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Abstract For any point process in R
d that has a Papangelou conditional

intensity λ, we define a random measure of ‘innovations’ which has mean zero.
When the point process model parameters are estimated from data, there is an
analogous random measure of ‘residuals’. We analyse properties of the inno-
vations and residuals, including first and second moments, conditional inde-
pendence, a martingale property, and lack of correlation. Some large sample
asymptotics are studied. We derive the marginal distribution of smoothed resid-
uals by solving a distributional equivalence.

Keywords Distributional equivalence · Georgii-Nguyen-Zessin formula ·
Gibbs point process · Set-indexed martingale · Papangelou conditional
intensity · Pearson residuals · Scan statistic · Smoothed residual field

1 Introduction

The inspection of residuals is an important check on the appropriateness of a
probability model fitted to data (Atkinson 1985). This paper defines residuals
for spatial point processes, and describes their properties.

A. Baddeley (B) · A. G. Pakes
School of Mathematics and Statistics M019, University of Western Australia,
35 Stirling Highway, Nedlands WA 6009, Australia
e-mail: adrian@maths.uwa.edu.au

A. Baddeley
CSIRO Mathematical and Information Sciences, Private Bag 5, Wembley WA 6913, Australia

J. Møller
Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G,
9220 Aalborg Ø, Denmark



628 A. Baddeley et al.

For a point process in one-dimensional time, residual analysis is well under-
stood. Let Nt be the associated counting process, and assume it has a conditional
intensity λt given the history up to time t. Informally λt = E[dN(t) | Ns, s <

t]/dt. Define the ‘innovation’ process It = Nt − ∫ t
λs ds; this is a martingale

with zero mean (Karr 1985, Theorem 2.14, p. 60). When a point process model
is fitted to observed data, the ‘residual’ process is Rt = Nt − ∫ t

λ̂s ds where λ̂s
is the conditional intensity of the fitted model, i.e. with parameters determined
by fitting the model to the process (Nt, t > 0). If the model is correct and the
parameter estimate is accurate, then E[Rt] ≈ 0. This fact enables us to check the
validity of a point process model fitted to data. Such techniques are now familiar
in signal processing (Brillinger 1978, 1994; Brillinger and Segundo 1979; Lewis
1972) and survival analysis (Andersen et al. 1993; Fleming and Harrington 1991;
Kalbfleisch and Prentice 1980). They have also been extended to space-time
point processes, with important application to earthquake modelling (Ogata
1988; Ogata et al. 2003; Zhuang et al. 2005).

For spatial point processes, residual analysis is more difficult. The lack of a
natural ordering in higher dimensions implies that there is no natural general-
isation of the conditional intensity of a temporal process given the “past” or
“history” up to time t. Instead, the appropriate counterpart for a spatial point
process is the Papangelou conditional intensity λ(u, X) (Papangelou 1974) which
conditions on the outcome of the process at all spatial locations other than u. In
Baddeley et al. (2005) we used the Papangelou conditional intensity to define
residuals for finite point processes in R

2, and showed that they have practical
utility for checking point process models fitted to spatial point pattern data.

In this paper, we give a more general definition of the innovations and residu-
als for finite or infinite point processes in R

d, and study their properties, includ-
ing first and second moments, variance deflation, conditional independence,
a set-indexed martingale property, lack of correlation, and marginal distribu-
tions. Section 2 gives background details about the Papangelou conditional
intensity. Section 3 defines innovations for spatial point processes, and Sect. 4
obtains expressions for their variances. Section 5 defines residuals for a spatial
point process model fitted to a point pattern, and Sect. 6 obtains expressions
for their variances, including large-sample asymptotics. Section 7 discusses the
distribution of residuals in a special case.

2 Conditional intensities

We consider the general setting of a locally finite point process X on R
d with no

multiple points. Let N denote the set of all locally finite point configurations
in R

d, that is, subsets x ⊂ R
d with n(xB) < ∞ for all bounded B ⊂ R

d, where
n(xB) denotes the number of points in xB = x ∩ B, the restriction of x to B.
We view X as a random variable with values in N , such that N(B) ≡ n(XB) is
a finite random variable whenever B ⊂ R

d is a bounded Borel set (Daley and
Vere-Jones 1988). For simplicity, we assume that
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P(u ∈ X) = 0 for any fixed point u ∈ R
d, (1)

which is satisfied e.g. if X is stationary.
Throughout this paper, X is assumed to be a Gibbs point process with

Papangelou conditional intensity λ, that is,

E

[
∑

u∈X

h(u, X \ {u})
]

= E

[∫

Rd
h(u, X)λ(u, X) du

]

(2)

for all nonnegative measurable functions h(u, x) on R
d × N . The class of Gibbs

processes includes all Cox processes, Markov point processes, many cluster pro-
cesses, and all finite point processes which have a density with respect to the
Poisson process. Equation (2) is called the Georgii–Nguyen–Zessin (GNZ) for-
mula (Georgii, 1976; Nguyen and Zessin, 1979), and it is one way of defining the
Papangelou conditional intensity. Indeed the Papangelou conditional intensity
is uniquely characterised by (2) up to null-sets: if both λ1 and λ2 satisfy (2), then

P(λ1(u, X) = λ2(u, X) for Lebesgue almost all u ∈ R
d) = 1.

Combining this with (1) we can and do make the assumption that

λ(u, x) = λ(u, x \ {u}) for all u ∈ R
d and x ∈ N . (3)

In a more rigorous treatment of measurability properties, (3) would be replaced
by the requirement that λ be an exvisible process (Daley and Vere-Jones 1988,
Chap. 13). However, the notational form (3) is a more accessible way to com-
municate the key definitions (e.g. of the weighted innovations in Sect. 3), and
is useful in the algebraic calculations in Sect. 4.

