predictive
information criterion, BPIC (Ando 2007):

BPIC = −2
∫

log L(Dn|Xn, θ)π(θ |Dn)dθ + 2dim{θ}. (4)

We can see that the BPIC balances the tradeoff between goodness-of-fit and parsimony.
The best predictive distribution is selected by minimizing the Bayesian predictive
information criterion (BPIC). As an alternative model selection criterion derived in
the above framework, Spiegelhalter et al. (2002) proposed the DIC. From a theoretical
viewpoint, it has been argued that the model chosen by the DIC is more complex than
that chosen by the BPIC (Ando 2007). Therefore, this paper uses the BPIC.

The BPIC is available for the evaluation of various types of Bayesian models. For
instance, Ando (2006b) employed this criterion when evaluating the success of several
stochastic volatility models. For research on credit ratings, this criterion was applied to
a Bayesian ordered probit regression model with a functional predictor (Ando 2006c).

3 Empirical illustration of proposed method

3.1 Data description

In 2006, the size of the market for incense products in Japan was estimated to be about
30 billion yen. Although the market has been shrinking gradually (the 2006 size is only
88% of the size in 1980), the business of producing and selling incense products still
provides an opportunity to earn a profit. The data analyzed here consist of the daily
sales figures for incense products from January 2006 to March 2007. The data were
collected from two department stores (hereafter, Store 1 and Store 2), both located
in Tokyo. In both stores, incense manufacturers sell two main products: traditional
incense and lifestyle incense. In Japan, traditional incense is used differently from
lifestyle incense. Traditional incense is used for religious purposes, for example at
Buddhist altars or at the graves of ancestors. In contrast, lifestyle incense is used
therapeutically for enjoyment. The positioning of these products is distinct.
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Fig. 1 Time series plots of the daily sales figures for incense products from January 2006 to March 2007.
a Store 1 and b Store 2

Figure 1a, b shows the time series plots of the daily sales at Store 1 and Store
2, respectively. In this analysis, the units are thousands of yen. From Fig. 1, it may
be seen that the daily sales vary over time. The basic statistics are shown in Table 2.
Since the kurtosis of the returns is greater than three, the true distribution the data must
be a fat-tailed distribution. Using the Shapiro–Wilk normality test (Patrick 1982) the
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Table 2 Summary of the estimation results

Mean SDs 95% Conf. interval INEFs CD

β11 −1.883 0.944 [-3.740, 0.053] 2.385 −0.584

β21 10.028 0.845 [ 8.398, 11.810] 2.692 −0.839

β12 2.223 0.893 [ 0.596, 3.742] 2.452 −0.335

β22 3.127 0.763 [ 1.739, 4.624] 2.547 −1.332

β13 −0.596 0.831 [-2.243, 1.126] 2.193 0.550

β23 10.099 0.742 [ 8.573, 11.604] 2.849 1.032

β14 24.396 0.966 [22.592, 26.105] 2.309 −0.697

β24 11.670 0.864 [ 9.841, 13.421] 2.325 −1.725

s2
1 25.472 0.080 [25.216, 25.762] 2.604 −1.814

s2
2 17.061 0.049 [16.964, 17.155] 2.270 −1.745

σ11 25.472 0.063 [25.243, 25.653] 5.857 −0.995

σ22 17.006 0.046 [16.960, 17.155] 5.935 0.056

σ12 0.185 0.010 [ 0.169, 0.201] 2.783 0.967

ν1 26.106 0.602 [24.998, 27.042] 25.092 0.653

ν2 5.001 0.483 [4.049, 6.012] 24.330 0.976

The posterior means, the standard deviations (SDs), the 95% confidence intervals, the inefficiency factors
(INEFs) and Geweke’s (1992) CD test statistic (CD) are calculated

null hypothesis—that sales were normally distributed—was rejected. The p values for
each score were 2.58 × 10−16 and 2.62 × 10−14, respectively.

In addition to the daily sales data, the following information was tabulated; the
weather effect x j1t , the weekly and holiday effect x j2t , the sales promotion effect x j3t

and the event effect x j4t . Definitions of each variable are given as follows:

x j1t =
⎧⎨
⎩

1 (Fine)
0 (Cloudy)

-1 (Rain)

, j = 1, . . . , p,

x j2t =
{

1 (Sunday, Saturday, National holiday)

0 (Otherwise)
, j = 1, . . . , p,

x j3t =
{

1 (Execution)

0 (Nonexecution)
, j = 1, . . . , p,

x j4t =
{

1 (Holding)

0 (Nonholding)
, j = 1, . . . , p.

