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Abstract The k-out-of-n model is commonly used in reliability theory. In this
model the failure of any component of the system does not influence the com-
ponents still at work. Sequential k-out-of-n systems have been introduced as an
extension of k-out-of-n systems where the failure of some component of the sys-
tem may influence the remaining ones. We consider nonparametric estimation
of the cumulative hazard function, the reliability function and the quantile func-
tion of sequential k-out-of-n systems. Furthermore, nonparametric hypothesis
testing for sequential k-out-of-n-systems is examined. We make use of counting
processes to show strong consistency and weak convergence of the estimators
and to derive the asymptotic distribution of the test statistics.

Keywords Sequential k-out-of-n systems · Nonparametric estimation ·
Nonparametric hypothesis testing · Nelson–Aalen estimator · Martingale
methods

1 Introduction

Consider a system consisting of n components. The system is functioning as long
as k, 1 ≤ k ≤ n, components are functioning, and it fails if n − k + 1 or more
components fail. Such systems are called k-out-of-n system. Particular cases are
parallel and series systems corresponding to k = 1 and k = n, respectively. It is
often assumed that the failure times Ti, 1 ≤ i ≤ n, of the n components are iid
random variables. Assuming that the failure times Ti, 1 ≤ i ≤ n, are iid random
variables means that the failure of any component of the system does not affect
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the remaining components. This model may be inadequate in various practical
situations. For example, the failure of the engine of an airplane will increase the
load put on the remaining two or three engines so that their lifetimes tend to
be shorter.

In this context, sequential k-out-of-n models have been introduced by Kamps
(1995) as an extension of the k-out-of-n model based on iid random variables
(see also Hollander and Peña 1995). They are flexible in the sense that, after
the failure of some component, the distribution of the residual lifetime of
the remaining components may change, i.e., the underlying failure rate of the
remaining components is adjusted according to the number of preceding fail-
ures. The failure times of a sequential k-out-of-n system are called sequential
order statistics and will be denoted by X∗

1 , . . . , X∗
nk+1. Thus the life length of a

sequential k-out-of-n system is described by X∗
n−k+1, 1 ≤ k ≤ n.

General accounts of theoretical developments and applications concern-
ing sequential order statistics are given by Cramer and Kamps (2001b, 2003).
Statistical inference for sequential order statistics was mainly concerned with
parametric models (cf. Cramer and Kamps 1996, 2001a) including exponen-
tial and Weibull distributions. Here, we focus on nonparametric statistical
methods.

In Sect. 2 we describe sequential order statistics and introduce related point
processes. Section 3 introduces the estimators of the cumulative hazard rate
function �, the reliability function R = 1 − F and the quantile function F−1.
Here F denotes the distribution function. Strong consistency and weak con-
vergence of the estimators is established. Two nonparametric hypothesis tests
related to sequential k-out-of-n systems are examined in Sect. 4. Finally, in
Sect. 5 we present a simulation study illustrating the behavior of the estimator
of �.

2 Description of the model

A definition of sequential order statistics with a view to the motivation given
in the introduction can be found in Cramer and Kamps (1996). As shown in
Cramer and Kamps (2003) they can also be defined as follows.

Definition 1 Let F1, . . . , Fn be distribution functions with F−1
1 (1) ≤ · · · ≤

F−1
n (1), and let V1, . . . , Vn be independent random variables with Vr ∼ Beta(n−

r + 1, 1), 1 ≤ r ≤ n.
Then the random variables

X∗
r = F−1

r (1 − VrRr(X∗
r−1)), 1 ≤ r ≤ n, X∗

0 = −∞,

are called sequential order statistics (based on F1, . . . , Fn), where Rr denotes
the reliability function 1 − Fr.
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Assumption 1 In the following we restrict ourselves to a particular choice of
the distribution functions F1, . . . , Fn, namely

Fi(t) = 1 − (1 − F(t))αi (1)

for positive real numbers α1, . . . , αn.

Taking α1 = · · · = αn = 1 it is easily seen that common k-out-of-n models
are contained in the sequential k-out-of-n model under the assumption (1).

Remark 1 The restriction to the choice Fi(t) = 1 − (1 − F(t))αi , 1 ≤ i ≤ n, has
two advantages. The first advantage is that, in this case, the model of sequen-
tial order statistics coincides with the model of generalized order statistics in
the distributional theoretical sense. The model of generalized order statistics
contains for example order statistics and progressively type-II censored order
statistics (for nonparametric estimation with progressively type-II censored
order statistics see Bordes 2004; Guilbaud 2004). The second advantage is that
the model uncertainty reduces to the parameters α1, . . . , αn and the distribution
function F.

