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Abstract The symmetric derivative of a probability measure at a Lebesgue
point can often be specified by an exact relation involving a regularity index.
Knowledge of this index is of practical interest, for example to specify the local
behavior of the measure under study and to evaluate bandwidths or number of
neighbors to take into account in smoothing techniques. This index also deter-
mines local rates of convergence of estimators of particular points of curves and
surfaces, like minima and maxima. In this paper, we consider the estimation of
the d-dimensional regularity index. We introduce an estimator and derive the
basic asymptotic results. Our estimator is inspired by an estimator proposed
in Drees and Kaufmann (1998, Stochastic Processes and their Applications, 75,
149–172) in the context of extreme value statistics. Then, we show how (esti-
mates of) the regularity index can be used to solve practical problems in nearest
neighbor density estimation, such as removing bias or selecting the number of
neighbors. Results of simulations are presented.
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1 Introduction

1.1 Motivations

The subject of this paper is related to the general problem of derivation of
measures (see Rudin 1987, Chap. 7) and finds its motivation in a paper by
Berlinet and Levallois (2000). In their paper, Berlinet and Levallois address the
problem of the asymptotic normality of the nearest neighbor density estimator
(Loftsgaarden and Quesenberry 1965; Moore and Yackel 1977; see Paragraph
2.1 below) in cases where the density has bad local behavior (e.g., it is not contin-
uous or has infinite derivative). These authors point out that what is important
is the local behavior of the probability measure associated with the density, and
more exactly the rate at which the local value of the density is approximated
by the ratios of ball measures. More precisely, let B(Rd) be the Borel σ -field of
R

d, d ≥ 1, and let µ be a probability measure on
(
R

d, B(Rd)
)
. We denote by λ

the Lebesgue measure on R
d and we equip R

d with a norm denoted ‖.‖. Let x
be a point in R

d, δ a positive real number and B(x, δ) the open ball with center
at x and radius δ. To appreciate the local behavior of µ

(
B(x, δ)

)
with respect to

λ
(
B(x, δ)

)
one can consider the ratio of these two quantities. If, for fixed x, the

following limit

f (x) = lim
δ↓0

µ
(
B(x, δ)

)

λ
(
B(x, δ)

) (1)

does exist, then x is called a Lebesgue point of the measure µ. It can be shown
(Rudin 1987, Chap. 7) that λ-almost all points of

(
R

d, ‖.‖) are Lebesgue points
of µ. Moreover, if µ is absolutely continuous with respect to λ, then the Radon–
Nykodim derivative of µ and f coincide λ-almost everywhere. Thus, in this
case, one can select among the versions of the density of µ a particular one,
still denoted f , satisfying (1) at any point where the limit exists. The notion of
Lebesgue point plays a key role in the study of functional estimators and allows
to state elegant results with few restrictions on the functions to be estimated.
In this context, Berlinet and Levallois (2000) define a ρ-regularity point of the
measure µ as any Lebesgue point x of µ satisfying

∣∣∣
µ

(
B(x, δ)

)

λ
(
B(x, δ)

) − f (x)

∣∣∣ ≤ ρ(δ), (2)

where ρ is a measurable function such that limδ↓0 ρ(δ) = 0. Roughly, the func-
tion ρ is intended to specify the convergence of ball ratios towards f (x) in (1). For
example, if d = 1 and the measure µ has a density f with derivative f ′ bounded
by some constant Cx on a neighborhood of x, then ρ-regularity holds with
ρ(δ) = (Cx/2) δ. It is also clear that if f satisfies a local Hölder condition at the
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point x with exponent αx, then we have ρ-regularity with ρ(δ) = Cx/(αx +1) δαx .
However, it is easy to exhibit examples of measures with ρ-regularity but bad
local behavior of the density such as a discontinuity of second kind, see example
f3 below. It can also be verified that the proposed techniques will continue to
work when ρ is in some more general class of regularly varying functions at
0, i.e., which satisfy ρ(δε)/ρ(ε) → δαx as ε ↓ 0. As observed by Berlinet and
Levallois (2000), the notion of ρ-regularity actually involves measures rather
than densities and is much more appropriate to specify properties of estimators.

Clearly, the function ρ in (2) need not be unique and may depend on the
underlying norm on R

d. In the present paper, we assume that a more precise
relation than (2) holds at the Lebesgue point x, namely

µ
(
B(x, δ)

)

λ
(
B(x, δ)

) = f (x) + Cx δαx + o(δαx) as δ ↓ 0 (3)

where Cx is a non-zero constant and αx is a positive real number. It is straight-
forward to show that (3) implies ρ-regularity at the point x with ρ(δ) ∼ δαx . Note
that the constants Cx and αx of model (3) (provided they exist) are uniquely
determined. In order to justify the relevance of this model, some examples and
an application to mode estimation in the multivariate case are discussed in the
next paragraph. The index αx is a regularity index that controls the degree of
smoothness of the symmetric derivative of µ with respect to λ. Roughly speak-
ing, the larger the value of αx, the more regular the derivative of µ is at the point
x. The knowledge of this index is of practical interest, for example to specify
the local behavior of the measure under study and to evaluate bandwidths or
number of neighbors to take into account in smoothing techniques (Bosq and
Lecoutre 1987). In fact, the behavior of nonparametric density estimators such
as the nearest neighbor estimator at a given point x does strongly depend on
this local behavior, and with a smaller index αx fewer nearest neighbors should
be used. See for instance Devroye (1997), Lepski et al. (1997), and Picard and
Tribouley (2000) for other references which include the situation where the
degree of smoothness is not known in advance. Such consequences are worked
out in the second part of the paper. To situate the present work in the related
literature it is important to note that we do not assume any local Hölder prop-
erty. The first objective of the paper is to provide a consistent estimator of the
index αx from a sample of multivariate observations. This study is somewhat
related to the study of the fractal dimension of µ (see Cutler and Dawson 1990;
Davies and Hall 1999; Ferraty and Vieu 2000).

If f is three times continuously differentiable in a neighborhood of x ∈ R
d, a

Taylor series expansion shows that

µ
(
B(x, δ)

)

λ
(
B(x, δ)

) = f (x) + Cx δ2 + o(δ2) as δ ↓ 0
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where

Cx = V2/d
d

2π(d + 2)
Γ 2/d

(
d
2

+ 1
) d∑

i=1

∂2f
∂2xi

(x) (4)

with Vd denoting the volume of the unit ball in R
d and Γ the Gamma function.

See Fukunaga and Hostetler (1973) or Bosq and Lecoutre (1987) for calculation
details. Therefore, in this case, formula (3) holds with αx = 2 and Cx given by
(4), provided

∑d
i=1 ∂2f (x)/∂2xi 	= 0. The optimization of the number of nearest

neighbors has mostly been studied in this restricted context, see for example
Fukunaga and Hostetler (1973).