In Baddeley et al. (2005) we adopted a simpler setting, in which X was
assumed to be a finite point process with an hereditary density f . Suppose that
X lives within a bounded Borel set W ⊂ R

d, and X has a density f with respect
to the unit rate Poisson process on W such that f is hereditary, i.e. f (x) > 0
implies f (x \ {u}) > 0 for all x ∈ NW and all u ∈ x, where NW is the set of finite
point configurations contained in W. It is then straightforward to verify that the
definition

λ(u, x) = f (x ∪ {u})/f (x \ {u}), for all u ∈ W, x ∈ NW (4)

satisfies (2) and (3) (when the point process is empty outside W). Here and
throughout the paper we interpret 0/0 = 0 when considering ratios of densities.

In applications we often consider the special case of a Markov point process
(Ripley and Kelly 1977) of finite interaction range R < ∞. This is a Gibbs pro-
cess whose conditional intensity λ(u, x) depends on x only through x ∩ b(u, R),
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where b(u, R) is the closed ball in R
d with centre u and radius R. Equivalently

(Georgii 1976; Preston 1976; Ruelle 1969)

λ(u, x) = exp

⎛

⎝
∑

y⊆x

V(y ∪ {u})
⎞

⎠ whenever u 	∈ x (5)

where the ‘potential’ V is an extended-real-valued function V(x) ∈ [−∞, ∞),
defined for x ∈ N , with the property that

V(x) = 0 whenever x contains two points u, v with distance ‖u − v‖ > R.

This local Markov property implies a spatial Markov property. For B ⊂ R
d, let

∂B be its R-close neighbourhood, i.e. the set of all points in Bc = R
d \ B within

distance R from some point in B. Then for bounded Borel sets B ⊂ R
d, XB

conditional on X∂B is independent of XBc\∂B, with conditional density

fB(x|x∂B) ∝ exp

⎛

⎝
∑

y⊆x

V(y ∪ x∂B)

⎞

⎠ , for all x ∈ NB, x∂B ∈ N∂B (6)

with respect to the unit rate Poisson process on B, where the normalizing con-
stant on the right side in (6) may depend on X∂B. Combining (4) and (6) we
see that the Papangelou conditional intensity λ(·, ·|x∂B) of the conditional point
process XB|X∂B = x∂B agrees with the conditional intensity of X, meaning that
we can take

λ(u, x|x∂B) = λ(u, x ∪ x∂B), for all u ∈ B, x ∈ NB, x∂B ∈ N∂B. (7)

Examples of Markov and non-Markov Gibbs point process models and their
conditional intensities are presented in Baddeley et al. (2005), Møller and
Waagepetersen (2003, 2007).

3 Innovations

This section defines innovations for (finite as well as infinite) spatial point pro-
cesses X having Papangelou conditional intensity λ. The process is observed
within a bounded window W ⊂ R

d, with positive volume |W|. We assume that
either

(i) X is a Gibbs process in W; or
(ii) X is a Markov point process in R

d with interaction range R < ∞, but is
observed only within W ⊂ R

d.

In case (ii), we account for edge effects by considering inference based on
the conditional process XV |X∂V , where V = W \ ∂(Wc). Since ∂V = ∂(Wc),
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the point process XV given X∂V is independent of XWc and has Papangelou
conditional intensity λ(u, XW) for u ∈ V, cf. (7).

So as to avoid duplicating our results for the two cases (i) and (ii), we state
them in terms of the sets A and ∂A defined as follows. In case (i), define A = W
and ∂A = ∅. In case (ii), let A = V and ∂A = ∂V = ∂(Wc).

The GNZ formula corresponding to the conditional point process XA|X∂A is

E

⎡

⎣
∑

u∈XA

h(u, XW \ {u})
∣
∣
∣
∣X∂A

⎤

⎦ = E

[∫

A
h(u, XW)λ(u, XW) du

∣
∣
∣
∣X∂A

]

(8)

for nonnegative measurable functions h. Equation (8) rather than (2) is the
relevant form of the GNZ formula when inference is performed on the condi-
tional point process XA|X∂A. In case (i), XA|X∂A is equivalent to the “marginal”
process XW .

We shall exploit (8) intensively when studying the properties of innovations
and residuals. For illustrative purposes we sometimes consider a Poisson pro-
cess with intensity function λ(u, x) = λ(u), in which case we take R = 0 so that
A = W and ∂A = ∅, meaning that XA|X∂A ≡ XW and the expectations in (8)
are with respect to the point process restricted to W.

In the sequel we always implicitly assume that means, variances, etc. exist
whenever needed. For example, when we apply (8) we assume that the (con-
ditional) expectations are finite. Finally, B always denotes a generic Borel set
contained in A.

3.1 Innovations

The h-weighted innovation is the signed random measure defined by

Ih(B) =
∑

u∈XB

h(u, XW \ {u}) −
∫

B
h(u, XW)λ(u, XW) du. (9)

We allow infinite values of h(u, XW) at points u 	∈ XW , setting h(u, XW)

λ(u, XW) = 0 if λ(u, XW) = 0. Baddeley et al. (2005) study in particular the
raw, inverse-λ, and Pearson innovations given by h = 1, 1/λ and 1/

√
λ respec-

tively. That is,

I(B) ≡ I1(B) = N(B) −
∫

B
λ(u, XW) du (10)

I1/λ(B) =
∑

u∈XB

1
λ(u, XW)

−
∫

B
1[λ(u, XW) > 0] du (11)

I1/
√

λ(B) =
∑

u∈XB

1√
λ(u, XW)

−
∫

B

√
λ(u, XW) du (12)
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where 1[·] denotes the indicator function. By Eq. (8),

E[Ih(B)|X∂A] = 0 (13)

and so the unconditional mean E[Ih(B)] is zero as well; as noted above, we find
(13) to be the more relevant property when inference is based on XA|X∂A.