In what follows we consider the case where the parameter vector α = (α1, . . . ,
αn) is known and only the distribution function F is unknown and the case
where both are unknown.

Assumption 2 In the case where the parameter vector α = (α1, . . . , αn) and
the distribution function F are unknown a condition is needed in order for the
model to be identifiable; therefore we assume that α1 = 1 to make the model
identifiable.

We aim at estimating the cumulative hazard function �, the reliability func-
tion R = 1−F and the quantile function F−1 of the distribution function F based
on the observation of m independent copies of a sequential k-out-of-n system.
For notational convenience we suppose that we observe a sequential 1-out-of-n
system. As can be seen in the rest of the paper we can choose k ∈ {1, . . . , n}
arbitrarily without changing anything in the proof given below.
When estimating �, R and F−1 based on the observation of m independent
copies of a sequential k-out-of-n system two problems arise. The first problem
is that, in contrast to k-out-of-n models based on iid random variables, the fail-
ure times of the components of a sequential k-out-of-n system are no longer
iid random variables. The second problem is that, if we have αi �= 1 for all
i ∈ {1, . . . , n}, none of the random variables X∗

i , 1 ≤ i ≤ n, is the minimum of
a sample having distribution function F. In order to construct estimators for
�, R and F−1 it is helpful to recognize that the hazard rate function λi of Fi is
given by

λi(t) = αiλ(t),

where λ is the hazard rate function of F. Nonparametric estimation of � is
often based on the processes N and Y where N(t) represents the number of
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observed failures by time t and Y(t) represents the number of the risk set at
time t. Given the close connection between the hazard rate functions of Fi and
F it is reasonable to expect that nonparametric estimation for sequential order
statistics can be based on these processes or on adequate modifications of these
processes.

Define the counting process N based on sequential order statistics by

N(t) =
n∑

i=1

I{X∗
i ≤t}

and let FN
t = σ({Ns : 0 ≤ s ≤ t; αi, 1 ≤ i ≤ n}) the natural filtration generated

by N and αi. Here and in the following I{·} denotes the indicator function.

Lemma 1 The stochastic intensity λ̃ of the counting process N based on sequen-
tial order statistics is given by

λ̃(t) = αY̆′(t) · f (t)
1 − F(t)

where Y̆(t) = (nI{X∗
0 <t≤X∗

1 }, (n − 1)I{X∗
1 <t≤X∗

2 }, . . . , I{X∗
n−1<t≤X∗

n }), X∗
0 = 0, and

α = (α1, . . . , αn).

Proof From Karr (1991, p. 70) we conclude that N admits a stochastic intensity
which is given by

λ̃t(ω) = fi−1(t − X∗
i (ω))∫∞

t−X∗
i−1(ω)

fi−1(u)du
, t ∈ (X∗

i−1(ω), X∗
i (ω)]. (2)

From Kamps (1995, p. 27) we obtain for t̂ > 0

P(X∗
i − X∗

i−1 > t̂|X∗
i−1 = s) =

(
1 − (1 − (1 − F(t̂ + s))αi)

1 − (1 − (1 − F(s))αi)

)n−i+1

=
(

1 − F(t̂ + s)
1 − F(s)

)(n−i+1)αi

.

Hence the density fi−1 of the conditional distribution is given by

fi−1(t̂) = (n − i + 1)αi
(1 − F(t̂ + s))(n−i+1)αi−1

(1 − F(s))(n−i+1)αi
f (t̂).

This implies for t ∈ [s, ∞)

f (t − X∗
i−1) = (n − i + 1)αi

(1 − F(t))(n−i+1)αi−1

(1 − F(s))(n−i+1)αi
f (t). (3)
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Finally for t ∈ [s, ∞),

∫ ∞

t−X∗
i−1(ω)

fi−1(u)du = P(X∗
i − X∗

i−1 > t − X∗
i−1|X∗

i−1 = s)

=
(

1 − F(t)
1 − F(s)

)(n−i+1)αi

. (4)

From (2) to (4) we conclude that

λ̃t(ω) = (n − i + 1)αi
f (t)

1 − F(t)
, t ∈ (X∗

i−1(ω), X∗
i (ω)].