In Sect. 2 we define an estimator α̂n,x of αx based on nearest neighbor density
estimators and derive weak consistency and asymptotic normality. This esti-
mator is inspired by a proposal by Drees and Kaufmann (1998) which itself is
a generalization of a Pickands (1975) type estimator, a basic tool in extreme
value statistics. (For additional references, see Dekkers and de Haan 1989;
Embrechts et al. 1997). The estimation problem under study has some sim-
ilarity with the following extreme value problem. Consider for instance the
estimation of the second-order parameter ρ < 0 in univariate Pareto-type tail
models where the quantile function Q satisfies the so-called Hall condition (see
Hall and Welsh 1985)

Q(1 − p) = Cp−γ
(
1 + Dp−ρ + o(p−ρ)

)
as p ↓ 0 , (5)

with γ > 0, C > 0, D 	= 0. Drees and Kaufmann (1998) introduced a Pickands’
type estimator for ρ based on extreme order statistics from an univariate i.i.d.
sample. Recently, Gomes et al. (2002) considered the estimation problem of
ρ in more detail and proposed more sophisticated estimators. Note also that
although our problem is clearly connected to tail index estimation, one can
prove that any attempt to reduce it to such a procedure comes up against the
non-knowledge of αx itself. The analogy (already observed in Hall 1990) and
differences will be further explored in Sect. 3.

In Sect. 3 indeed we provide a regression model for scaled differences of
successive nearest neighbor estimators in the spirit of Feuerverger and Hall
(1999), and Beirlant et al. (1999), where a similar representation was intro-
duced in the context of estimation of the Pareto index γ within model (5).
In this way, we hope to clarify the similarities and differences between non-
parametric methods in density estimation and extreme value methodology. We
show how (estimates of) the regularity index can be used to adapt the nearest
neighbor density estimator so that its behavior becomes much more stable as
a function of the number of nearest neighbors. This is obtained by estimating
the density from this regression model. Alternatively, the regularity index can
also be of use when selecting the optimal number of neighbors when using the
classical nearest neighbor density estimation in the general model (3). Results
of simulations are presented in Sect. 4. Section 5 is devoted to the proofs of
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some technical results. In subsequent work extensions to kernel, wavelet based
techniques and nonparametric regression will be explored.

1.2 Examples

Throughout this paragraph, the underlying norm is the standard Euclidean
norm.

– Let f1 be the probability density defined for t ∈ R by

f1(t) = 1
2

e−|t|.

This density is continuous but not differentiable at the point 0 and one
easily obtains

µ1
(
B(0, δ)

)

λ
(
B(0, δ)

) = 1
2

− δ

4
+ o(δ) as δ ↓ 0.

Thus 0 is a Lebesgue point of µ1 satisfying (3) with C0 = −1/4 and α0 = 1.
– Let f2 be the bivariate generalization of f1 given by

f2(t1, t2) = 1
2π

e−
√

t21+t22 , (t1, t2) ∈ R
2 .

This density is continuous but not differentiable at the point (0, 0) and a
similar calculation as in the case f1 leads to

µ2
(
B(0, δ)

)

λ
(
B(0, δ)

) = 1
2π

− δ

3π
+ o(δ) as δ ↓ 0.

– This third example proves that the existence of αx in (3) does not imply any
pointwise Hölder property. The following density model, defined on [−1, 1],
has neither a left or a right limit at the point 0, but satisfies condition (3)
with C0 = 2/c and α0 = 1/2.

f3(t) =
{ [√|t| − cos(1/t) + 2t sin(1/t) + 2]/c for t ∈ [−1, 1], t 	= 0

2/c for t = 0 ,

where c = 4 + 4/3 + 2 sin(1). The term cos(1/t) is responsible for the dis-
continuity of second kind at 0. The part − cos(1/t) + 2t sin(1/t) leads to a
development of the measure at 0 of the form δ sin(1/δ). On the other hand,
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the term
√|t| yields the regularity index α0 = 1/2:

µ3
(
B(0, δ)

)

λ
(
B(0, δ)

) = 2
c

+ 2
3 c

δ1/2 + δ

c
sin

(
1
δ

)

= 2
c

+ 2
3 c

δ1/2 + o(δ1/2) as δ ↓ 0 .

1.3 Application to mode estimation in non-smooth case

In two recent papers Abraham et al. (2003, 2004) study a simple, but quite
efficient, estimator of the mode of a multivariate density. Supposing that the
unknown density f has a mode at θ , they consider an estimator θn of θ introduced
by Devroye (1979). This estimator is obtained by maximizing a kernel estimate
(based on an i.i.d. sample) not over R

d but only over the observed sample. In the
smooth case (f twice continuously differentiable in a neighborhood of θ), they
prove that this estimator behaves asymptotically as well as any maximizer of the
kernel estimate over R

d and derive its asymptotic normality. In the non-smooth
case (no differentiability condition imposed on f around the mode), they prove
strong consistency and give asymptotic bounds for the probability of deviation
of θn. However, as they say themselves, their result is useless in practice in the
non-smooth case. Indeed, the rate of convergence of the estimator of the mode
is shown to depend on some constant κ measuring the sharpness of the density
around the mode θ . Abraham et al. (2003) call this constant the peak index of
the density, defined as follows: for any ε > 0, consider the level set

A(ε) =
{

x ∈ R
d : f (x) > f (θ) − ε

}

and its diameter

D(ε) = sup
{ ‖x − y‖ : x ∈ A(ε), y ∈ A(ε)

}
.

The constant κ > 0 is called the peak index of the density at its mode if we have

0 < lim inf
ε↓0

D(ε)

εκ
≤ lim sup

ε↓0

D(ε)

εκ
< ∞.

When κ does exist it is unique. In the non-smooth case (no differentiability
condition or even no local Hölder property assumed) any attempt to build
confidence intervals for the mode from the results of Abraham et al. requires
estimation of the peak index. Up to now no estimator has been proposed for κ .
Actually the parameter κ appears to be in most cases the inverse of the regularity
index of the measure associated with the unknown density f , leading to another
application of the estimation procedure considered in this paper. To be more
precise, let us particularize to the easy case d = 1. Then we have the following:
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If D(ε) tends to 0 with ε, and the density f satisfies

f (x) = f (θ) + ap|x − θ |p + o
(|x − θ |p)

as |x − θ | ↓ 0,

where p > 0 and ap < 0, then, at the point θ , the density f has a peak index κ , the
associated measure has a regularity index α and we have

κ = 1
α

= 1
p

.

To understand this, note that if the measure associated with f has regularity
index α at θ then f (θ + δ) − f (θ) is of order δα . It follows that f (θ + ε1/α) − f (θ)

is of order ε. Therefore, D(ε) is of order ε1/α and f has a peak index 1/α at its
mode θ .

2 Estimation of the regularity index

2.1 Definition of the estimator

In order to estimate the regularity index αx in model (3), we consider a sequence
(Xn)n≥1 of multivariate independent random variables defined on some proba-
bility space (Ω , A, P) with common probability distribution µ. The probability
µ is assumed to have a density f with respect to the Lebesgue measure λ on R

d.
Let (kn)n≥1 be a sequence of positive integers. The nearest neighbor estimator
of f at the point x is defined by

fkn(x) = kn

nλ
(
Bkn(x)

) (6)

where Bkn(x) is the smallest closed ball with center at x containing at least kn

sample points. Bkn(x) is random through X1, . . . , Xn. The integer kn plays the
role of a smoothing parameter (oversmoothing when kn is chosen too large,
and undersmoothing in the opposite case). In discriminatory analysis, Fix and
Hodges (1951) introduced the classification rule based on nearest neighbor
(see also Devroye et al. 1996). As to the nearest neighbor density estimator, it
was studied by Loftsgaarden and Quesenberry (1965), and Moore and Yackel
(1977). For additional results and references, see Collomb et al. (1985), Bosq
and Lecoutre (1987), and Berlinet and Levallois (2000).