As pointed out in Sect. 2.2, information on other variables, price levels, price discount
percentages, features, displays, post-promotion dips are important factors. Unfortu-
nately, due to the limitations of the dataset, we considered only these variables. We
would like to emphasize that the analysis can be done easily once we could obtain
such additional information.
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Fig. 2 Histograms show the number of sales for a Store 1 when the sales promotions are executed,
b Store 1 when the sales promotions are not executed, c Store 2 when the sales promotions are executed, and
d Store 2 when the sales promotions are not executed

In both stores, the responsibility for promotion was shared between the
manufacturer and the department store. On five of every 7 days, the manufactur-
ers were responsible for promoting their own products. On the remaining 2 days, the
department stores were responsible for selling the manufacturers’ products. Depart-
ment stores were obligated to sell the manufactures’ products such that the average
sales on days of department store promotion were consistent with the average sales
on days of manufacturer promotion.

Figure 2 examines the effects of sales promotions. The horizontal axis measures
sales. We can see that the shapes of histograms (a) and (b) for Store 1 are similar, while
the shapes of histograms (c) and (d) for Store 2 are more disparate. The χ2 test at a
5% significance level does not reject the null hypothesis (that there is no difference in
the distribution of sales regardless of the responsible party) for Store 1. On the other
hand, the null hypothesis is rejected for Store 2.

123



Measuring the baseline sales and the promotion effect for incense products 775

3.2 Estimation results

In this section, we fit the various statistical models given in (2). The largest model
evaluation space might be the selections of distributional assumption on yt , the lag of
the baseline sales r , and the combination of the covariates x j t in the model. Because
one of our aims is to quantify the impacts of each covariate, we consider the selections
of distributional assumption on yt , and the lag of the baseline sales r = {1, 2, 3}.

The total number of MCMC iterations is chosen to be 6,000; of those 6,000 iter-
ations, the first 1,000 iterations are discarded as a burn-in period. To ensure the
convergence of the MCMC sampling algorithm, we stored every fifth iteration after
the burn-in period. All inferences were therefore derived using the 1,000 generated
samples.

It is necessary to check whether the generated posterior sample is taken from the
stationary distribution. We assessed the convergence by calculating the convergence
diagnostic (CD) test statistics (Geweke 1992). Geweke’s (1992) CD test statistic eval-
uates the equality of the means in the first and last part of the Markov chains. If the
samples are drawn from the stationary distribution, the two means calculated from the
first and the last part of a Markov chain are equal. It is known that the CD test statistic
has an asymptotic standard normal distribution. All of the results that we report in this
paper are based on samples that have passed Geweke’s (1992) convergence test at a
significance level of 5% for all parameters.

Searching the best model, we found that the most adequate model to describe the
data is the Student-t model with the lag of the baseline sales r = 2, which achieved the
minimum value of BPIC, BPIC = 9, 948.833. We therefore select this model, which
is preferred by the BPIC. Table 2 reports the posterior means, the standard errors,
the 95% confidence intervals, the inefficiency factor (Kim et al. 1998) and the values
of Geweke’s CD test statistic. Based on 1,000 draws for each of the parameters, we
calculated the posterior means, the standard errors, and the 95% confidence intervals.
The 95% confidence intervals are estimated using the 2.5th and 97.5th percentiles of
the posterior samples. The inefficiency factor is a useful measure for evaluating the
efficiency of the MCMC sampling algorithm. It is defined as 1 + 2

∑∞
k=1 ρ(k), where

ρ(k) is the sample autocorrelation at lag k calculated from the sampled draws. We
have used 1,000 lags to estimate the inefficiency factors. As shown in Table 2, the
employed sampling procedure achieved a good efficiency.

Figure 3 plots the change in the posterior means of the baseline sales for each store.
As shown in Fig. 3, it shows a nonlinear relationship over the sales period. We can
also see that the baseline sales for each store are different from each other.

3.3 Discussion

As shown in Fig. 3, the baseline sales for each store stores are time varying. In Japan,
it is widely expected that the sales patterns for traditional incense and lifestyle incense
will differ over the course of the year. For traditional incense, sales peak during times
of religious significance; specifically, they peak during the equinoctial weeks of spring
and autumn and during the Bon Festival in August. Sales tend to be highest in March,
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Fig. 3 The fluctuations in the posterior means of baseline sales for each item. The dashed lines are the
95% confidence intervals. a Store 1 and b Store 2

in the months of July through September, and briefly in early December. By contrast,
sales for lifestyle incense peak during the rainy season in late May and June.

Figure 3 also indicates that the baseline sales for each store are different from each
other. We further investigated the consumer demographics for each of the two stores.
Demographic analysis showed that elderly consumers represented the vast majority of
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sales at Store 1, whereas the majority of consumers at Store 2 were younger, females,
or foreigners. The sales data are consistent with the observation that elderly people
tend to purchase traditional incense and that younger people tend to purchase lifestyle
incense. In Store 1, the sale of traditional incense predominated; in Store 2, lifestyle
incense was much more popular.