Now the assertion follows.

From the preceding Lemma it follows immediately that

M(t) = N(t) −
∫ t

0
λ(s)Y(s)ds, (5)

where λ(s) = f (s)
1−F(s) and Y(s) ≡ αY̆′(s), is a martingale.

Remark 2 Notice that, in general, the process Y is not monotonically decreas-
ing in t. If we consider the common k-out-of-n model then it is obvious that Y(t)
is monotonically decreasing in t since then Y(t) = ∑n

i=1 I{Ti:n≥t}.

In the next section we define the estimators of �, R and F−1 and examine
their asymptotic behavior.

3 Asymptotic results for the estimators

Suppose that the parameter vector α = (α1, . . . , αn) is known and that we
observe m independent copies of the processes N and Y on a finite interval
[0, T] to estimate �, R and F−1. Let Nm, Y̆m, Ym, and Mm be the sum of the
first m copies of N, Y̆, Y, and M. We denote Nm

m by N̄m and Ym
m by Ȳm. Since

Mm is a martingale, an obvious estimator for
∫ t

0 λ(s)I{Ym(s)>0}ds and hence for
�(t) = ∫ t

0 λ(s)ds is given by

�̂m(t) =
∫ t

0

Jm(s)

αY̆′
m(s)

dNm(s), (6)
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where Jm(s) = I{Ym(s)>0} = I{αY̆′
m(s)>0}. Our estimator �̂m does not coincide

exactly with the Nelson–Aalen estimator but as it is very close we refer to it as
Nelson–Aalen estimator.

To obtain an estimator for � in the more general case where the parameter
vector α = (1, α2, . . . , αn) is unknown we proceed as follows (for a detailed
description see Kvam and Peña 2005). First, fix a parameter vector ᾱ to obtain
an estimator for � from (6). Then this estimator is plugged into the likelihood
process which is maximized with respect to α2, . . . , αn to obtain the estimator
α̂ = (1, α̂2, . . . , α̂n). The estimator �̂(·, α̂) of � is then obtained by plugging
α̂ in (6).

Remark 3 For the asymptotic properties of the estimator α̂ see Kvam and Peña
(2005).

To facilitate the presentation we introduce the following notations. By X∗
r,i,

1 ≤ r ≤ n, 1 ≤ i ≤ m, we denote the r-th sequential order statistic for the i-th
observation.

δi(t) = (I{X∗
0,i<t≤X∗

1,i}, I{X∗
1,i<t≤X∗

2,i}, . . . , I{X∗
n−1,i<t≤X∗

n,i}), i = 1, . . . , m

e(t) = (nE[I{X∗
0 <t≤X∗

1 }], (n − 1)E[I{X∗
1 <t≤X∗

2 }], . . . , E[I{X∗
n−1<t≤X∗

n }]),

ε(t, α) = 1
E[Y(t)] · α � e(t, α)

γ = (n, . . . , 1) � α.

Here and in the following, � represents component-by-component multiplica-
tion. Given a vector ζ we denote by D(ζ ) a diagonal matrix with diagonal
elements ζ . Later on we have to distinguish between the mth observation of Y̆
and the sum of m copies of Y̆ we let for i = 1, . . . , m

Y̆i(t) = (nI{X∗
0,i<t≤X∗

1,i}, (n − 1)I{X∗
1,i<t≤X∗

2,i}, . . . , I{X∗
n−1,i<t≤X∗

n,i}).

As R(t) = ∏
s≤t

(1 − d�(s)) it is natural to use

R̂m(t) =
∏

s≤t

(1 − d�̂m(s)) (7)

as an estimator for R in the case where only F is unknown and

R̂m(t, α̂) =
∏

s≤t

(1 − d�̂m(s, α̂)) (8)

as an estimator for R in the case where α and F are unknown. Here
∏
s≤t

denotes

the product integral (see Gill and Johansen 1990). The estimator (8) is called
Kaplan–Meier estimator.



Nonparametric inference for sequential k-out-of-n systems 611

Remark 4 Notice that, in contrast to the usual Nelson–Aalen estimator, �̂m
and �̂(·, α̂) can have jumps greater than 1, in the case that the number of com-
ponents that are still at work and the parameters αi (or the estimator) of these
components are small. In that case, (8) can be negative. One way to circumvent
this problem is to exclude this observations form the definition of R̂m. Since
the proportion of excluded observations to the total number of observations is
getting smaller and smaller as m increases this does not affect the asymptotic
behavior of R̂m.