The estimator (6) may be rewritten as follows:

fkn(x) = kn

nVd ‖X(kn)(x) − x‖d

where X(kn)(x) is the kn-nearest neighbor of x. In case of a distance tie, the
candidate with the smaller subscript is said to be closer to x. The key to the
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estimation of the index αx is contained in the following proposition. It provides
a way to isolate αx from (3) based on a combination of the relative measures
(µ/λ) for three open balls with radius δ, τδ and τ 2δ for some τ > 1, and δ > 0.
This idea can already be traced in Pickands (1975).

Proposition 1 Let x ∈ R
d be a Lebesgue point of µ satisfying condition (3).

Then, for any τ > 1,

lim
δ↓0

ϕτ 2δ(x) − ϕτδ(x)

ϕτδ(x) − ϕδ(x)
= ταx

where we denote

ϕδ(x) = µ
(
B(x, δ)

)

λ
(
B(x, δ)

) .

Proof of Proposition 1 In accordance with model (3), we can write

ϕτ 2δ(x) − ϕτδ(x) = Cx (τ 2αx − ταx) δαx + o(δαx) as δ ↓ 0. (7)

Similarly,

ϕτδ(x) − ϕδ(x) = Cx (ταx − 1) δαx + o(δαx) as δ ↓ 0. (8)

Since Cx 	= 0, we deduce from (7) and (8) that

lim
δ↓0

ϕτ 2δ(x) − ϕτδ(x)

ϕτδ(x) − ϕδ(x)
= Cx (τ 2αx − ταx)

Cx (ταx − 1)
= ταx .

�

Motivated by the estimator (6) and Proposition 1 we now define an estimator

α̂n,x of αx as follows:

α̂n,x = d
log τ

log
f�τ 2kn�(x) − f�τkn�(x)

f�τkn�(x) − fkn(x)
(9)

if
[
f�τ 2kn�(x) − f�τkn�(x)

]
/
[
f�τkn�(x) − fkn(x)

]
> 0 and α̂n,x = 0 otherwise. The

notation �.� stands for the integer part function. This estimator is analogous
to the estimator proposed in Drees and Kaufmann (1998) estimating ρ in (5),
which itself is reminiscent of Pickands’ estimator (1975), well known in the
theory of extremal events (Dekkers and de Haan 1989; Embrechts et al. 1997).
In fact Pickands considered τ = 2. Recently, more sophisticated estimators of
ρ were proposed in Gomes et al. (2002). It is not clear however how those
estimators can be transformed to the setting of density estimation.
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2.2 Asymptotic results

The first theorem implies the weak consistency of α̂n,x towards αx. We recall
that, throughout the paper, the probability measure µ is assumed to have a
density f with respect to the Lebesgue measure λ on R

d and that f is a version
of the density that coincides with (1) if the limit exists.

Theorem 1 Let x ∈ R
d be a Lebesgue point of µ satisfying condition (3). Assume

that f (x) > 0. Then, under the conditions

lim
n→∞ kn = ∞, lim

n→∞
kn

n
= 0 and lim

n→∞
kαx+d/2

n

nαx
= ∞

we have

f�τ 2kn�(x) − f�τkn�(x)

f�τkn�(x) − fkn(x)
→ ταx/d in probability.

Remark 1 The unknown parameter αx appears in the asymptotic condition
limn→∞ kαx+d/2

n /nαx = ∞. This is to give minimal conditions. Of course, another
condition on the model could be given, for example limn→∞ kn log n/n = ∞.
Note also that the condition limn→∞ kαx+d/2

n /nαx = ∞ is comparable to condi-
tion (2.11) in Gomes et al. (2002). It states that the number of nearest neighbors
to be used in the estimation of αx should not be too small. This will be confirmed
by the simulations in the final section.

Let us now state some technical results that are used in the proof of con-
sistency. For clarity, proofs of these results have been postponed to Sect. 5.
Throughout, we denote by supp µ the support of µ.

Proposition 2 Let x ∈ R
d.

(A) Assume that x belongs to supp µ. If

lim
n→∞

kn

n
= 0

then

‖X(kn)(x) − x‖ → 0 P-a.s.

(B) Assume that x is a Lebesgue point of µ and that

lim
n→∞ kn = ∞ and lim

n→∞
kn

n
= 0 .

Then
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(i) fkn(x) is a weak consistent estimator of f (x), i.e.,

fkn(x) → f (x) in probability.

(ii) Denoting by
D→ the convergence in distribution and N the Gaussian

distribution, we have

n√
kn

(kn

n
− µ

(
Bkn(x)

)) D→ N (0, 1) .

(iii) Suppose that f (x) > 0. Then, for any τ1, τ2 > 1,

‖X(�τ1kn�)(x) − x‖
‖X(�τ2kn�)(x) − x‖ →

(τ1

τ2

)1/d
in probability.

(iv) Under the additional condition that

lim
n→∞

kαx+d/2
n

nαx
= ∞ ,

we have

kn/n − µ
(
Bkn(x)

)

Vd ‖X(kn)(x) − x‖d
= oP

(‖X(kn)(x) − x‖αx
)

as n → ∞ .

Proof of Theorem 1 Note first that the assumption f (x) > 0 forces the Lebesgue
point x to belong to supp µ. We shall assume, without loss of generality, that
x = 0. Note also that since µ is absolutely continuous with respect to λ, one has

µ
(
Bkn(0)

) = µ
(
Bkn(0)

)
,

where Bkn(0) is the (random) open ball with center at 0 and radius ‖X(kn)(0)‖.
We can write, using condition (3) and Proposition 2 (A),

fkn(0) = kn

nVd ‖X(kn)(0)‖d

= kn/n − µ
(
Bkn(0)

) + µ
(
Bkn(0)

)

Vd ‖X(kn)(0)‖d

= kn/n − µ
(
Bkn(0)

)

Vd ‖X(kn)(0)‖d
+ f (0) + C0 ‖X(kn)(0)‖α0 + o

(‖X(kn)(0)‖α0
)

P-a.s.

as n → ∞. Applying Proposition 2 (B)(iv) leads to

fkn(0) = f (0) + C0 ‖X(kn)(0)‖α0 + oP

(‖X(kn)(0)‖α0
)
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as n → ∞. We finally obtain

f�τ 2kn�(0) − f�τkn�(0)

f�τkn�(0) − fkn(0)
= ‖X(�τ 2kn�)(0)‖α0 − ‖X(�τkn�)(0)‖α0

‖X(�τkn�)(0)‖α0 − ‖X(kn)(0)‖α0

+oP

(‖X(�τ 2kn�)(0)‖α0
) + oP

(‖X(�τkn�)(0)‖α0
)

