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Abstract We propose a scale-free network model with a tunable power-law
exponent. The Poisson growth model, as we call it, is an offshoot of the celebrated
model of Barabási and Albert where a network is generated iteratively from a small
seed network; at each step a node is added together with a number of incident edges
preferentially attached to nodes already in the network. A key feature of our model
is that the number of edges added at each step is a random variable with Poisson
distribution, and, unlike the Barabási–Albert model where this quantity is fixed, it can
generate any network. Our model is motivated by an application in Bayesian inference
implemented as Markov chain Monte Carlo to estimate a network; for this purpose,
we also give a formula for the probability of a network under our model.

Keywords Bayesian inference · Complex networks · Network models · Power-law ·
Scale-free

1 Introduction

Until recent times, modeling of large-scale, real-world networks was primarily limited
in scope to the theory of random networks made popular by Erdös and Rényi (1959).
In the Erdös–Rényi model, for instance, a network of N nodes is generated by connect-
ing each pair of nodes with a specified probability. The degree distribution p(k) of a
large-scale random network is described by a binomial distribution, where the degree
k of a node denotes the number of undirected edges incident upon it. Thus, degree in a
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random network has a strong central tendency and is subject to exponential decay so
that the average degree of a network is representative of the degree of a typical node.

Over the past decade, though, numerous empirical studies of complex networks, as
they are known, have established that in many such systems—networks arising from
real-world phenomena as diverse in origin as man-made networks like the World Wide
Web, to naturally occurring ones like protein-protein interaction networks, to citation
networks in the scientific literature; see Albert et al. (1999), Jeong et al. (2001), and
Redner (1998), respectively—the majority of nodes have only a few edges, while some
nodes, often called hubs, are highly connected. This characteristic cannot be explained
by the theory of random networks. Instead, many complex networks exhibit a degree
distribution that closely follows a power-law p(k) ∝ k−γ over a large range of k, with
an exponent γ typically between 2 and 3. A network that is described by a power-law
is called scale-free, and this property is thought to be fundamental to the organization
of many complex systems; Strogatz (2001).

As preliminary experimental evidence mounted (see Watts and Strogatz (1998), for
instance), a simple, theoretical explanation accounting for the universality of power-
laws soon followed; the network model of Barabási and Albert (1999) (BA) provided a
fundamental understanding of the development of a wide variety of complex networks
on an abstract level. Beginning with a connected seed network of t0 nodes, the BA
algorithm generates a network over a sequence of iterations t = t0 + 1, t0 + 2, . . . by
using two basic mechanisms: growth, where at each step t the network is augmented
by a single node together with m ≤ t0 undirected incident edges; and preferential
attachment where the m edges emanating from the newly added node are connected
to exactly m nodes already in the system such that the probability a node of degree k
gets an edge is proportional to r(k) = k, the degree of the node. The function r(k) is
a specific example of a preferential attachment function and we defer a more detailed
treatment to the next section. Moving along, when m is fixed throughout, Barabási
and Albert (1999) gave a heuristic argument showing that the BA model follows a
power-law with exponent γ = 3 in the limit of large t . The sudden appearance of
the this model in the literature, nearly a decade ago, sparked a flurry of research in
the field, and, consequently, numerous variations and generalizations upon this proto-
typal model have been proposed; Boccaletti (2006) provides a thorough survey of the
subject.