Assumption 3 For the rest of the paper we assume that F(T) < 1.

This assumption enables us to show that E[Y(t)] is uniformly bounded from
below by a constant c > 0 on [0, T]. This fact allows us to prove uniform
consistency of the estimators.

Lemma 2 Under the Assumption 3 we have for all 0 ≤ t ≤ T

E[Y(t)] ≥ γ1 · F̃
(
1 − F(T)

)

where F̃ denotes the distribution function of a beta(γ1, 1) random variable.

Proof Using the Definition 1, Cramer and Kamps (2003) (cf. Theorem 3.1)
showed that under the assumption (1) sequential order statistics can be repre-
sented as

X∗
i = R−1

⎛

⎝
i∏

j=1

Bj

⎞

⎠ (9)

where Bj, 1 ≤ j ≤ m, are independent beta distributed random variables with
parameters γj and 1. Hence,

E[Y(t)] = E

[
m∑

i=1

γiI{X∗
i−1<t≤X∗

i }

]

≥ γ1P(X∗
1 ≥ t)

= γ1P(R−1(B1) ≥ t)

= γ1P(F−1(1 − B1) ≥ t)

≥ γ1P(1 − F(T) ≥ B1)

= γ1F̃
(
1 − F(T)

) ≥ c > 0.

Before proving uniform consistency of �̂m to � on [0, T] we establish a
Lemma which will be helpful when showing uniform consistency. By ||.||T0 we
will denote the supremum norm on [0, T].
Lemma 3 Let Ȳm(t) be as above. Under the Assumption 3 with probability 1,
Ȳm(t) converges to E[Y(t)] uniformly on [0, T] as m → ∞.
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Proof Notice that Y(t) can be written as

Y(t) =
n∑

i=1

(γi − γi+1)I{X∗
i ≥t} (10)

where γn+1 = 0. The processes Y1(t) = ∑n
i=1 γiI{X∗

i ≥t} and Y2(t) =∑n
i=1 γi+1I{X∗

i ≥t} are both monotonically decreasing in t. Let Y1m and Y2m be
the sum of the first m copies of Y1 and Y2 and denote Y1m

m by Ȳ1m and Y2m
m by

Ȳ2m. By the Glivenko–Cantelli theorem

||Ȳ1m − E[Y1(t)]||T0 → 0 and ||Ȳ2m − E[Y2(t)]||T0 → 0

with probability 1 as m → ∞. Hence, with probability 1, Ȳm(t) converges to
E[Y(t)] uniformly on [0, T] as m → ∞.

Theorem 1 Under the Assumption 3 we have ||�̂m(t) − �(t)||T0 → 0 with prob-
ability 1 as m → ∞.

Proof Taking expectations in (5) it can be seen that �(t) = ∫ t
0

1
E[Y(s)]dE[N(s)].

By Lemma 4.1 of Dorado et al. (1997) for m sufficiently large

||�̂m(t) −
∫ t

0

1
E[Y(s)]dE[N(s)]||T0

≤ ||Ȳm(t) − E[Y(t)]||T0
(
E[N(T)] + ||N̄m(t) − E[N(t)]||T0

)

||E[Y(t)]||T0
( | ||E[Y(t)]||T0 − ||E[Y(t)] − Ȳm(t)||T0 | )

+ 2

||E[Y(t)]||T0
||N̄m(t) − E[N(t)]||T0 .

From Lemma 2 we conclude that ||E[Y(t)]||T0 ≥ γ1F̃
(
1 − F(T)

) ≥ c > 0. Since
N(t) is monotonically increasing in t the Glivenko–Cantelli theorem implies
||N̄m(t) − E[N(t)]||T0 → 0 with probability 1. According to Lemma 3 ||Ȳm(t) −
E[Y(t)]||T0 → 0 with probability 1. Therefore,

||�̂m(t) − �(t)||T0 → 0 w.p.1 as m → ∞.

Uniform consistency of R̂m now follows from Theorem 1 and the continuity of
the product integral as shown in the next result.

Theorem 2 Under the Assumption 3 we have ||R̂m(t) − R(t)||T0 → 0 with prob-
ability 1 as m → ∞.