+oP

(‖X(�τkn�)(0)‖α0
) + oP

(‖X(kn)(0)‖α0
)

as n → ∞. Proposition 2 (B)(iii) leads to the desired conclusion. �

We now turn to the discussion of the asymptotic normality of the estimator

α̂n,x. To this end, we will make use of the following proposition which com-
pletes Proposition 2 (A) and (B)(ii). The first part of this proposition follows
from the combination of the corresponding approximation result for the tail
uniform empirical process (see for instance Mason 1988) with Vervaat’s lemma
(see Shorack and Wellner 1986, p 659). This then leads to an approximation
for the tail uniform quantile process

{
U�tkn�,n ; 0 ≤ t ≤ 1

}
with Ui,n denoting

the ith order statistic from a uniform (0, 1) sample of size n. Since the process{
µ

(
B�tkn�(x)

)
; 0 ≤ t ≤ 1

}
is equal in distribution to this tail uniform quantile

process, the first statement follows via a special construction. The second part
of Proposition 3 follows from a direct application of Theorem 1.2 in Einmahl
and Mason (1992) on generalized quantiles being defined here as the Lebesgue
measure Vd ‖X(�tn�)(x)−x‖d of the smallest ball with center at x which contains
at least �tn� observations. Under (3) the theoretical quantile function is then
given by Ux(t) = (

t/f (x)
)[

1 − Cx V−αx/d
d f −1−αx/d(x)tαx/d

]
.

Proposition 3 There exists, on an appropriate probability space, an i.i.d. sequence
(Xn)n≥1 with density f and

(i) a sequence of standard Wiener processes (W(n)
x )n≥1, such that

sup
0≤t≤1

∣∣∣∣
√

kn

[
t − nµ

(
B�tkn�(x)

)

kn

]
+ W(n)

x (t)

∣∣∣∣ → 0 in probability

as

kn → ∞ and
kn

n
→ 0 ;

(ii) a sequence of Brownian bridges (B(n)
x )n≥1, such that

sup
0<t<1

∣
∣∣∣
√

nf (x)
[
Vd ‖X(�tn�)(x) − x‖d − Ux(t)

]
+ B(n)

x (t)

∣
∣∣∣ → 0

in probability as n → ∞.
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In the sequel, we write

Qn,kn(t) :=
√

kn

[
t − nµ

(
B�tkn�(x)

)

kn

]
. (10)

Next we specify condition (3) to

µ
(
B(x, δ)

)

λ
(
B(x, δ)

) = f (x) + Cx δαx + Dx δβx + o(δβx) as δ ↓ 0, (11)

where Cx, Dx are non-zero constants, and αx, βx are positive real numbers
satisfying αx < βx.

Theorem 2 Let x ∈ R
d be a Lebesgue point of µ satisfying condition (11).

Assume that f (x) > 0. Then, under the conditions

lim
n→∞ kn = ∞, lim

n→∞
kn

n
= 0, lim

n→∞
kαx+d/2

n

nαx
= ∞

and

lim
n→∞

kβx+d/2
n

nβx
= 0, lim

n→∞
k2αx+d/2

n

n2αx
= 0,

we have

k1/2+αx/d
n

nαx/d
(α̂n,x − αx)

D→ N (0, σ 2
x ) ,

where

σ 2
x =

(
d

Cx log τ

Vαx/d
d

τ 1+αx/d(ταx/d − 1)
f 1+αx/d(x)

)2

(1 + τ 1+2αx/d) (τ − 1).

Proof of Theorem 2 We consider for simplicity x = 0. The proof runs in two
steps. First, we derive the asymptotic normality of

T(1)

n,kn
= k1/2+α0/d

n

nα0/d
(α̂n,0 − α̃n,0)

where

α̃n,0 = d
log τ

log
φ�τ 2kn�(0) − φ�τkn�(0)

φ�τkn�(0) − φkn(0)
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with

φkn(0) = µ
(
Bkn(0)

)

λ
(
Bkn(0)

) .

Secondly, we will show that under the given conditions

T(2)

n,kn
= k1/2+α0/d

n

nα0/d
(α̃n,0 − α0) → 0 in probability. (12)

In order to apply Proposition 3 we consider T(1)

n,�kn/τ 2�. Using the delta method
(second derivative terms can be shown to be asymptotically negligible when
k1/2+α0/d

n /nα0/d → ∞) we find that

log τ

d
τ 1+2α0/d T(1)

n,�kn/τ 2�

has the same asymptotic distribution as

k1/2+α0/d
n

nα0/d

[
fkn(0) − φkn(0)

φkn(0) − φ�kn/τ�(0)

−(
f�kn/τ�(0) − φ�kn/τ�(0)

) (
1

φkn(0) − φ�kn/τ�(0)
+ 1

φ�kn/τ�(0) − φ�kn/τ 2�(0)

)

+ f�kn/τ 2�(0) − φ�kn/τ 2�(0)

φ�kn/τ�(0) − φ�kn/τ 2�(0)

]
,

or, equivalently, as

Vα0/d
d

C0

[
Qn,kn(1) k1+α0/d

n

n1+α0/dV1+α0/d
d ‖X(kn)(0)‖d+α0

.
1

(
1 − ‖X(�kn/τ�)(0)‖α0

‖X(kn)(0)‖α0

)

− Qn,kn(1/τ) k1+α0/d
n

n1+α0/dV1+α0/d
d ‖X(�kn/τ�)(0)‖d+α0

.
(

1
‖X(kn)(0)‖α0

‖X(�kn/τ�)(0)‖α0 − 1
+ 1

1 − ‖X
(�kn/τ2�)(0)‖α0

‖X(�kn/τ�)(0)‖α0

)

+ Qn,kn(1/τ 2) k1+α0/d
n

n1+α0/dV1+α0/d
d ‖X(�kn/τ 2�)(0)‖d+α0

.
1

( ‖X(�kn/τ�)(0)‖α0

‖X
(�kn/τ2�)(0)‖α0 − 1

)
]

.
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Using Proposition 3 (i), Proposition 2 (B)(iii), and the consistency of the nearest
neighbor density estimator, we can approximate this by

Vα0/d
d f 1+α0/d(0)

C0

[
W(n)

0 (1)
τα0/d

τα0/d − 1
− W(n)

0 (1/τ) τ 1+α0/d
(

τα0/d + 1
τα0/d − 1

)

+W(n)
0 (1/τ 2) τ 2 τ 2α0/d

τα0/d − 1

]
.

This leads to the asymptotic Gaussian distribution given in the statement of
Theorem 2.

Using Proposition 3 (ii) we now find that for some constant M

‖X(kn)(0)‖ =
(

kn

nVd f (0)

)1/d[
1 + M

(kn

n

)α0/d(
1 + oP(1)

) + oP(1)

]
.