In this paper, we propose a new growing model based on preferential attachment:
the Poisson growth (PG) model. Our model, as described in Sect. 2, is an extension
of the BA model in two regards. Firstly, we consider the number of edges added
at a step to be a random quantity; at each step, we assign a value to m according
to a Poisson distribution with expectation λ > 0. Secondly, we avail ourselves of a
more general class of preferential attachment functions r(k) studied by several authors
including Krapivsky and Redner (2001) and Dorogovtsev et al. (2000). In Sect. 3 we
argue that the degree distribution of the PG model follows a power-law with exponent
γ that can be tuned to any value greater than 2; the technical details of our argument
are left for the Appendix. In addition, we conducted a simulation study to support
our theoretical claims. Our results, provided in Sect. 4, show that the values of γ we
estimated from networks generate under the PG model are in agreement with those
predicted by our formulae for the power-law exponent.
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Our motivation for proposing the PG model, as explained in Sect. 5, arises from a
need for a simple, yet realistic scale-free model that is serviceable in applications. In
fact, with our model every network has a nonzero probability of being generated, in
addition to possessing a tunable power-law exponent. In contrast, the BA model has
a fixed γ , and is subject to numerous structural constraints which severely limit the
variety of generable networks. We give a simple formula for the probability of a net-
work under the PG model, which can be applied quite naturally in Bayesian inference
using Markov chain Monte Carlo (MCMC) methods. Firstly, given a network G, we
may estimate the PG model parameters, or engage in model selection in the case when
we have more models; or, going against the grain, we may estimate an unknown G
from data using our PG model formula as a scale-free prior distribution.

Finally, a cursory note on some important classes of scale-free models amassed in
the literature is in order. For brevity we merely outline some generic methodologies
and direct the reader to Boccaletti (2006) for model specific details.

Nonlinear preferential attachment: Generalizations of the BA model have been
proposed in which r(k) = kν, ν > 0. It has been established, as we describe in
Sect. 2, that when r(k) is asymptotically linear in k, then the algorithm generates
scale-free networks with tunable power-law exponent.

Fitness models: An alternate way of tinkering with the attachment function is to
assign to each node a fitness, or weight, so that r(ki ) = ηi ki , where ηi is the fitness
and ki the degree of node i , respectively; see Bianconi (2001).

Dynamic edge rewiring: In the BA model, edges cannot be altered after they have
been placed in a network. Therefore, a natural avenue for extending the BA model
is to allow for rewiring of existing edges in the network. Albert and Barabási (2000)
proposed a BA-like model based on this idea and showed it follows a power-law, again,
with tunable exponent.

Other mechanisms: Scale-free models not based on preferential attachment have
also been proposed such as the model of Solé et al. (2002), which is a growing model
based on node duplication and edge rewiring. Other scale-free models not based on
growth have also been put forward; for example, the static model of Lee et al. (2005).

Although extending the BA model via generalizing r(k) can lead to a tunable
power-law exponent, such models are still subject to structural constraints similar to
that of the BA model itself. On the other hand, dynamic edge rewiring does allow for
additional freedom in the network structures that can be generated, but at the expense
of using more complex generating algorithms. Hence we contend the PG model is a
useful addition to the aforementioned classes of preferential attachment models inso-
much as it is serviceable in applications, and its implementation is computationally
straight forward in the inferential problems described above.

2 The Poisson growth model

In the PG model, we begin with a small seed network of t0 nodes. Let Gt = (Vt , Et )

be the network at the onset of time step t ≥ t0 where Vt = {v1, v2, . . . , vt } is a set of t
nodes and Et is a multiset of unordered pairs

{
vi , v j

}
taken from Vt such that i �= j .

As a multiset the elements of Et can have more than one membership entailing that
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a pair of nodes may be connected by multiple edges; however the condition i �= j
prohibits loops, which are edges from a node to itself. The updated network Gt+1 is
generated from Gt as follows:

Poisson growth: A new node vt+1 is added to the network together with mt inci-
dent edges; mt is a random variable assigned according to a Poisson distribution with
expectation λ > 0.

Preferential attachment: Each edge emanating from vt+1 is connected with a node
already in the network. Node selection can be considered as a series of mt independent
trials, where at each trial the probability of selecting a node from Vt with degree k is

qt (k) = r(k)
∑t

i=1 r(ki,t )
, (1)

where ki,t is the degree of node vi at step t . Define si,t as the number of times node vi

is chosen at step t . Then the entire selection procedure is equivalent to drawing a vec-
tor (s1,t , s2,t , . . . , st,t ) from a multinomial distribution with probabilities qt (k1,t ), …,
qt (kt,t ) and sample size mt . Equivalently, si,t has Poisson distribution with expectation
λqt (ki,t ) independently for i = 1, . . . , t .