Proof Recall that R(t) = 1 − F(t) = ∏
s≤t

(1 − d�(s)). According to Theorem

7 of Gill and Johansen (1990), the convergence of || ∏
s≤t

(1 − d�̂m(s)) − ∏
s≤t

(1 −
d�(s))||T0 → 0 holds w.p.1 if
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||�̂m(t) − �(t)||T0 → 0 w.p.1 as m → ∞ (11)

and
lim sup ||�̂m(t)||T0 < ∞ w.p.1 as m → ∞. (12)

Condition (11) is fulfilled according to Theorem 1 and condition (12) holds
since �̂m(t) is increasing in t for each m, �̂m(T) → �(T) a.s. and �(T) < ∞
under the Assumption 3.

We now present the main results concerning the asymptotic distribution of
the estimators �̂m, �̂(·, α̂), R̂m, R̂m(·, α̂) and F̂−1

m where F̂−1
m is the estimator of

F−1 defined by
F̂−1

m (p) = inf{x : R̂m(x) ≤ 1 − p}. (13)

We will denote by D[0, T] the cadlag functions on [0, T] and by ⇒ weak con-
vergence. The following theorem is shown in Kvam and Peña (2005) and will
be used to show weak convergence of F−1

m and to establish the asymptotic
distribution of the test statistics in Sect. 4.

Theorem 3 Let W be a zero mean Gaussian process with independent incre-
ments and variance function v(t) = Var[W(t)] = ∫ t

0
1

E[Y(s)]λ(s)ds. Then under
the Assumption 3 we obtain

(a) (i)
√

m(�̂m(t) − �(t)) ⇒ W(t) on D[0, T].
(ii) P( sup

0≤t≤T
|v̂m(t) − v(t)| > ε) → 0 as m → ∞, for all ε > 0 with v̂m

defined by v̂m(t) = m
∫ t

0
1

Y2
m(s)

dNm(s).

(iii)
√

m(R̂m(t) − R(t)) ⇒ −R · W(t) on D[0, T].
(b)(iv)

√
m((�̂m(t, α̂) − �(t)) ⇒ W1(t),

(v)
√

m(R̂m(t, α̂) − R(t)) ⇒ −R · W1(t)

where W1 is a Gaussian process with variance function

v1(t) = v(t) +
(∫ t

0
ε(s)λ(s)ds

)
�(T, α)−1

(∫ t

0
ε(s)λ(s)ds

)′

where

�(t, α)−1 =
∫ t

0

[
D(ε(s, α)) − ε(s, α)′ε(s, α)

]
E[Y(s)]λ(s)ds.

Proof See Kvam and Peña (2005), Theorem 1 and Corollary 1.

Given the above results we can easily establish the following theorem for the
estimator F̂−1

m of the quantile function.

Theorem 4 Under the Assumption 3 for 0 < p < F−1(T):

(a) (i) F̂−1
m (p) → F−1(p) w.p.1 as m → ∞.
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(ii) Provided that f (F−1(p)) > 0 we have
√

m(F̂−1
m (p) − F−1(p))

⇒ N
(

0, (1−p)2v(F−1(p))

f 2(F−1(p))

)
where v is defined in Theorem 3.

(b) Moreover, if f is continuous and positive on [t1−ε, t2+ε] for 0 < t1 < t2 < T
and ε > 0 we have that

(iii)
√

m(F̂−1
m (·) − F−1(·)) ⇒ (1−(·))W◦F−1(·)

f (F−1(·)) on D[p1, p2] where W is the

Gaussian process defined in Theorem 3 and pi = F(ti), i = 1, 2.

(iv) For p1 ≤ p ≤ p2 we have that (1−p)2v(F−1(p))

f 2(F−1(p))
= v(F−1(p))

λ2(F−1(p))
may be consis-

tently estimated by F̂−1
m , v̂m and λ̂m where λ̂m(t) = 1

bm

∫ T
0 K( t−s

bm
)d�̂m(s)

is an estimator of λ with bandwidth bm → 0 as m → ∞ and K denotes
a kernel function of bounded variation.

Proof (i) According to Theorem 1 we have for all ε > 0 that F̂−1
m (p) = inf{x :

R̂m(x) ≤ 1 − p} ≤ F−1(p + ε) and F̂−1
m (p) ≥ F−1(p − ε) with probability 1 as

m → ∞. Hence F̂−1
m (p) converges to F−1(p) with probability 1 as m → ∞.