Hence, using (11), we have that (with M1, M2, M̃1, M̃2 denoting some constants
that can change values from line to line)

α̃n,0 = d
log τ

log

[
(τ 2kn/n)α0/d − (τkn/n)α0/d + M1(τ

2kn/n)2α0/d

(τkn/n)α0/d − (kn/n)α0/d + M1(τkn/n)2α0/d

−M1(τkn/n)2α0/d + M2(τ
2kn/n)β0/d − M2(τkn/n)β0/d

−M1(kn/n)2α0/d + M2(τkn/n)β0/d − M2(kn/n)β0/d

+oP

(
(kn/n)β0/d

)

+oP

(
(kn/n)β0/d

)

]

= d
log τ

log

[

τα0/d
(

1 + M1(kn/n)α0/d + M2(kn/n)(β0−α0)/d

1 + M̃1(kn/n)α0/d + M̃2(kn/n)(β0−α0)/d

+oP

(
(kn/n)(β0−α0)/d

)

+oP

(
(kn/n)(β0−α0)/d

)
)]

= α0 + M1

(kn

n

)α0/d + M2

(kn

n

)(β0−α0)/d + oP

(
(kn/n)(β0−α0)/d)

.

So,

k1/2+α0/d
n

nα0/d

(
α̃n,0 − α0

) = M1

(kn

n

)2α0/d
k1/2

n + M2

(kn

n

)β0/d
k1/2

n

+ oP

((kn

n

)β0/d
k1/2

n

)
,

from which (12) follows. �
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Remark 2 Specifying M1 and M2 in the last formula of the above proof with
the help of Proposition 3 (ii) one finds that

α̃n,0−α0 = d
log τ

[(
kn

n

)α0/d
α0 C0

d Vα0/d
d f 1+2α0/d(0)

(1−τ 2α0/d)+ D0

C0

(
f (0)Vd

)(α0−β0)/d

×
(

kn

n

)(β0−α0)/d
(τβ0/d − 1)(τ (β0−α0)/d − 1)

τα0/d − 1

]
(
1 + oP(1)

)

as n, kn → ∞, and kn/n → 0. In the important case where β = 2α we find that
the asymptotic bias equals

d
log τ

(
kn

n

)α0/d

(τ 2α0/d − 1)
(
f (0)Vd

)−α0/d
[

D0

C0
− α0C0

d
f −1−α0/d(0)

]
,

whose absolute value increases with τ ∈ (1, 2]. Consequently, the bias is smaller
when τ is smaller than the original value τ = 2 proposed by Pickands (1975).
Note that however then the asymptotic variance increases.

3 Optimization of the kn-nearest neighbor density estimator

3.1 The asymptotic mean squared error

Here, we are interested in a functional form of kn in (6) that will essentially
indicate how kn should depend on the number of sample points n and the regu-
larity index αx. To obtain this, we optimize kn with respect to the mean squared
error criterion

∆n(x) = E
(
fkn(x) − f (x)

)2

where the expectation is over the sample set X1, . . . , Xn. This theorem, proved
in Sect. 5, generalizes the results presented in Fukunaga and Hostetler (1973).

Theorem 3 Let x ∈ R
d be a Lebesgue point of µ satisfying condition (1.3).

Assume that supp µ is compact and f (x) > 0. Then, under the conditions

lim
n→∞ kn = ∞ and lim

n→∞
kn

n
= 0 ,

the following asymptotic developments hold:

Efkn(x) − f (x) = f (x)

kn
+ Cx

Vαx/d
d

f −αx/d(x)

(
kn

n

)αx/d

+ o
(

1
kn

+
(kn

n

)αx/d
)
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and

Varfkn(x) = f 2(x)

kn
+ o

(
1

kn

)
as n → ∞ .

Consequently,

∆n(x) = E
(
fkn(x) − f (x)

)2

= f 2(x)

kn
+ C2

x

V2αx/d
d

f −2αx/d(x)
(kn

n

)2αx/d + o
(

1
kn

+
(kn

n

)2αx/d
)

.

Corollary 1 Under the assumptions of Theorem 3, the value of kn that minimizes
the asymptotic mean squared error is

k∗
n =

(
dV2αx/d

d

2αxC2
x

f 2+2αx/d(x)

)d/(d+2αx)

n2αx/(d+2αx)

and the associated mean squared error is

∆∗
n(x) = d + 2αx

2αx

(
2αxC2

x

dV2αx/d
d

f 2αx/d(x)

)d/(d+2αx)

n−2αx/(d+2αx) + o
(
n−2αx/(d+2αx)

)
.

Remark 3 The optimal k∗
n is seen to depend upon the dimension of the obser-

vation space and upon the characteristics of the symmetric derivative of µ at
the point x, namely f (x), Cx and αx. The coefficient Cx can be interpreted as
a measure of the variation of the underlying distribution. Thus, if Cx is large
(indicating f (x) has large second derivatives when f is sufficiently smooth, and
is therefore changing rapidly in the region around x), we see that the optimal
kn is made smaller to compensate for this fact. We also observe that the optimal
number of nearest neighbors is increasing with αx, as expected.

Remark 4 The choice of a bandwidth in non-smooth cases has been considered
for instance in van Es (1992), who explored cross-validation bandwidths for
kernel estimators. Below we present a new approach based on the regularity
index discussed here.

3.2 A regression model and selection of the number kn of nearest neighbors

In this paragraph, we construct a regression model which allows to reduce
the bias of a kn-nearest neighbor density estimator. This enables to construct
diagnostics for selecting the number kn of nearest neighbors. We consider the
following scaled differences of consecutive nearest neighbor density estimators
at a given point

Zj := jfj(x) − (j − 1)fj−1(x), j ≥ 1,
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setting 0f0(x) = 0. From Proposition 3 and the basic condition (3), the following
expansion can be derived for the variables Zj (one can justify this in a formal
way as will be seen in the proof of Theorem 4)

Zj =
√

kn

[
Qn,kn

( j
kn

)
fj(x) − Qn,kn

( j − 1
kn

)
fj−1(x)

]

+
[

j
µ

(
Bj(x)

)

λ
(
Bj(x)

) − (j − 1)
µ

(
Bj−1(x)

)

λ
(
Bj−1(x)

)

]

�
√

kn f (x)

[
Wx

( j
kn

)
− Wx

( j − 1
kn

)]

+ j
[
f (x) + Cx ‖X(j)(x) − x‖αx

] − (j − 1)
[
f (x) + Cx ‖X(j−1)(x) − x‖αx

]
,

where Qn,kn is defined in (10). On the other hand, using the mean value theorem,
we obtain that

j ‖X(j)(x) − x‖αx − (j − 1) ‖X(j−1)(x) − x‖αx

= V−αx/d
d

[
jf −αx/d

j (x)
( j

n

)αx/d − (j − 1)f −αx/d
j−1 (x)

( j − 1
n

)αx/d
]

� V−αx/d
d f −αx/d(x)

(
1 + αx

d

)( j
n

)αx/d
.

Hence, we are led to approximate Zj by

Zj � f (x) + bkn

(
j

kn

)αx/d

+ f (x) εj, j = 1, . . . , kn, (13)

where

bkn = CxV−αx/d
d f −αx/d(x)

(
1 + αx

d

)(kn

n

)αx/d

and

εj =
√

kn

[
Wx

( j
kn

)
− Wx

( j − 1
kn

)]
i.i.d.
∼ N (0, 1).