The PG model is determined by the choice of r(k); we concentrate on two specifi-
cations and discuss their implications in the next section. Firstly, let

r(k) = k + a (2)

where the offset a > 0 is a constant. More generally, we define

r(k) = k + a, k ≥ 1, and r(0) = b (3)

by taking a ≥ −1 with extended domain, but in doing so define a threshold parameter
b ≥ 0. Indeed, the latter formulation includes the former as a special case when we
take a = b ≥ 0, so that overall our model is specified by the parameter θ = (a, b, λ).

The BA model can be explained as a reduction of our model by taking a = b = 0,
and fixing 1 ≤ mt = m ≤ t0 so that the number of edges added to the system at
each step is a constant; the new edges are preferentially attached from the new node
to exactly m other nodes. Many structural constrains are implicit in the BA model.
Indeed, at step t , a network with t nodes must have m(t − t0) + |Et0 | edges, none
of which are multiple, whereas the number of edges for the PG model can take other
values. Technically speaking, in order for the BA model to be well-defined the seed
network of t0 nodes must have at least one edge, otherwise the qt0(k) values, as calcu-
lated following the addition of node t0 + 1, will all be the indeterminate quantity 0/0.
The PG model, too, is subject to constraints on the seed network in the extreme cases
when a = −1 or b = 0. For example, when a ≥ −1 and b = 0 the same restrictions
apply as for the BA model. In the case when a = −1 and b > 0, indeterminacy will
arise in the qt0(k) values if, and only if, all nodes have degree 1. The final case when
a = −1 and b = 0 combines the constraints from the other two cases, and it follows
that the same choice of seed network as in the previous case works here, too.
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A number of extensions of the BA model based upon generalizing r(k) have been
proposed. In particular, Krapivsky et al. (2000) analyzed a version where the pref-
erential attachment function is not linear in the degree k of a node, but instead can
be a power of the degree kν, ν > 0. They showed that for the scale-free property
to hold, r(k) must be asymptotically linear in k. In a subsequent work, Krapivsky
and Redner (2001) and Dorogovtsev et al. (2000) independently went on to estab-
lish that adding the offset a > −m as in (2) does not violate this requirement, and
derived the power-law exponent γ = 3 + a/m. Their result is analogous with our
reported power-law exponent in (6) with λ = m as seen in the next section. Further-
more, Krapivsky and Redner (2001) investigated an attachment function similar to (3)
defined by r(k) = k, k ≥ 2, r(1) = b, r(0) = 0. As they took m ≥ 1 they did not need
to be concerned with nodes of degree k = 0. The power-law exponent they derived in
this case is reminiscent of our result in (5).

3 The degree distribution of the Poisson growth model

In this section, we discuss the degree distribution p(k) for networks generated under
the PG model. To make our argument concerning p(k) precise, we have to take into
account that Gt is generated randomly and the degree distribution of Gt also varies.
Let nt (k) be the number of nodes in Gt with degree k. Since

∑∞
k=0 nt (k) = t , the

observed degree distribution of Gt is defined by pt (k) = nt (k)/t for k ≥ 0. Our main
result is as follows:

Theorem 1 Consider the PG model with parameter θ = (a, b, λ) and preferential
attachment function as defined in (3). For moderately large k up to k ∼ td with
d < 1/(2γ + 2), the limiting distribution limt→∞ pt (k) = p(k) follows a power-law

p(k) ∼ k−γ , (4)

where ak ∼ bk indicates these two sequences are proportional to each other so that
ak/bk converges to a nonzero constant as k → ∞. The power-law exponent is

γ = 3 + a + (b − a)p(0)

λ
, (5)

where p(0) is the fraction of nodes with degree 0.

The exponent takes the range γ > 2; the lower limit γ → 2 can be attained by
letting a = −1, b = 0, and λ → 0. This lower limit is in fact the limit for any form of
r(k) when λ does not depend on t ; γ must be larger than 2 to ensure the mean degree∑∞

k=0 kp(k) = 2λ converges. For the special case (2), the exponent becomes

γ = 3 + a

λ
, (6)

and the range is γ ≥ 3.