3.2 Some martingale and independence properties

The definition (10) of the raw innovation is closely analogous to that for tempo-
ral processes, i.e. the martingale obtained by subtracting the compensator from
the counting process, except for the use of the Papangelou conditional intensity
in place of the conditional intensity given the past history. We now show that
our raw innovation is indeed a set-indexed martingale.

Proposition 1 If An is increasing in R
d (i.e. An ⊂ An+1, n = 1, 2, . . .), then

In = I(An) is a martingale.

Proof To stress that the innovation is defined conditionally on XAc (or equiv-
alently, conditionally on X∂A) we write I(A|XAc) for I(A). Since λ(u, X) =
λ(u, XA∪∂A) if u ∈ A,

I(A|XAc) = N(A) −
∫

A
λ(u, X) du

where by the GNZ formula (8)

E[I(A|XAc)|XAc] = 0. (14)

Now

E[In+1|XAn] = E

[

E

(

In+1

∣
∣
∣
∣XAn , XAc

n+1

) ∣∣
∣
∣XAn

]

= E

[

In + E

(

I(An+1 \ An|X(An+1\An)c)

∣
∣
∣
∣XAn , XAc

n+1

) ∣∣
∣
∣XAn

]

and so by (14), since (An+1 \ An)c = An ∪ Ac
n+1, the inner expectation on the

last line is zero, which implies the martingale property E[In+1|In, In−1, . . .] = In.

Lemma 1 Assume case (ii) so that X is Markov. Suppose h(u, xW) is a nonnega-
tive measurable function such that h(u, XW) = h(u, XW ∩ b(u, R)) for all u ∈ A.
Then Ih(B) depends on XW only through XB∪∂B, and for any Borel set C ⊆ R

d

such that C ⊇ ∂B,

E [Ih(B)|XC] = 0.
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Proof The first property follows from the definition of innovations and the local
Markov property, while the second property follows from a version of the GNZ
formula [viz. (8) with A replaced by B] and the global Markov property (see
Sect. 2).

Proposition 2 Assume case (ii) so that X is Markov. Suppose B1, B2 ⊂ A are
Borel sets at least a distance R apart, i.e. ‖u − v‖ > R for any u ∈ B1 and v ∈ B2,
and that h(u, xW) is a nonnegative measurable function such that h(u, XW) =
h(u, XW ∩ b(u, R)) for all u ∈ A. Let C ⊆ R

d be a Borel set such that C ⊇
∂(B1 ∪ B2). Then Ih(B1) and Ih(B2) are uncorrelated, and are conditionally
independent given XC.

Proof Follows immediately from Lemma 1, the spatial Markov property (see
Sect. 2) and basic properties of conditional moments.

As a result of these propositions, one may expect a strong law of large numbers
and a central limit theorem to hold for the raw, inverse-λ and Pearson innova-
tions as the sampling window W expands. However, we do not investigate this
in the present paper.

4 Variances of innovations

4.1 General variance formulae

Formulae for the variances of innovations and residuals can be obtained using
the second-order Papangelou conditional intensity λ(u, v, X) of the point pro-
cess X. This is a random function satisfying the second-order counterpart of the
GNZ formula

E

⎡

⎣
∑

u,v∈X: u 	=v

h(u, v, X \ {u, v})
⎤

⎦ = E

[∫

Rd

∫

Rd
h(u, v, X)λ(u, v, X) du dv

]

(15)

for any nonnegative measurable function h(u, v, x) on R
d × R

d × N . Note that
λ(u, v, X) is symmetric in u and v [for Lebesgue almost all (u, v)]. It follows
immediately from the first-order GNZ formula (2) that

λ(u, v, x) = λ(u, x \ {v})λ(v, x ∪ {u}), u, v ∈ R
d, x ∈ N (16)

up to almost sure, almost everywhere equivalence. If X lives within W and has
density f with respect to the unit rate Poisson process, we can take

λ(u, v, x) = f (x ∪ {u, v})/f (x \ {u, v}).
Below we use the fact that a Markov process with pairwise interaction only [i.e.
whose potential V(x) is zero whenever n(x) > 2] has

λ(u, v, x) = λ(u, x \ {v}) λ(v, x \ {u}) c(u, v) (17)
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where log c(u, v) = V({u, v}) is the second order potential.
By the same arguments as in Sect. 2, λ(u, v, X) = λ(u, v, XW) when u, v are

points in A, and (16) also specifies the second-order Papangelou conditional
intensity of the conditional process XA given X∂A. Moreover, the second-order
GNZ formula for this conditional point process is

E

⎡

⎣
∑

u,v∈XA: u 	=v

h(u, v, XW \ {u, v})
∣
∣
∣
∣X∂A

⎤

⎦

= E

[∫

A

∫

A
h(u, v, XW)λ(u, v, XW) du dv

∣
∣
∣
∣X∂A

]

. (18)

Proposition 3 For any non-negative measurable function h,

var

⎡

⎣
∑

u∈XA

h(u, XW \ {u})
∣
∣
∣
∣X∂A

⎤

⎦

=
∫

A
E

[
h(u, XW)2 λ(u, XW)|X∂A

]
du +

∫

A

∫

A
T(u, v) du dv (19)

where

T(u, v) = E
[
h(u, XW ∪ {v})h(v, XW ∪ {u})λ(u, v, X)|X∂A

]

− E
[
h(u, XW)λ(u, XW)|X∂A

]
E
[
h(v, XW)λ(v, XW)|X∂A

]
. (20)

Proof Follows immediately by expanding the square of the sum on the left side
of (19) as a double sum, and using (8) and (18).