As shown in Table 2, weather appears to impact demand for lifestyle incense. In
Store 2, sales rose during the rainy season. The posterior mean of β21 is greater than
0. The estimated coefficients on the weekly effect, β12 and β22, indicate that working
days have a negative effect on sales. This is to be expected, since working people
rarely visit department stores during the workday. There is a significant difference in
the coefficients that measure the promotion effects in Store 1 and Store 2. The posterior
mean of β13 is close to zero, while that of β23’s is far from zero. Moreover, the 95%
confidence interval around β13 includes 0. This suggests that sales will not increase
even if promotion is used for Store 1. On the other hand, the daily sales would increase
when promotion is used for Store 2.

There are at least two reasons for this. First, Store 2 is located near many for-
eign offices. Foreign customers often buy the fancy cassolette and the accompanying
incense products as souvenirs. Selling these luxury goods requires substantial acquain-
tance with and knowledge of the product. The result is therefore expected, since manu-
facturer employees tend to be more knowledgeable about the product than department
store employees. Second, auspicious product display in the department store has an
impact on sales. In Store 1, incense products are displayed near the checkout lines.
Because most department store employees are stationed near checkout areas, they can
easily support customers looking for incense. Unlike in Store 1, the location of incense
in Store 2 is far from the checkout area.

Often, department stores will have store-wide promotions. Sales of incense increase
in conjunction with store-wide events. Correlation coefficients indicate that the sales
of each store are correlated with each other. Since the posterior means of ν j are around
5 and 26, the sales data have a fat-tailed distribution. Additionally, this conclusion was
supported by the BPIC. As described before, the Student t model is superior to the
normal model. As a benchmark model, we also fitted Ando’s (2006a) model, where
Poisson distribution is employed for predicting the sales. BPIC score indicated that
the proposed model is also superior to the Ando (2006a) model. The BPIC score of
Poisson model with the lag of the baseline sales r = 2 was BPIC = 9, 998.964. The
aforementioned results suggest that the proposed method can be used to distill useful
information from observed data.

4 Conclusions

This paper considered the problem of simultaneously identifying unobserved base-
line sales, the effectiveness of marketing activities, and the effects of controllable/
uncontrollable business factors. We developed a method for modeling multivariate
time series within the framework of Bayesian general state-space modeling. Since the
likelihood function depends on high-dimensional integrals, the Bayesian approach
via the MCMC algorithm is proposed. This approach can more easily estimate the
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model parameters due to recent advancements in computer technology. To determine
the most amenable model among a set of candidate models, the use of the Bayesian
predictive information criterion is proposed. As shown in the data analysis, interest-
ing and important practical results are obtained. We apply the proposed method to
the daily sales of incense products, using information collected from two department
stores (both located in Tokyo). In both stores, incense manufacturers sell two main
products: traditional incense and lifestyle incense. Generally, elderly people tend to
purchase the former and younger people tend to purchase the latter. Traditional incense
products are used for religious purposes, while lifestyle incense products are used for
pleasure. In this study, the proposed method achieved many results.

First, the daily sales data have a fat-tailed distribution. When we compared the BPIC
scores of the normal and the fat-tailed models, the latter was supported. This result was
also consistent with the result from the Shapiro-Wilk normality test. Because normality
is an essential assumption of the traditional state-space models, the proposed method
is a powerful tool for data analysis.

Second, our results suggest that the majority of consumers in the two stores differ.
Demographic analysis showed that the majority of consumers at one store were elderly,
whereas the majority of consumers in the other store were younger, female, or foreign.
Because the positioning of these products is distinct, such information is useful when
planning a marketing strategy.

Third, there is a significant difference in the promotion effect between these stores.
The results suggest that daily sales will not increase in one store, even if promotions
are used. In contrast, promotions are effective at the other store. We believe that the
proposed method might allow us to forecast with less uncertainty and greater accuracy
as more information becomes available. Unfortunately, a large dataset was not available
for this paper.

There is still room for further investigation. First, as demonstrated an empirical
study, traditional and lifestyle incense are very different products, and may aimed
at different consumer groups for distinctly different purposes. However, due to the
limited data, the model used the aggregated series of incense sales instead of modeling
two separate series. This aggregation may increase noise in the data. If we have more
detailed data, we can incorporate such a strong difference. Second, our sales promotion
data are 0/1 dummies, just indicating the execution of a display promotion. More
detailed price promotion data will help us to investigate the depth of the price cut
matter. If dataset is the combination of price promotion, feature and display; there is
an opportunity to extend the proposed model to analyze their separate and synergistic
effect on sales. We would like to investigate these problems in a future paper.
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