123



752 P. Sheridan et al.

Proof of Theorem 1 Firstly, we consider a moderately large k for the asymptotic argu-
ment as t → ∞. The maximum value of k for consideration is k ∼ tc for a given t
with a constant c = 1/(γ + 2 + ε) with any ε > 0. Then, the expectation of pt (k) can
be expressed as

E(pt (k)) ∼ k−γ , (7)

which is the power-law we would like to show for pt (k). The power-law of (7) is an
immediate consequence of the recursive formula

(k + a − 1 + γ )E (pt (k)) = (k + a − 1)E (pt (k − 1)) (8)

for sufficiently large k, and thus E (pt (k)) ∼ (k + a − 1)−γ ∼ k−γ ; see the Appendix
for a proof of (7).

The variance of pt (k) will be shown as

V(pt (k)) = O(k2+ε t−1), (9)

indicating the variance reduces by the factor 1/t . Note that (9) is not a tight upper
bound, and the variance can be much smaller. See the Appendix for the proof of (9).
Let 0 < d < 1/(2γ + 2 + ε), and consider k = O(td), which is even smaller than tc.
Then,

√
V(pt (k))

E(pt (k))
= O(kγ+1+ε/2t−1/2) = O(tα) (10)

with α = d(γ +1+ε/2)−1/2 < 0, indicating the variation of pt (k) is relatively small
compared to the value of pt (k). Thus the limiting distribution limt→∞ pt (k) = p(k)

follows the power-law of (4). By taking ε → 0, the power-law of pt (k) is shown up
to k ∼ td with d < 1/(2γ + 2). 	


It remains to give an expression for p(0) in (5). We will show in the Appendix that
p(0) is a solution of the quadratic equation

(b − a)x2 + (2λ + a + λb − (b − a)e−λ)x − (2λ + a)e−λ = 0. (11)

For a �= b, one of the solutions

p(0) = 1

2(b − a)

[{
(2λ + a + λb − (b − a)e−λ)2 + 4(b − a)(2λ + a)e−λ

}1/2

−(2λ + a + λb − (b − a)e−λ)

]
(12)

is the unique stable solution with 0 < p(0) < 1; this can be checked by looking at the
sign of pt+1(0) − pt (0) in the neighborhood of p(0).
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4 Simulation study

A small simulation study was conducted to support our theoretical claims of Sect. 3.
Specifically, we wish to confirm via simulation that the degree distribution p(k) of (4)
as well as its expected value E(pt (k)) as in (7) follow a power-law with γ as in (5).
To that end we generated networks under the PG model for a variety of parameter
settings. For each specification of θ we generated nsim = 104 networks for three
different values of the network of size N , each from a seed network of a pair of con-
nected nodes. We included the BA model, generated under analogous conditions, so
as to demonstrate the soundness of our results which are summarized in Table 1.

In point of fact, estimating γ from a network can be quite tricky and it has been
the subject of some attention in the literature; see Goldstein et al. (2004). We sided
with using the maximum likelihood (ML) approach described by Newman (2005) for
a continuous power-law distribution as an approximation to the discrete case. In this
methodology, the ML estimator of γ is given by

γ̂ = 1 +
⎛

⎝
∑

k≥kmin

n(k)

⎞

⎠ ·
⎛

⎝
∑

k≥kmin

n(k) log
k

kmin

⎞

⎠

−1

where n(k) is the number of nodes with degree k, and kmin is the minimum degree after
which the power-law behavior holds. Bauke (2007) studied selecting a value for kmin