For example, for a Poisson process with intensity function λ(u), (19) reduces
to

var

⎡

⎣
∑

u∈XW

h(u, XW \ {u})
⎤

⎦

=
∫

W

∫

W
E
[
h(u, XW ∪ {v})h(v, XW ∪ {u})] λ(u)λ(v) du dv

+
∫

W
E

[
h(u, XW)2

]
λ(u) du −

(∫

W
E
[
h(u, XW)

]
λ(u) du

)2

.

In the special case h(u, xW) = h(u), this further reduces to

var

⎡

⎣
∑

u∈XW

h(u)

⎤

⎦ =
∫

W
h(u)2λ(u) du (21)
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as expected by the independence properties of the Poisson process.

Lemma 2 For nonnegative measurable functions h and g,

var

⎡

⎣
∑

u∈XA

h(u, XW \ {u}) −
∫

A
g(u, XW) du

∣
∣
∣
∣X∂A

⎤

⎦

=
∫

A
E

[
h(u, XW)2 λ(u, XW)|X∂A

]
du

+
∫

A

∫

A
cov[g(u, XW), g(v, XW)|X∂A] du dv

+
∫

A

∫

A
T(u, v) du dv − 2

∫

A

∫

A
M(u, v) du dv (22)

where

M(u, v) = E[h(u, XW)g(v, XW ∪ {u})λ(u, XW)|X∂A]
− E[h(u, XW)λ(u, XW)|X∂A]E[g(v, XW)|X∂A].

Proof Using standard properties of variances, we expand the left side of (22)
as

var

⎡

⎣
∑

u∈XA

h(u, XW \ {u})
∣
∣
∣
∣X∂A

⎤

⎦+ var
[∫

A
g(u, XW) du

∣
∣
∣
∣X∂A

]

− 2cov

⎛

⎝
∑

u∈XA

h(u, XW \ {u}),
∫

A
g(u, XW) du

∣
∣
∣
∣X∂A

⎞

⎠

= var

⎡

⎣
∑

u∈XA

h(u, XW \ {u})
∣
∣
∣
∣X∂A

⎤

⎦

+
∫

A

∫

A
cov

(
g(u, XW), g(v, XW)|X∂A

)
du dv

− 2E

⎡

⎣
∑

u∈XA

h(u, XW \ {u})
∫

A
g(u, XW) du

∣
∣
∣
∣X∂A

⎤

⎦

+ 2E

⎡

⎣
∑

u∈XA

h(u, XW \ {u})
∣
∣
∣
∣X∂A

⎤

⎦E

[∫

A
g(u, XW) du

∣
∣
∣
∣X∂A

]

. (23)

Denote the four terms on the right-hand side of (23) by V, C, E1 and E2
respectively. The variance term V is now expanded using Proposition 3. The
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first expectation E1 is converted to an integral using (8). The second expecta-
tion E2 is evaluated by putting

k(v, x) = h(v, x)

∫

A
g(u, x ∪ {v}) du, v 	∈ x, x ∈ NW ,

so that

k(v, x \ {v}) = h(v, x \ {v})
∫

A
g(u, x) du, v ∈ x, x ∈ NW .

Applying (8) gives

E2 = E

⎡

⎣
∑

u∈XA

k(u, XW \ {u})
∣
∣
∣
∣X∂A

⎤

⎦

=
∫

A
E
[
k(u, XW)λ(u, XW)|X∂A

]
du

=
∫

A
E

[

h(u, XW)λ(u, XW)

∫

A
g(v, XW ∪ {u}) dv

∣
∣
∣
∣X∂A

]

du

=
∫

A

∫

A
E

[

h(u, XW)g(v, XW ∪ {u})λ(u, XW)

∣
∣
∣
∣X∂A

]

du dv.

Rearrangement yields the result (22).

Proposition 4 The variance of the h-weighted innovation is

var [Ih(B)|X∂A] =
∫

B
E

[
h(u, XW)2 λ(u, XW)|X∂A

]
du

+
∫

B

∫

B
E [S(u, v, XW)|X∂A] du dv (24)

for Borel sets B ⊆ A, where

S(u, v, x) = λ(u, x)λ(v, x)h(u, x)h(v, x)

+ λ(u, v, x)h(v, x ∪ {u}) [h(u, x ∪ {v}) − 2h(u, x)
]

. (25)

Proof In Eq. (22), replace h(u, x) by h(u, x) 1{u ∈ B} and substitute g(u, x) =
λ(u, x)h(u, x)1{u ∈ B}.

As a corollary, by combining (13) and (24) we obtain

var [Ih(B)] =
∫

B
E

[
h(u, XW)2 λ(u, X)

]
du dv. (26)

Again, the conditional variance (24) is a more relevant result for us than (26)
when doing inference conditional on X∂A.
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4.2 Variance of innovations in particular cases

4.2.1 Raw innovations

For the raw innovations, taking h ≡ 1, Eq. (25) reduces to

S(u, v, x) = λ(u, x)λ(v, x) − λ(u, v, x)

so that (24) becomes

var [I(B)|X∂A] =
∫

B
E [λ(u, XW)|X∂A] du

+
∫

B

∫

B
E [λ(u, XW)λ(v, XW) − λ(u, v, XW)|X∂A] du dv.

(27)

For a Poisson process with intensity function λ(u), the expression S in (25) is
identically zero, and (27) reduces to (21) with h = 1.

4.2.2 Inverse-lambda innovations

Suppose for simplicity that λ(·, ·) > 0. Applying (19) to h(u, x) = 1/λ(u, x), we
find that

var
[
I1/λ(B)

∣
∣X∂A

] =
∫

B

∫

B
E

[
λ(u, v, XW)

λ(u, XW ∪ {v})λ(v, XW ∪ {u})
∣
∣
∣
∣X∂A

]

du dv

+
∫

B
E

[
1

λ(u, XW)

∣
∣
∣
∣X∂A

]

du − |B|2. (28)

For example, consider a pairwise interaction process with a finite potential
[i.e. λ(·, ·) > 0 and c(·, ·) > 0). Then (17) and (28] yield

var
[
I1/λ(B)|X∂A

] =
∫

B

∫

B

1
c(u, v)

du dv +
∫

B
E

[
1

λ(u, XW)

∣
∣
∣
∣X∂A

]

du − |B|2.