(ii) Follows from Theorem 3 (iii), the functional delta method and the fact that
the function φ from the space of distribution functions to the real line defined
by φ(G) = inf{x : G(p) ≥ p} is compactly differentiable at F with derivative

dφ(F) · h = −h(F−1(p))

f (F−1(p))
(cf. Andersen et al. 1993 Theorem II 8.4).

(iii) Follows with the arguments given in part (ii) and Theorem 1 of Doss and
Gill (1992).
(iv) Notice that

P(|v̂m(F̂−1
m (p)) − v(F−1(p))| > ε) ≤ P

(
|v̂m(F̂−1

m (p)) − v(F̂−1
m (p))| >

ε

2

)

+P
(
|v(F̂−1

m (p)) − v(F−1(p))| >
ε

2

)

≤ P
(

F̂−1
m (p) /∈ [t1 − δ, t2 + δ]

)

+P

(
sup

0≤t≤T
|v̂m(t) − v(t)| >

ε

2

)

+P
(
|v(F̂−1

m (p)) − v(F−1(p))| >
ε

2

)
.

By part (i) and Theorem 3 (ii) the last sum converges to zero as m → ∞.
Applying the above inequality to P(|λ̂m(F̂−1

m (p)) − λ(F−1(p))| > ε) and using
the uniform convergence of λ̂m to λ on [t1 − δ, t2 + δ] (cf. Theorem IV.2.2 of
Andersen et al. 1993) and part (i) we obtain P(|λ̂m(F̂−1

m (p)) − λ(F−1(p))| >

ε) → 0 for all ε > 0 as m → ∞. Now the assertion follows.

Remark 5 In their paper, Kvam and Peña (2005) considered an equally load
sharing model which leads to the same mathematical structure as in (6). They
assumed due to the interpretation of their model that the unknown parameters
αi, 2 ≤ i ≤ k, fulfil

α1 = 1, and α2 < · · · < αk. (14)
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As they did not use this ordering in their proof it can be directly applied to our
estimators.

4 Nonparametric hypothesis testing

In the first subsection we consider nonparametric hypothesis testing for sequen-
tial 1-out-of-n systems in the case where only the distribution function F is
unknown. The asymptotic distribution of the test statistics in the case, where
the parameter vector α = (1, α2, . . . , αn) and the distribution function F are
unknown, is examined in the second subsection.

4.1 Nonparametric hypothesis testing for known parameter vector α

First, we consider one-sample tests for the hypothesis that the hazard rate
function λ of a given sequential 1-out-of-n system equals a known hazard rate
function λ0. Afterwards we examine two-sample tests for the hypothesis that
the hazard rate functions λ1 and λ2 of two sequential 1-out-of-ni, i = 1, 2, sys-
tems coincide. Their parameters α11, . . . , α1n1 and α21, . . . , α2n2 may be different
or equal.
Our test statistics for the one-sample tests will be based on the stochastic pro-
cesses

Zm(t) =
∫ t

0
Km(s)d�̂m(s) −

∫ t

0
Km(s)λ0(s)ds (15)

where Km(t) = Ym(t)Rρ
0 (t), 0 ≤ ρ ≤ 1. Here Rρ

0 is the reliability function under
the hypothesis λ = λ0.

Remark 6 The choice of ρ = 0 leads to the log rank statistic and for 0 < ρ ≤ 1
we arrive at the family of test statistics suggested by Harrington and Fleming
(1982).

Theorem 5 Let W be a zero mean Gaussian process with independent increments
and variance function v1(t) = Var[W(t)] = ∫ t

0 E[Y(s)]R2ρ
0 (s)λ0(s)ds. Then under

the Assumption 3 and under H0 : λ = λ0 we have

(i) 1√
m

Zm ⇒ W on D[0, T] as m → ∞, and

(ii) for all ε > 0 we have P(sup0≤t≤T |v̂1
m(t) − v1(t)| > ε) → 0 as m → ∞

where v̂1
m(t) = 1

m

∫ t
0

(Km(s))2

Ym(s) d�̂m(s)
for every Km(t) = Ym(t)Rρ

0 (t) where 0 ≤ ρ ≤ 1.

Proof Notice that Zm(t) is equal to
∫ t

0
Km(s)
Ym(s) dMm(s), hence a martingale. In

order to apply Rebolledo’s Theorem (see Andersen et al. 1993 Theorem II. 5.1)
to the martingale 1√

m
Zm we have to show that for all t ∈ [0, T] and all ε > 0

(a)
〈

1√
m

∫ t
0

Km(s)
Ym(s) dMm(s)

〉
P→ v1(t) as m → ∞, and
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(b)
〈

1√
m

∫ t
0

Km(s)
Ym(s) I{| Km(s)√

mYm(s)
>ε|}dMm(s)

〉
P→ 0 as m → ∞.