Table 1 Summary of estimated power-law exponents from simulated networks

Model Parameters N kmin Mean k Mean γ̂ ± SD γ̂avg γ

BA m = 1 2,500 8 2.0 3.04 ± 0.18 3.04 3

BA m = 1 5,000 10 2.0 3.03 ± 0.15 3.03 3

BA m = 1 10,000 15 2.0 3.01 ± 0.16 3.00 3

PG θ = (0, 0, 1) 2,500 8 2.0 3.06 ± 0.14 3.04 3

PG θ = (0, 0, 1) 5,000 10 2.0 3.03 ± 0.12 3.03 3

PG θ = (0, 0, 1) 10,000 15 2.0 3.01 ± 0.12 3.01 3

PG θ = (−0.95, 0.05, 0.5) 2,500 8 1.0 2.33 ± 0.17 2.32 2.23

PG θ = (−0.95, 0.05, 0.5) 5,000 10 1.0 2.28 ± 0.13 2.32 2.23

PG θ = (−0.95, 0.05, 0.5) 10,000 15 1.0 2.30 ± 0.12 2.30 2.23

PG θ = (−0.9, 0.1, 1) 2,500 8 2.0 2.70 ± 0.10 2.70 2.44

PG θ = (−0.9, 0.1, 1) 5,000 10 2.0 2.54 ± 0.10 2.51 2.44

PG θ = (−0.9, 0.1, 1) 10,000 15 2.0 2.50 ± 0.09 2.50 2.44

PG θ = (−0.9, 0.1, 3) 2,500 8 6.0 2.89 ± 0.06 2.89 2.72

PG θ = (−0.9, 0.1, 3) 5,000 10 6.0 2.86 ± 0.05 2.86 2.72

PG θ = (−0.9, 0.1, 3) 10,000 15 6.0 2.80 ± 0.05 2.80 2.72

PG θ = (0.5, 0.5, 3) 2,500 8 6.0 3.13 ± 0.06 3.13 3.17

PG θ = (0.5, 0.5, 3) 5,000 10 6.0 3.15 ± 0.05 3.15 3.17

PG θ = (0.5, 0.5, 3) 10,000 15 6.0 3.15 ± 0.06 3.15 3.17

The last column is the theoretically predicted γ
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by using a χ2 goodness of fit test over a range of kmin; however, we shied away from
this level of scrutiny as we found that taking kmin values as shown in Table 1 was rea-
sonable for our examples. We decided on these values based upon visual inspections
of the plots of γ̂ over ranges of kmin. Such plots typically exhibit a broad plateau of γ̂

values for moderately sized kmin, and we took our estimates based on this observation.
This methodology is illustrated in Fig. 1a and b where we plot the degree distribution
with γ̂ for a typical network generated by the BA and PG model, respectively.

Returning to Table 1, in each case, we confirm (4) has power-law exponent as
predicted by (5) and (12). We computed γ̂ for each network, and calculated the mean
and standard deviation of γ̂ values for n∼ networks. We observe that the mean γ̂ agrees
well with the predicted γ , and the variation of γ̂ is relatively small as suggested by
(10).
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Fig. 1 Degree distribution p(k) of a typical network with N = 5,000 plotted on a log–log scale with the
power-law line using estimated exponent γ̂ . a Generated under the BA model; γ̂ = 3.03. b Generated under
the PG model with θ = (0, 0, 1); γ̂ = 3.01
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Fig. 2 Average degree distribution E(p(k)) of the simulation with the power-law line using estimated
exponent γ̂avg in the case when N = 5,000. Plotted for a the BA model and for b the PG model with
θ = (0, 0, 1), where γ̂avg = 3.03 for both cases
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In addition, to show that the same holds for (7), in each case we computed the
average degree distribution of the nsim networks as an estimate of E(p(k)). Then we
estimated the degree exponent γ̂avg as seen in the table and Fig. 2. Again, the simulated
results match well with theory.

5 Discussion

The PG model has a special place in the class of preferential attachment models. It
has a tunable power-law exponent and a simple implementation, yet it can generate
any network. In contrast, the BA model and its generalizations described in Sect. 2
have serious restrictions on the types of networks that can be generated because m is
held constant. For example, at step t an instantiation of the BA model will consist of
a t node network with the number of edges equal to exactly m(t − t0), plus the num-
ber of edges in the seed network. The simple design of our model makes computing
the probability of a network straightforward. This in combination with its modeling
potential gives rise to several useful applications in Bayesian inference.