(29)
This was derived in Stoyan and Grabarnik (1991) in the unconditional case,
when the first and second order potentials are translation invariant [V({u}) ≡ β,
c(u, v) = c(u−v)]. For a Poisson process with intensity function λ(·) > 0, Eq. (29)
reduces to (21) with h(u) = 1/λ(u). The general case, where λ may have zeroes,
is derived similarly.
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4.2.3 Pearson innovations

For the Pearson innovations (11), we have h(u, x) = 1/
√

λ(u, x) so that h(u, x)2

λ(u, x) = 1[λ(u, x) > 0]. Hence by (24)

var
[
I1/

√
λ(B)|X∂A

]
=
∫

B
P(λ(u, XW) > 0|X∂A) du

+
∫

B

∫

B
E [S(u, v, X)] du dv (30)

where (25) is now

S(u, v, x) = √
λ(u, x)

√
λ(v, x)

+ λ(u, v, x)√
λ(v, x ∪ {u})

[
1√

λ(u, x ∪ {v}) − 2√
λ(u, x)

]

. (31)

For a Poisson process with intensity function λ(u), S is identically zero and (30)
reduces to

var
[
I1/

√
λ(B)

]
= var

[
∑

u∈X

1√
λ(u)

]

=
∫

B
1[λ(u) > 0] du (32)

in agreement with (21).
For a Markov point process with pairwise interaction only, (31) becomes

S(u, v, x) = √
λ(u, x)

√
λ(v, x)

+ λ(u, x \ {v}) λ(v, x \ {u}) c(u, v)√
λ(v, x ∪ {u})

[
1√

λ(u, x ∪ {v}) − 2√
λ(u, x)

]

= √
λ(u, x)

√
λ(v, x)

+λ(u, x \ {v})√λ(v, x \ {u})1[c(u, v) > 0]√
c(u, v)

[
1√

λ(u, x ∪ {v}) − 2√
λ(u, x)

]

by virtue of (17). For u, v 	∈ x this reduces to

S(u, v, x) = √
λ(u, x)

√
λ(v, x)

+ λ(u, x)
√

λ(v, x)1[c(u, v) > 0]√
c(u, v)

[
1√

λ(u, x)c(u, v)
− 2√

λ(u, x)

]

= √
λ(u, x)

√
λ(v, x) +

√
λ(u, x)

√
λ(v, x)1[c(u, v) > 0]

c(u, v)

[
1 − 2

√
c(u, v)

]

= √
λ(u, x)

√
λ(v, x)

[

1 +
(

1
c(u, v)

− 2√
c(u, v)

)

1[c(u, v) > 0]
]

.

The expression in brackets on the last line is nonnegative, and positive when
c(u, v) 	= 1. Thus any nontrivial pairwise interaction gives rise to inflation of the
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variance of the Pearson innovations, relative to any Poisson point process with
an intensity function such that the support of the intensity function contains
{u ∈ A : V({u}) > −∞}, the support of λ(u, ∅).

5 Residuals

For the rest of the paper, we assume that a spatial point process model, gov-
erned by a parameter θ , is fitted to a realisation of the true point process X. This
scenario allows us to study the sensitivity of residuals to mis-specifications of
the model. Both the ‘true’ point process X and the model process (for all values
of θ) are assumed to satisfy the requirements stated in Sect. 3, namely, they are
Gibbs processes observed in W under either scenario (i) or (ii).

Write λθ for the Papangelou conditional intensity of the model. As foreshad-
owed, we allow the weight function h = hθ to depend on the parameter θ of the
point process model. We assume θ is estimated by θ̂ = θ̂ (XW) and plugged in to
h, yielding ĥ = h

θ̂ (XW)
. Nothing is assumed about θ̂ , other than its existence and

uniqueness. The h-weighted residual (or more precisely the ĥ-weighted residual)
is the signed random measure defined by

Rĥ(B) =
∑

u∈XB

h
θ̂ (XW)

(u, XW \ {u}) −
∫

B
h

θ̂ (XW)
(u, XW)λ

θ̂(XW)
(u, XW) du.(33)

In particular, the raw, inverse-λ and Pearson residuals are given by replacing
λ(u, XW) by λ

θ̂(XW)
(u, XW) on the right hand sides of (10)–(12); we denote

these residuals by R, R1/λ̂
, R

1/

√
λ̂
, respectively. In order that the Pearson and

inverse-λ residuals be well defined, we require that λ
θ̂(XW)

(u, XW) > 0 for all
u ∈ XA, almost surely.

5.1 Homogeneous Poisson case

Consider the special case where X is a stationary Poisson process in R
d with

intensity θ , i.e. λθ ≡ θ , and where the model is also a stationary Poisson process,
fitted using the maximum likelihood estimator θ̂ = N(W)/|W|. Recall that in
this case, A = W and ∂A = ∅. We have

R(B) = N(B) − N(W)|B|/|W|
R1/θ̂

(B) = |W|N(B)/N(W) − |B|
R

1/

√
θ̂
(B) = N(B)

√|W|/N(W) −√
N(W)|W|
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when N(W) > 0, and zero otherwise. It can be verified directly that these resid-
uals have mean zero if the model is true. Notice also that when B = W is the
entire sampling window, we get

R(W) = R1/θ̂
(W) = R

1/

√
θ̂
(W) = 0.

This is analogous to the fact that the raw residuals in simple linear regression
sum to zero.