Representation (13) yields a regression model with covariates j/kn, j =
1, . . . , kn. Note also that bkn/(1+αx/d) is the factor which dominates the bias of
the nearest neighbor estimator as given in Theorem 3. Further, the regression
model (13) can be exploited directly to propose an estimator for bkn using a
least squares method, after replacing αx for instance by the estimator α̂n,x. In
Feuerverger and Hall (1999), and Beirlant et al. (1999) a representation sim-
ilar to (13) was introduced in the context of estimation of a Pareto index γ

within model (5). More precisely, denoting the order statistics of a sample by
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X1,n ≤ · · · ≤ Xn,n and Z̃j := j(log Xn−j+1,n − log Xn−j,n), j = 1, . . . , kn, with kn/n
small, these authors considered the model:

Z̃j = γ + bkn

( j
kn

)−ρ + γ ε̃j , (14)

where bkn is of order (n/kn)ρ . Comparing (13) and (14) we observe the simi-
larities between the estimation of a density f at a point x and of the extreme
value index γ . Observe further that when estimating f (x) (for instance by least
squares) from the simple location model

Zj � f (x) + f (x) εj, j = 1, . . . , kn,

(obtained by setting bkn equal to 0 in (13)), we are led to

1
kn

kn∑

j=1

Zj = fkn(x).

Comparison of (13) and (14) is quite instructive in understanding the similarities
between estimation of Pareto-type tails and density estimation:

– the role of f (x) is taken over by the tail index γ in extreme value method-
ology;

– the nearest neighbor estimator k−1
n

∑kn
j=1 Zj = fkn(x) of f (x) is the ana-

logue of Hill (1975) estimator k−1
n

∑kn
j=1 Z̃j = k−1

n
∑kn

j=1

(
log Xn−j+1,n −

log Xn−kn,n
)

of the tail index γ ;
– the bias of the Hill’s estimator is strongly influenced by the second-order

parameter ρ, while for fkn(x) the regularity index αx is predominant.

By virtue of this analogy, methods that have been worked out recently in
extreme value statistics can be carried over to density estimation. Here, we
illustrate this with two techniques: the adaptive choice of kn when using the
nearest neighbor estimator, and secondly, the proposal of a density estimator
which reduces bias. Both techniques are based on a consistent estimator α̂n,x.
In accordance with Theorem 1, we let the number of nearest neighbors k̃n used
in α̂n,x satisfy k̃αx+d/2

n /nαx → ∞.
First, based on (13), one can propose a procedure to estimate k∗

n. Indeed,
one easily checks that

k∗
n = (bk0)

−2d/(d+2αx)k2αx/(d+2αx)
0

[
f 2(x)

(
1 + αx

d

)2 d
2αx

]d/(d+2αx)
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for any preliminary value k0. An approximate least squares estimator of bk0 is
then given by

b̂k0 = (1 + α̂n,x/d)2 (1 + 2α̂n,x/d)

(α̂n,x/d)2 × 1
k0

k0∑

j=1

Zj

(( j
k0

)α̂n,x/d − 1
1 + α̂n,x/d

)
.

We find an estimator for k∗
n replacing bk0 , αx and f (x) by their respective esti-

mators b̂k0 , α̂n,x and fk0(x)

k̂∗
n,k0

= (b̂k0)
−2d/(d+2α̂n,x)k

2α̂n,x/(d+2α̂n,x)

0

[
f 2
k0

(x)
(

1 + α̂n,x

d

)2 d
2α̂n,x

]d/(d+2α̂n,x)

.

(15)
Let us now prove the consistency of this method.

Theorem 4 Let x ∈ R
d be a Lebesgue point of µ satisfying condition (3). Assume

that f (x) > 0. Then as k0 → ∞, k0/n → 0 and kαx+d/2
0 /(nαx log k0) → ∞, we

have

k̂∗
n,k0

k∗
n

= 1 + oP(1).

In particular, fk̂∗
n,k0

(x) has the same asymptotic efficiency as fk∗
n
(x).

Proof of Theorem 4 The result will follow if we show that, under the condition
kαx+d/2

0 /(nαx log k0) → ∞, we have

b̂k0

bk0

→ 1 in probability. (16)

We consider x = 0. To derive (16) note that

b̂k0 = (1 + α̂n,0/d)2 (1 + 2α̂n,0/d)

(α̂n,0/d)2

[
α̂n,0/d

1 + α̂n,0/d
fk0(0) + 1

k0

k0−1∑

j=1

j
(( j

k0

)α̂n,0/d

−
( j + 1

k0

)α̂n,0/d
)

fj(0)

]
,

which is asymptotically equivalent to

(1 + α̂n,0/d)2 (1 + 2α̂n,0/d)

α̂n,0/d

[
fk0(0)

1 + α̂n,0/d
− 1

k0

k0−1∑

j=1

( j
k0

)α̂n,0/d
fj(0)

]
.
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As in the proof of Theorem 3, we find that

b̂k0

bk0

= (1 + α̂n,0/d)2 (1 + 2α̂n,0/d)

(1 + α0/d) α̂n,0/d

[ (n/k0)
α0/d

(
µ

(
Bk0(0)

))α0/d

1 + α̂n,0/d

− 1
k0

k0−1∑

j=1

( j
k0

)α̂n,0/d(
µ

(
Bj(0)

))α0/d−1( n
k0

)α0/d j
n

]
+ oP(1)

= (1 + α̂n,0/d)2 (1 + 2α̂n,0/d)

(1 + α0/d) α̂n,0/d

(
n
k0

µ
(
Bk0(0)

))α0/d[
1

1 + α̂n,0/d

− k0

nµ
(
Bk0(0)

)
1
k0

k0−1∑

j=1

( j
k0

)α̂n,0/d+1
(

µ
(
Bj(0)

)

µ
(
Bk0(0)

)
)α0/d−1]

+ oP(1).

Denote by B(a, b) the beta distribution with parameters a and b. Using the
consistency of α̂n,0, nµ

(
Bk0(0)

)
/k0 = 1 + oP(1), and the fact that

1
k0

k0−1∑

j=1

(
j

k0

)α̂n,0/d+1 (
µ

(
Bj(0)

)

µ
(
Bk0(0)

)
)α0/d−1

= 1
1 + 2α0/d

+ oP(1)

since

µ
(
Bj(0)

)

µ
(
Bk0(0)

) ∼ B(j, k0 − j + 1), j = 1, . . . , k0 − 1,

(Wilks 1962, p 239), the first result now follows.
The second assertion in the statement of Theorem 4 follows from Hall and

Welsh (1985), Theorem 4.1. �


Let us now discuss the least squares estimator of f (x) based on (13) after sub-
stitution of αx by the consistent estimator α̂n,x based on an appropriate number
of neighbors as indicated in Theorem 1. This estimator takes the form

f (a)

kn
(x) = fkn(x) − b̂kn

d
d + α̂n,x

.