In explicit terms, let G = (V, E) be a network with N = |V | nodes where V =
{v′

1, . . . , v
′
N }. Furthermore, let G N = (VN , EN ) be a network generated under PG

model after step N − 1 so that VN = {v1, . . . , vN }, where the seed network consists
of a single node. The association between V and VN is defined by a permutation
σ = (σ1, . . . , σN ) so that vi = v′

σi
. Given G, once we specify σ , then it is straight-

forward to compute ki,t , si,t for i = 1, . . . , t ; t = 1, . . . , N − 1. Then the probability
of G given θ = (a, b, λ) and σ is

P(G|θ, σ ) =
N−1∏

t=1

(
t∏

i=1

e−λqt (ki,t )
(λqt (ki,t ))

si,t

si,t !

)

.

One application is when G is known and we wish to estimate θ . This can be done
by assigning a prior π(θ) for θ and the uniform prior on σ . The posterior probability
of (θ, σ ) given G is

π(θ, σ |G) ∝ P(G|θ, σ )π(θ).

Using MCMC to produce a chain of values for (θ, σ ), the posterior π(θ |G) is simply
obtained from the histogram of θ in the chain. Moreover, this procedure can be used
for model comparison, if we have several models for generating the network.

Another application is when we wish to make inference about G from data D with
likelihood function P(D|G). The posterior probability of (G, θ, σ ) given D is

π(G, θ, σ |D) ∝ P(D|G)P(G|θ, σ )π(θ).

Then the posterior π(G|D) is simply obtained from the frequency of G in the chain.
Indeed, we used this approach for inferring a gene network from microarray data
in Sheridan et al. (2007).

Recall that the PG model can produce networks with multiple edges, but, in practice,
we often wish to restrict our attention to networks without this feature. As an approx-
imation, we could apply the formula for P(G|θ, σ ) just as well in this case. Though
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the number of multiple edges will be quite small in a network generated from a λ of
reasonable size so that their presence may have little effect on the overall inference.

Alternatively, we propose a slight modification to our model where we generate
mt edges at step t according to a binomial distribution with parameter p = λ/t and
sample size t . In this formulation the seed network must be selected such that λ ≤ t0,
otherwise p > 1 may occur. Then by sampling nodes without replacement, multiple
edges are avoided. In our simulation (results not included) we found that these mod-
ifications do not change the power-law, though an airtight derivation of this is more
complicated than for the PG model itself. In fact, entertaining multiple edges in a
scale-free model as a means of facilitating mathematical arguments about the under-
lying power-law has precedent in Bollobás et al. (2001). They extended the BA model
by allowing for multiple edges—and loops—and provided a mathematically rigorous
argument establishing that the power-law exponent γ is 3.

Finally, though we made specific choices for r(k) in our arguments, the PG model
can be generalized to a wider class of preferential attachment functions. For instance,
Dorogovtsev and Mendes (2001) investigated accelerated growth models where mt

increases as the network grows. It should be possible to incorporate accelerated growth
into PG model by gradually increasing the value of λ over time. Another line of gen-
eralizations of the PG model is via the incorporation of dynamic edge rewiring.

Appendix: Proofs

The expected value of pt (k)

Here we give the proof of (7). We assume that the functional form of r(k) is (2), and
a modification to handle (3) is mentioned at the bottom.

Let I (A) denote the indicator function of the event A, so I (A) = 1 if A is true and
I (A) = 0 if A is false. We use the notation P(·), E(·) and V(·) for the probability,
expectation and the variance, and also P(·|A), E(·|A) and V(·|A) for those given a
condition A. By noting

nt+1(k) =
t∑

i=1

I (ki,t + si,t = k) + I (mt = k),

the conditional expectation of nt+1(k) given Gt is

E(nt+1(k)|Gt ) =
t∑

i=1

P(ki,t + si,t = k|Gt ) + P(mt = k|Gt )

=
t∑

i=1

e−λqt (ki,t )
(λqt (ki,t ))

k−ki,t

(k − ki,t )! + e−λ λk

k!