5.2 General expressions for mean of residuals

By (13) we hope that the (conditional) mean of the residual measure is approx-
imately zero when the model is true and the parameter estimate is accurate. If
E and λ denote the mean and the Papangelou conditional intensity for the true
process X, then the h-weighted residual (33) has true expectation

E[Rĥ(B)|X∂A]
=
∫

B
E

[
h

θ̂ (X∪{u})(u, XW)λ(u, XW) − h
θ̂ (XW)

(u, X)λ
θ̂(XW)

(u, XW)
∣
∣X∂A

]
du

Explicit results for the raw, inverse and Pearson residuals follow directly
(Baddeley et al., 2005). Further analysis depends on the nature of the esti-
mator θ̂ .

One case of interest is the inhomogeneous Poisson process with intensity
λθ (u). The maximum likelihood estimate λ

θ̂(XW)
(u, XW) is in general a biased

estimator of the true intensity λ(u, XW), so the raw residuals do not in general
have exactly zero mean.

5.3 Practical applicability

For Markov point processes, the form of the conditional intensity is known
explicitly, by virtue of (5), so that the residuals are typically easy to evaluate.
Examples were presented in Baddeley et al. (2005).

The most important class of non-Markov point processes is that of Cox
processes. Expressions for the conditional intensity of a Cox process involve
the conditional distribution of the driving intensity, (cf. Baddeley et al. 2005;
Møller and Waagepetersen 2003; Møller and Waagepetersen 2007) and must
typically be evaluated by Monte Carlo. In practice it may be preferable to
replace λ(u, XW) by the intensity function λ(u) = E[λ(u, XW)] and to use only
the raw residuals, as mooted in Møller and Waagepetersen (2007). This reduces
to an application of Campbell’s Theorem rather than the GNZ formula.
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6 Variance of residuals

6.1 General formula

The raw, Pearson, and inverse-lambda residuals can be written in the common
form

Rp(B) =
∑

u∈XB

λθ̂(XW)(u, XW \ {u})p −
∫

B
λθ̂(XW)(u, XW)p+1 du (34)

where p = 0, − 1
2 , −1 respectively, and we interpret 00 = 0.

Proposition 5 The raw, Pearson and inverse-lambda residuals have true variance

varRp(B) =
∫

B
E

[

λθ̂(XW∪{u})(u, XW)2p λ(u, XW)

∣
∣
∣
∣X∂A

]

du

+
∫

B

∫

B
cov

[

λθ̂(XW)(u, XW)p+1, λθ̂(XW)(v, XW)p+1
∣
∣
∣
∣X∂A

]

du dv

+
∫

B

∫

B
T(u, v) du dv − 2

∫

B

∫

B
M(u, v) du dv (35)

where

M(u, v) = E

[

λθ̂(XW∪{u})(u, XW)p λθ̂(XW∪{u})(v, XW)p+1 λ(u, XW)

∣
∣
∣
∣X∂A

]

−E

[

λθ̂(XW∪{u})(u, XW)p λ(u, XW)

∣
∣
∣
∣X∂A

]

· E

[

λθ̂(XW )(v, XW)p+1
∣
∣
∣
∣X∂A

]

and

T(u, v) = E

[

λθ̂(XW∪{u,v})(u, XW ∪ {v})p λθ̂(XW∪{u,v})(v, XW ∪ {u})p λ(u, v, XW )

∣
∣
∣
∣X∂A

]

−E

[

λθ̂(XW∪{u})(u, XW )p λ(u, XW)

∣
∣
∣
∣X∂A

]

· E

[

λθ̂(XW∪{v})(v, XW )p λ(v, XW )

∣
∣
∣
∣X∂A

]

where the expectations and variances are with respect to the true distribution of
the point process X, and λ(u, XW) and λ(u, v, XW) are the first and second order
Papangelou conditional intensities of the true process X.

This result is obtained from Lemma 2 by substituting h(u, x) = λθ̂(x∪{u})(u, x)p

and g(u, x) = λθ̂(x)(u, x)p+1.
Note carefully that this result does not assume the point process X actually

conforms to the model. The variance formula (35) involves characteristics of
both the fitted model and the true underlying point process. On the right hand
side of (35), the first term is likely to be the dominant term, since it is the vari-
ance of the sum in (34) when X is Poisson. The second term is the variance of the
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integral in (34); it arises from variability in the parameter estimate θ̂ and should
be of smaller order than the first term. The cross-terms T(u, v) and M(u, v) are
‘influence’ terms that measure the effect on the estimated conditional intensity
λθ̂(X) of adding extra points to the realisation of X, weighted by second-order
properties of the true process. For the raw residuals, T is closely related to the
pair correlation function of X, and is identically zero for Poisson processes,
while M is a kind of influence function for the effect of adding one extra point.

6.2 Variance deflation

In the very special case where a homogeneous Poisson process model with
intensity θ is fitted to a realisation of a homogeneous Poisson process with
intensity β, the residual variances are

varR(B) = β |B|
(

1 − |B|
|W|

)

varR1/θ̂
(B) = |B|(|W| − |B|)E

(
1[N(W) > 0]

N(W)

)

varR
1/

√
θ̂
(B) = |B|

(

1 − |B|
|W|

)

.

Note that the residual variances are smaller than the corresponding innovation
variances

varI(B) = θ |B|, varI1/θ (B) = |B|/θ , varI1/
√

θ (B) = |B|.

This is analogous to the deflation of residual variance in the linear model cf.
Atkinson 1985; Baddeley et al. 2005.