Theorem 5 Let x ∈ R
d be a Lebesgue point of µ satisfying condition (3). Assume

that f (x) > 0. Then as kn → ∞, kn/n → 0 and kn
αx+d/2/nαx = O(1), we have

√
kn

(
f (a)

kn
(x) − f (x)

) D→ N
(

0, f 2(x)
(d + αx

αx

)2)
.



Higher order estimation at Lebesgue points 671

Proof of Theorem 5 Again let x = 0. First one shows using Theorem 2.1 and
the mean value theorem that

f (a)

kn
(0) −

(
fkn(0) − b̃kn

d
d + α0

)
= oP(1) ,

where

b̃kn = (1 + α0/d)2 (1 + 2α0/d)

(α0/d)2 × 1
kn

kn∑

j=1

Zj

(( j
kn

)α0/d − 1
1 + α0/d

)
.

Then

fkn(0) − b̃kn

d
d + α0

= −fkn(0)
(d + α0

α0

)
+ (d + α0)(d + 2α0)

d α0

× 1
kn

kn−1∑

j=1

( j
kn + 1

)α0/d j
n

(
Vd ‖X(j)(0)‖d)−1 + oP(1).

Using the method of proof of Theorem 2 with the help of Proposition 3, one
shows that

√
kn

[(
fkn(0) − b̃kn

d
d + α0

)
− f (0)

]

=
( d

d + α0

)
f (0)

[
W(n)

0 (1) −
(d + 2α0

d

) 1
kn

kn−1∑

j=1

( j
kn + 1

)α0/d−1
W(n)

0

( j
kn

)]

+oP

((kn

n

)α0/d
)

.

The limit distribution is now obtained from this linear combination of W(n)
0 (j/kn)

(j = 1, . . . , kn) taking kn → ∞. �


4 Simulations

To illustrate the results, we present now some simulations. For the probability
density f1 defined in the first section, we estimated the regularity index α0 at
the point 0 using the estimator α̂n,0.

First, for n = 1, 000, in Fig. 1 we plot single typical trajectories of fkn(0),
f (a)

kn
(0), α̂n,0 (with τ = √

2) and log k̂∗
n,k0

on the same kn-scale. Note the stability

of the plots of α̂n,0 and log k̂∗
n,k0

in the region kn, k0 beyond 150, while the density

estimates fkn(0) and f (a)

kn
(0) coincide closely up to kn = 150 beyond which the
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Fig. 1 Results for fkn (0) (top, solid line), f (a)
kn

(0) (top, dotted line), α̂n,0 (middle, with τ = √
2), and

log k̂∗
n,k0

(bottom) for a sample of size 1, 000 from f1

stability of f (a)

kn
(0) is striking. Here, we took α̂n,0 as the median of α-estimates

obtained for kn between 150 and 500.
For fixed n, the value of kn in the estimator (9) should depend on n so that

kn → ∞, kn/n → 0 and kαx+d/2
n /nαx → ∞ as n → ∞. In Fig. 2, we consider,

for each kn separately, the sample distribution of 100 independent results of the
estimator α̂n,0 using τ = 2. These different sample distributions are summarized
using the mean, median, first and third quartiles of the 100 outcomes.

The obtained results essentially enlighten the consistency of the estimator
under study, as well as the importance of a good choice of kn with respect to n.
In this example consistency is obtained when kn/n2/3 → ∞. The results in case
of f2 turned out to be of similar nature.

A drawback of the selection criterion based on k̂∗
n,k0

is that it involves the
use of a primary guess k0 that has to satisfy the conditions outlined in Theorem
4 for the selection criterion to be asymptotically efficient. However, as can be
derived from (15), k̂∗

n,k0
/k∗

n approximately behaves as a realization from a nor-
mal distribution centered at 1 for values of k0 smaller than the values indicated
in Theorem 4. Hence also for smaller k0 values, k̂∗

n,k0
is still median unbiased.

Thus, in order to set up an automatic method, from a practical point of view we
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Fig. 2 First quartile (dashdotted lines), median (dotted lines), third quartile (dashed lines) and
mean (solid lines) of the estimations of α0 obtained from 100 repetitions for each kn ranging from
1 to �n/4� [

n = 100 (top left), n = 1, 000 (top right), n = 10, 000 (bottom left) and n = 105 (bottom
right) ] for the density f1. We also show the true value of α0 (horizontal solid line)

propose to use the median of the first n/2 k̂ values as an estimate for k∗
n

k̃ = med
{

k̂∗
n,k0

; k0 = 5, . . . , n/2
}

.

Figure 3 summarizes the results of the nearest neighbor estimates of f1(0)

based on k̃ neighbors through a boxplot based on 100 independent repetitions
of this adaptive technique, for samples of size 500, 1,000 and 5,000. Of course,
the typical under-estimation of the nearest neighbor density estimator of f1(0)

remains present.

5 Some proofs

Proof of Proposition 2 Proof of (A) can be found in Devroye et al. (1996),
Chap. 5. Proof of (B)(i) and (B)(ii) is due to Loftsgaarden and Quesenberry
(1965) and Moore and Yackel (1977). With respect to (B)(iii), we know from
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Fig. 3 Boxplots based on 100 estimates fk̃(0) when estimating f1(0) = 0.5 from samples of size
n = 500, respectively n = 1, 000 and n = 5, 000. We also show the true value of f1(0) (horizontal
dashed line)

(B)(i) that

�τ1kn�
nVd ‖X(�τ1kn�)(x) − x‖d

→ f (x) in probability,

and, similarly, that

�τ2 kn�
nVd ‖X(�τ2kn�)(x) − x‖d

→ f (x) in probability.

Since f (x) > 0, it follows that

‖X(�τ1kn�)(x) − x‖
‖X(�τ2kn�)(x) − x‖ →

(τ1

τ2

)1/d
in probability.

To prove (B)(iv), observe that, according to (B)(ii),

kn

n
− µ

(
Bkn(x)

) = OP

(√
kn

n

)
as n → ∞ .

Further,

n√
kn

Vd ‖X(kn)(x) − x‖d+αx = k1/2+αx/d
n

(nVd)αx/d

(
nVd ‖X(kn)(x) − x‖d

kn

)1+αx/d

,

which tends to ∞ in probability according to the conditions on kn and (B)(i). �
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Proof of Theorem 3 Again, without loss of generality, we assume that x = 0.
By definition

fkn(0) = kn

nµ
(
Bkn(0)

)
µ

(
Bkn(0)

)

Vd ‖X(kn)(0)‖d
. (17)

Using (17) and Proposition 3 (ii), we obtain

fkn(0) = kn

nµ
(
Bkn(0)

) f (0) + kn

n
C0

Vα0/d
d

f −α0/d(0)

(
1

µ
(
Bkn(0)

)
)1−α0/d(

1 + o(1)
)

P-a.s., as n → ∞. But µ
(
Bkn(0)

)
is known to have a beta distribution B(kn, n −

kn + 1) (Wilks 1962, p 239). Therefore,

E
( 1
µ

(
Bkn(0)

)
)

= n
kn − 1

and

E
( 1
µ

(
Bkn(0)

)
)1−α0/d =

( n
kn − 1

)1−α0/d(
1 + o(1)

)

(see Fukunaga and Hostetler 1973 for details). Clearly, the o(1) function is
bounded on compact sets. Moreover, by assumption, supp µ is compact. Con-
sequently, the Lebesgue’s dominated convergence theorem entails

Efkn(0) = f (0)

(
1 + 1

kn − 1

)
+ C0

Vα0/d
d

f −α0/d(0)

(
kn

n

)α0/d (
1 + o(1)

)
,

and thus

Efkn(0) − f (0) = f (0)

kn
+ C0

Vα0/d
d

f −α0/d(0)
(kn

n

)α0/d + o
(

1
kn

+
(kn

n

)α0/d
)

.