=
k∑

s=0

nt (k − s)e−λqt (k−s) (λqt (k − s))s

s! + e−λ λk

k! . (13)
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The last term e−λλk/k! ∼ (eλ/k)k can be ignored for a large k, since it is
exponentially small as k grows. We examine the terms in the summation over s =
0, 1, . . . , k for k = O(tc) as t → ∞. For a fixed s, qt (k − s) ∼ k/t for a linear
preferential attachment model. More specifically, for r(k) = k + a, k ≥ 0,

qt (k − s) = r(k − s)
∑t

i=1 r(ki,t )
= k − s + a

t (2λ + a)
(1 + O(t−1/2)),

because the mean degree of Gt is

1

t

t∑

i=1

ki,t = 2

t

⎛

⎝|Et0 | +
t−1∑

t ′ = t0

mt ′

⎞

⎠ = 2λ + O(t−1/2),

and the denominator of qt (k) is

t∑

i=1

r(ki,t ) =
t∑

i=1

(ki,t + a) = t (2λ + a + O(t−1/2)). (14)

Thus the sum in (13) over s = 0, 1 becomes

nt (k)

(
1 − λ(k + a)

(2λ + a)t
+ O(kt−3/2)

)
+ nt (k − 1)

(
λ(k + a − 1)

(2λ + a)t
+ O(kt−3/2)

)
.

For s ≥ 2, each term is ∼ nt (k − s)(k/t)s . By noting
∑k

s=2 nt (k − s) ≤ t , the sum
over s = 2, . . . , k becomes O(k2t−1).

Next, we take the expectation of (13) with respect to Gt to obtain the unconditional
expectation E(nt+1(k)), and replace nt (k) = tpt (k). Using the results of the previous
paragraph, we get

E(pt+1(k)) = E(pt (k)) − λ

(2λ + a)t

(
(k′ + γ + O(kt−1/2))E(pt (k))

−(k′ + O(kt−1/2))E(pt (k − 1)) + O(k2t−1)
)

(15)

with k′ = k + a − 1 and the γ of (6). Let us assume E(pt (k − 1)) ∼ (k − 1)−γ , and
remember c < 1/(γ + 2). By taking the limit t → ∞ and equating E(pt+1(k)) =
E(pt (k)), we get

(k′ + γ + o(1))E(pt (k)) = (k′ + o(1))E(pt (k − 1)).

So that, for sufficiently large t ,

E(pt (k)) ∼ k−γ
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also holds for k. Since E(pt (k)) = O(1) for a fixed k, the power-law holds for any k
by induction up to k ∼ tc.

For r(k) of (3), the preferential attachment is modified to

r(k) = k + a + (b − a)I (k = 0), k ≥ 0.

This changes the the denominator of qt (k) in (14) to

t∑

i=1

r(ki,t ) = t
(

2λ + a + (b − a)pt (0) + O(t−1/2)
)

, (16)

and thus 2λ + a in the updating formula (15) is replaced with 2λ + a + (b − a)p(0),
leading to (5). Note that pt (0) = p(0)+ O(t−1/2) from (9) shown in the next section.

The variance of pt (k)

Here we give the proof of (9) by working on V(nt (k)) = t2V(pt (k)). Although r(k) of
(2) is again assumed, the argument is basically the same for (3). By noting the identity

V(nt+1(k)) = E(V(nt+1(k)|Gt )) + V(E(nt+1(k)|Gt )), (17)

we evaluate the two terms on the right hand side.
The conditional variance of nt+1(k) given Gt is evaluated rather similarly as the

conditional expectation of (13). By noting V(I (A)) = P(A)− P(A)2, V(nt+1(k)|Gt )

is expressed for k = O(tc) as

k∑

s=0

nt (k − s)

{

e−λqt (k−s) (λqt (k − s))s

s! −
(

e−λqt (k−s) (λqt (k − s))s

s!
)2

}

≈ nt (k)
λ(k + a)

(2λ + a)t
+ nt (k − 1)

λ(k + a − 1)

(2λ + a)t
, (18)

where terms from I (mt = k) are ignored for a large k. Thus, the first term in (17) is

E(V(nt+1(k)|Gt )) = O(k−γ+1).
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On the other hand, the second term in (17) is evaluated by considering the variance
of (13) as

V(E(nt+1(k)|Gt )) ≤ V(nt (k))

(
1 − 2λ(k + a)

(2λ + a)t
+ O(kt−3/2)

)

+2
√

V(nt (k))
√

V(nt (k − 1))

(
λ(k + a − 1)

(2λ + a)t
+ O(kt−3/2)

)

+V(nt (k − 1))O(k2t−2) + √
V(nt (k))O(k2t−1) + O(k4t−2).