6.3 Large-sample asymptotics for inhomogeneous Poisson case

Suppose an inhomogeneous Poisson process model with intensity function λθ (u)

is fitted to a realisation of an inhomogeneous Poisson process with true intensity
β(u). Then by Proposition 5 the raw residuals have exact variance

varR(B) =
∫

B
β(u) du +

∫

B

∫

B
cov

[
λ

θ̂
(XW)(u), λ

θ̂(XW)
(v)

]
du dv

−2
∫

B

∫

B
E

[
λ

θ̂(XW∪{u})(v) − λ
θ̂(XW)

(v)
]

β(u) dv du (36)

where the expectation is with respect to the true model.
This yields asymptotic expressions for residual variance using the delta

method. For example, suppose the model is of the form λθ (u) = exp(θt S(u))

where θ is a p-dimensional vector and S : W → R
p is a known function. Assume
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the model is correctly specified, i.e. β(u) = λθ0(u) for some θ0 ∈ R
p. Let θ̂ be

the maximum likelihood estimator based on XW . Under regularity conditions,
θ̂ is the unique solution of the MLE normal equations

∑

u∈XW

S(u) =
∫

W
S(u)eθt S(u) du.

Consider a limiting context in which the usual asymptotic results for maximum
likelihood apply. That is, assume θ̂ is asymptotically multivariate Normal with
mean vector θ0 and variance-covariance matrix I−1, where

I = I(θ0) =
∫

W

[
S(u)S(u)t

]
β(u) du

is the Fisher information matrix. Then on the right hand side of (36) we have
asymptotically

cov
[
λ

θ̂(XW)
(u), λ

θ̂(XW)
(v)

]
∼ β(u)β(v)S(u)tI−1 S(v).

The estimating equation for θ̂ (XW ∪ {u}) is

S(u) +
∑

v∈XW

S(v) =
∫

W
S(v)eθt S(v) dv

so that, to first order,

θ̂ (XW ∪ {u}) − θ̂ (XW) ∼ I−1 S(u)

yielding

M(u, v) ∼ β(u)β(v) S(u)tI−1 S(v).

Substituting in (36) gives an expression for the asymptotic variance of the raw
residuals. By similar arguments for p = − 1

2 , −1 we get the asymptotic variance
of the raw, Pearson and inverse-lambda residuals

varRp(B) ∼
∫

B
β(u)2p+1 du −

∫

B

∫

B
β(u)p+1β(v)p+1 S(u)tI−1 S(v) du dv

=
∫

B
β(u) du − GtI−1 G (37)

where G = Gp(B) = ∫
B β(u)p+1S(u) du. This asymptotic expression also exhib-

its variance deflation of the residuals compared to the innovations.
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7 Null distribution of smoothed residual field

In practice it is useful to smooth the residual measure (Baddeley et al. 2005).
Let the smoothing kernel k(·) be a probability density on R

d. The smoothed
residual field is the random function

s(u) = e(u)

∫

A
k(u − v) dRĥ(v)

for u ∈ A, where e(u) is a correction for edge effects in the window W given
by e(u)−1 = ∫

W k(u − v) dv, see Baddeley et al. (2005). An important question
for applications is to determine the distribution of S = s(u) at a fixed location
u ∈ W under a null hypothesis, especially under the hypothesis of a stationary
Poisson process. This is related to the distribution of the scan statistic (Alm
1988) as explained in Baddeley et al. 2005, p. 643.

In this section we assume X is a stationary Poisson process with intensity
λ in R

2, and that the fitted model is also a stationary Poisson process. We
calculate the distribution of S = s(u) at a fixed u ∈ W when h = 1. Note
that for the stationary Poisson process model, the raw, inverse-λ and Pearson
innovations/residuals are all proportional to each other. We ignore the effect
of parameter estimation, that is, we consider the kernel-smoothed innovation
measure, rather than the kernel-smoothed residual measure. Edge effects will
also be ignored, and edge correction is not applied.

Letting X = {xi, i = 1, 2, . . .} denote the points of the process, we consider
the uncorrected, smoothed, raw innovation field

s(u) =
∑

i

k(u − xi) − λ

where the kernel is the isotropic Gaussian density

k(u) = 1
2πσ 2 exp(−||u||2/(2σ 2))

so that

S = s(u) = 1
2πσ 2

∑

i

exp(−||u − xi||2/(2σ 2)) − λ.

The ordered values ||u − xi||2 are the event times Ti of a homogeneous Poisson
process of intensity λπ on R+. Since the inter-event times Vi = Ti − Ti−1 are
exponentially distributed with rate λπ we can represent S as

S = λ

µ

∑

i

⎛

⎝
i∏

j=1

Uj

⎞

⎠

1/µ

− λ (38)
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Fig. 1 Cumulative distribution function of Y = 2πσ 2S for the cases µ = 0.5, 1, 2 (left to right),
where S = s(0) is a typical value of the kernel-smoothed raw innovation field for a homogeneous
Poisson process of rate λ, smoothed by an isotropic Gaussian kernel with standard deviation σ , and
µ = 2λπσ 2

where Uj are i.i.d. uniform [0, 1] r.v.’s and µ = 2λπσ 2.
Let X = µ(1 + S/λ) be the sum in (38). Then X satisfies the distributional

equivalence
X ≡ U1/µ(1 + X) (39)

where U is a uniform [0, 1] random variable independent of X. This equivalence
is discussed by Vervaat (1979) with references to its prior occurrence. As shown
in Appendix A, Eq. (39) leads to an integral equation for the c.d.f. F(x) of X,

F(x) = µxµ

∫ ∞

(x−1)+

F(z)

(1 + z)1+µ
dz = xµ

[

C − µ

∫ (x−1)+

0

F(z)

(1 + z)1+µ
dz

]

(40)

where

C = µ

∫ ∞

0

F(z)

(1 + z)1+µ
dz = E[(1 + X)−µ] = e−γµ/�(1 + µ)

where γ ≈ 0.5772 is Euler’s constant. For x ∈ [0, 1] the integral in (40) is zero
and

F(x) = Cxµ, 0 ≤ x ≤ 1.