With respect to the variance term, we use (17) and Proposition 3 (ii) to obtain

fkn(0) = kn

nµ
(
Bkn(0)

) f (0)
(
1 + o(1)

)
P-a.s.

as n → ∞. According to the distribution of µ
(
Bkn(0)

)
,

Efkn(0) = kn

n
n

kn − 1
f (0)

(
1 + o(1)

)
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and

Ef 2
kn

(0) = k2
n

n2

n(n − 1)

(kn − 1)(kn − 2)
f 2(0)

(
1 + o(1)

)
.

As a consequence,

Varfkn(0) = f 2(0)

kn

(
1 + o(1)

)
.

The end of the proof of Theorem 3 as well as the proof of Corollary 1 are
straightforward. �

Acknowledgments The authors would like to thank David Mason for helping out in Proposition 3.
They are indebted to a referee for a very careful reading of the paper and stimulating questions
and remarks.

References

Abraham, C., Biau, G., Cadre, B. (2003). Simple estimation of the mode of a multivariate density.
The Canadian Journal of Statistics, 31, 23–34

Abraham, C., Biau, G., Cadre, B. (2004). On the asymptotic properties of a simple estimate of the
mode. ESAIM: Probability and Statistics, 8, 1–11

Beirlant, J., Dierckx, G., Goegebeur, Y., Matthys, G. (1999). Tail index estimation and an exponential
regression model. Extremes, 2, 177–200

Berlinet, A., Levallois, S. (2000). Higher order analysis at Lebesgue points. In M. L. Puri (Ed.)
G. G. Roussas Festschrift—Asymptotics in Statistics and Probability (pp. 1–16)

Bosq, D., Lecoutre, J. P. (1987). Théorie de l’Estimation Fonctionnelle. Paris: Economica
Collomb, G., Hassani, S., Sarda, P., Vieu, P. (1985). Convergence uniforme d’estimateurs de la fonc-

tion de hasard pour des observations dépendantes : méthode du noyau et des k-points les plus
proches. Comptes Rendus de l’Académie des Sciences de Paris, 301, 653–656

Cutler, C. D., Dawson, D. A. (1990). Nearest-neighbor analysis of a family of fractal distributions.
The Annals of Probability, 18, 256–271

Davies, S., Hall, P. (1999). Fractal analysis of surface roughness by using spatial data. Journal of the
Royal Statistical Society, Series B, 61, 3–37

Dekkers, A. L. M., de Haan, L. (1989). On the estimation of the extreme-value index and large
quantile estimation. The Annals of Statistics, 17, 1795–1832

Devroye, L. (1979). Recursive estimation of the mode of a multivariate density. The Canadian
Journal of Statistics, 7, 159–167

Devroye, L. (1997). Universal smoothing factor selection in density estimation. Test, 6, 223–320
Devroye, L., Györfi, L., Lugosi, G. (1996). A probabilistic theory of pattern recognition. New York:

Springer
Drees, H., Kaufmann, E. (1998). Selecting the optimal sample fraction in univariate extreme value

estimation. Stochastic Processes and their Applications, 75, 149–172
Einmahl, J. H. J., Mason, D. M. (1992). Generalized quantile processes. The Annals of Statistics, 20,

1062–1078
Embrechts, P., Klüppelberg, C., Mikosch, T. (1997). Modelling extremal Events, Berlin: Springer
van Es, B. (1992). Asymptotics for least squares cross-validation bandwidths in nonsmooth cases.

The Annals of Statistics, 20, 1647–1657
Ferraty, F., Vieu, P. (2000). Dimension fractale et estimation de la régression dans des espaces

vectoriels semi-normés. Comptes Rendus de l’Académie des Sciences de Paris, 330, 139–142
Feuerverger, A., Hall, P. (1999). Estimating a tail exponent by modelling departure from a Pareto

distribution. The Annals of Statistics, 27, 760–781



Higher order estimation at Lebesgue points 677

Fix, E., Hodges, J. L. Jr. (1951). Discriminatory analysis, nonparametric discrimination: consistency
properties. In Report number 4, USAF School of Aviation Medicine, Randolph Field, Texas

Fukunaga, K., Hostetler, L. D. (1973). Optimization of k-nearest neighbor density estimates. IEEE
Transactions on Information Theory, 19, 320–326

Gomes, M. I., de Haan, L., Peng, L. (2002). Semi-parametric estimation of the second order param-
eter in statistics of extremes. Extremes, 5, 387–414

Hall, P. (1990). Using the bootstrap to estimate mean squared error and select smoothing parameter
in nonparametric problems. Journal of Multivariate Analysis, 32, 177–203

Hall, P., Welsh, A. (1985). Adaptive estimates of parameters of regular variation. The Annals of
Statistics, 13, 331–341

Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The
Annals of Statistics, 3, 1163–1174

Lepski, O. V., Mammen, E., Spokoiny, V. G. (1997). Optimal spatial adaptation to inhomogeneous
smoothness: an approach based on kernel estimates with variable bandwidth selectors. The
Annals of Statistics, 25, 929–947

Loftsgaarden, D. O., Quesenberry, C. P. (1965). A nonparametric estimate of a multivariate density
function. The Annals of Mathematical Statistics, 36, 1049–1051

Mason, D. M. (1988). A strong invariance theorem for the tail empirical process. Annales de l’Institut
Henri Poincaré (B), 24, 491–506

Moore, D. S., Yackel, J. W. (1977). Large sample properties of nearest neighbour density function
estimates. In: S. S. Gupta., D. S. Moore (Ed.), Statistical decision theory and related topics II,
New York: Academic

Picard, D., Tribouley, K. (2000). Adaptive confidence interval for pointwise curve estimation. The
Annals of Statistics, 28, 298–335

Pickands, J. III (1975). Statistical inference using extreme order statistics. The Annals of Statistics,
3, 119–131

Rudin, W. (1987). Real and complex analysis. – (3rd Ed). New York: McGraw–Hill
Shorack, G. R., Wellner, J. A. (1986). Empirical processes with applications to statistics. New York:

Wiley
Wilks, S. S. (1962). Mathematical statistics. New York: Wiley


	Higher order estimation at Lebesgue points
	Abstract
	Introduction
	Motivations
	Examples
	Application to mode estimation in non-smooth case
	Estimation of the regularity index
	Definition of the estimator
	Asymptotic results
	Optimization of the kn-nearest neighbor density estimator
	The asymptotic mean squared error
	A regression model and selection of the number kn of nearest neighbors
	Simulations
	Some proofs
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