We substitute these two expressions for those in (17). We will show, by induction,
that

V(nt (k)) < Ak2+ε t (19)

holds for all (t, k) with k = O(tc) using some constant A. Let us assume that (19)
holds for (t, k) and (t, k − 1). By taking a sufficiently large A, we have

V(nt+1(k)) ≤ Ak2+ε(t − (2λ + a)−1) + o(k1+ε/2) < Ak2+ε(t + 1), (20)

implying that (19) also holds for (t + 1, k).
On the other hand, for any random variable 0 ≤ n ≤ t with its expectation E(n)

fixed, the largest possible variance O(t)E(n) is attained if the probability concentrates
on the extreme values 0 and t . Applying this upper bound to nt (k) with k ∼ tc, we
obtain V(nt (k))/t = O(E(nt (k))) = O(k−γ t) = O(k2+ε), implying that (19) holds
for any (t, k) with k ∼ tc.

For induction with respect to k, we only have to show

V(nt (k)) < v(k)t (21)

for a sufficiently large k so that terms from I (mt = k) in (18) can be ignored. v(k) is
an arbitrary constant depending on k. We start from k = 0. First note that

nt+1(0) =
t∑

i=1

I (ki,t = 0 ∩ si,t = 0) + I (mt = 0).

Thus E(nt+1(0)|Gt ) = nt (0)e−λqt (0) + e−λ, and so

V(E(nt+1(0)|Gt )) = V(nt (0))

(
1 − 2λa

(2λ + a)t
+ O(t−3/2)

)
.

On the other hand, V(nt+1(0)|Gt ) is expressed as

nt (0)(e−λqt (0) − e−2λqt (0)) + e−λ − e−2λ + 2nt (0)(1 − e−λqt (0))e−λ.
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By substituting these two expressions for those in (17), we observe that the increase
of the variance, i.e., V(nt+1(0)) − V(nt (0)) is bounded by a constant, and we have
V(nt (0)) = O(t).

Let us assume (21) holds up to k − 1. Then V(nt+1(k)) can be expressed quite
similarly as (20), but E(V(nt+1(k)|Gt )) includes additional terms from I (mt = k);
V(I (mt = k)) = O(1) and E(

∑t
i=1 Cov(I (ki,t + si,t = k), I (mt = k)|Gt )). For

ki,t = k, the covariance term ≤ P(mt = k)(1 − P(si,t = 0|Gt )) = O(t−1), and for
ki,t = k − s with s ≥ 1, the covariance term ≤ P(si,t = s)(1−P(mt = k)) = O(t−s).
Thus, by taking the sum over i = 1, . . . , t , it becomes O(t · t−1) = O(1). Therefore,
V(nt+1(k)) − V(nt (k)) is bounded by a constant, and (21) holds for k. By induction,
(21) holds for any k.

The equation of p(0)

Here we derive (11) for the r(x) of (3). By taking the expectation of E(nt+1(0)|Gt ) =
nt (0)e−λqt (0) + e−λ with respect to Gt , and using (16), we get

E(nt+1(0)) = E(nt (0))

(
1 − λb

(2λ + a + (b − a)p(0))t
+ O(t−3/2)

)
+ e−λ.

By substituting nt (0) = tpt (0) and taking the limit t → ∞, we get a formula for
f (x) = (t + 1)(E(pt+1(0)) − E(pt (0))) as a function of x = p(0)

f (x) = −x

(
1 + λb

2λ + a + (b − a)x

)
+ e−λ.

The quadratic equation (11) is obtained by letting f (x) = 0. In addition, the condition
d f (x)/dx < 0 was checked for the stable solution.
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