One may then apply (40) recursively to obtain the values of F on successive
intervals [n, n + 1] for n = 1, 2, . . ., see Appendix A. We have no analytic form
for the solution, but it may be computed numerically.

For any given value of µ, these recursive computations yield the distribution
of X = µ(1 + S/λ), so the c.d.f. of Y = (µ/λ)S = 2πσ 2S is G(y) = F(y + µ) for
−µ ≤ y ≤ ∞. Figure 1 shows the computed G for the cases µ = 0.5, 1 and 2.

Acknowledgments This paper was prepared in conjunction with Baddeley et al. (2005); we thank
our coauthors Martin Hazelton and Rolf Turner for their collaboration. We thank David Brillinger,
Michael Buckley, David Vere-Jones, Rick Vitale and Rasmus Waagepetersen for illuminating com-
ments. This research was supported by the Australian Research Council (Large Grant A69941083



646 A. Baddeley et al.

Extrapolating and interpolating spatial patterns) and by The Danish Natural Science Research
Council.

Appendix A: Study of the distributional equivalence

Here we consider the distributional equivalence (39) where X is a positive
continuous random variable X with c.d.f. F. This gives the following integral
equation for F:

F(x) =
∫ 1

0
F(u−1/µx − 1) du = µxµ

∫ ∞

x−1
F(z)

dz

(1 + z)1+µ
.

Since F(z) = 0 if z < 0, we have

F(x) = µxµ

∫ ∞

(x−1)+
F(z)

dz

(1 + z)1+µ
(41)

whereby (40) is verified.

A.1 Solutions

In principle we can solve (41) section-wise. For the case 0 ≤ x ≤ 1,

F(x) = C0 xµ

where

C0 = µ

∫ ∞

0
F(z)

dz

(1 + z)1+µ
= E

[
(1 + X)−µ

]
< 1.

It can be shown that

C0 = 1
�(µ)

∫ ∞

0
vµ−1 exp

(

−v − µ

∫ 1

0

1 − e−vy

y
dy

)

dv.

Now consider the case 1 ≤ x ≤ 2. We have

F(x) = µxµ

[∫ ∞

0
F(z)

dz

(1 + z)1+µ
−
∫ x−1

0
C0zµ dz

(1 + z)1+µ

]

= C0xµ

[

1 − µ

∫ x−1

0

zµ

(1 + z)1+µ
dz

]

.
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The last integral transforms to an incomplete beta integral:

∫ x−1

0

zµ

(1 + z)1+µ
dz =

∫ 1

1/x
u−1(1 − u)µ du = Hµ(x), say.

So
F(x) = C0xµ

[
1 − µHµ(x)

]
.

For example, if µ = 1, we have H1(x) = log x − 1 + 1/x, giving F(x) = C0[2x −
x log x − 1] for 1 ≤ x ≤ 2, and F(2) = (3 − 2 log 2)C0. If instead µ = 2, then
F(x) = C0x2 for 0 ≤ x ≤ 1 and F(x) = C0((2x − 1)2 − 2x2 log x) for 1 ≤ x ≤ 2
with F(2) = (9 − 8 log 2)C0.

A.2 Evaluation of constant C0

We now prove that C0 = e−γµ/�(1 + µ) where γ is Euler’s constant. Write
φ(θ) = E[e−θX ] as

φ(θ) = exp

{

−µ

∫ 1

0

1 − e−θx

x
dx

}

= exp

{

−µ

∫ θ

0

1 − e−y

y
dy
}

.

For θ > 1 the integral above is

∫ 1

0

1 − e−y

y
dy + log θ −

∫ θ

1

e−y

y
dy

whence, as θ → ∞,

φ(θ) ∼ θ−µ exp

[

−µ

(∫ 1

0

1 − e−y

y
dy −

∫ ∞

1

e−y

y
dy

)]

= θ−µ exp(−γµ).

A.3 Further notes on F

The Tauberian theorem for Laplace–Stieltjes transforms (Feller 1971, p. 445)
implies that

F(x) ∼ xµe−γµ/�(1 + µ), x → 0.

This comes effectively from Takács (1955, p. 376). He observes that

φ(θ) = θ−µe−γµ exp(−µE1(θ))
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where

E1(θ) =
∫ ∞

θ

e−y

y
dy =

∫ ∞

1

e−θz

z
dz.

Since clearly

θ−µ = 1
�(µ)

∫ ∞

0
xµ−1e−θx dx,

the p.d.f. of X can be expressed as

f (x) = e−γµ

�(µ)

⎡

⎣xµ−1 +
∑

n≥1

(−µ)n

n! Hn(x)

⎤

⎦ (42)

where

Hn(x) =
∫ x

0
(x − y)µ−1fn(y) dy

and fn is the n-fold convolution of y−11(1,∞)(y), i.e. f̂n(θ) = (E1(θ))n. Obviously
fn(y) = 0 if y < n, and hence for a given x the series at (42) has only finitely
many nonzero terms. Similarly

F(x) = e−γµ

�(1 + µ)

⎡

⎣xµ +
∑

n≥1

(−µ)n

n! Jn(x)

⎤

⎦

where

Jn(x) =
∫ x

0
(x − y)µfn(y) dy.

For example, if µ = 1, since f1(y) = 1
y 1(1,∞)(y) we get H1(x) = (log x)

1(1,∞)(x). Since Hn(x) = 0 if 1 ≤ x ≤ 2 for all n ≥ 2, we find that

f (x) = e−γ [1 − log x], 1 ≤ x ≤ 2,

which agrees with the expression found for F in this case. For 2 ≤ x ≤ 3 it
becomes more difficult to study f and F analytically although they can still be
evaluated.
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