Condition (a) is fulfilled since

〈
1√
m

∫ t

0

Km(s)
Ym(s)

dMm(s)
〉

= 1
m

∫ t

0

(Km(s))2

Ym(s)
λ0(s)ds

=
∫ t

0
R2ρ

0 (s)
Ym(s)

m
λ0(s)ds

and the last term converges to
∫ t

0 E[Y(s)]R2ρ
0 (s)λ0(s)ds, P.a.s, ∀t ∈ [0, T] by

Lemma 3 and the boundedness of Rρ
0 for all 0 ≤ ρ ≤ 1.

To show that condition (b) is satisfied notice that

〈
1√
m

∫ t

0

Km(s)
Ym(s)

I{| Km(s)√
mYm(s)

>ε|}dMm(s)
〉

=
∫ t

0
R2ρ

0 (s)
Ym(s)

m
I{| Km(s)√

mYm(s)
>ε|}λ0(s)ds

=
∫ t

0
R2ρ

0 (s)
Ym(s)

m
I
{| Rρ

0 (s)√
m

>ε|}
λ0(s)ds

and the last term is equal to 0 for m sufficiently large. Hence, condition (b) is
satisfied and the assertion follows.
(ii) We have that

1
m

∫ t

0

(Km(s))2

Ym(s)
d�̂m(s) = 1

m

∫ t

0

(Km(s))2

(Ym(s))2 dMm(s)

+ 1
m

∫ t

0

(Km(s))2

Ym(s)
λ0(s)ds. (16)

Applying Lenglart’s inequality to the first term on the right hand side in (16),
which is a martingale, we get for any δ, η > 0

P

(
sup

0≤t≤T
| 1
m

∫ t

0

(Km(s))2

(Ym(s))2 dMm(s)| > η

)

≤ δ

η2 + P

(∫ T

0

(Rρ
0 (s))4

m
Ym(s)

m
λ0(s)ds > δ

)
.

From Lemma 3 we obtain P

(
sup

0≤t≤T
| 1

m

∫ t
0

(Km(s))2

(Ym(s))2 dMm(s)| > η

)
→ 0 for all

η > 0.
The uniform convergence of the second term on the right hand side in (16)

to v1 follows also from Lemma 3.
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For the construction of the two-sample tests let, for i = 1, 2, Nmi , Ymi and Mmi

be the sum of the first mi copies of the sequential 1-out-of-ni system, and denote
by �̂mi the estimators of the cumulative hazard functions. The test statistics for
the two-sample tests we will based on the processes

Z̃m1,m2(t) =
∫ t

0
Lm1,m2(s)d�̂m1(s) −

∫ t

0
Lm1,m2(s)d�̂m2(s)

=
∫ t

0

Lm1,m2(s)
Ym1(s)

dMm1(s) −
∫ t

0

Lm1,m2(s)
Ym2(s)

dMm2(s)

+
∫ t

0
Lm1,m2(s)(λ1(s) − λ2(s))ds (17)

where Lm1,m2(s) = K̃m(s)
Ym1 (s)·Ym2 (s)
Ym1 (s)+Ym2 (s) . In the following we consider weight

functions of the type K̃m(s) = (R̂m(s−))ρ(1 − R̂m(s−))δ where 0 ≤ ρ, δ ≤ 1.
Here and in the following the subscript m denotes the obvious estimators or
quantities in the pooled sample. It follows from (17) that Z̃m1,m2 is a martingale
under the hypothesis H0 : λ1 = λ2.

Theorem 6 Let W be a zero mean Gaussian process with independent increments
and variance function

v2(t) = Var[W(t)] =
∫ t

0

E[Y1(s)]E[Y2(s)]
E[Y1(s) + Y2(s)] (R(s−))2ρ(1 − R(s−))2δλ1(s)ds.

Here R denotes the reliability function under the hypothesis λ1 = λ2. Then under
the Assumption 3 and under H0 : λ1 = λ2 we have

(i)
√

m1+m2
m1m2

Z̃m1,m2(t) ⇒ W(t) on D[0, T] as m1, m2 → ∞, and

(ii) for all ε > 0 P(sup0≤t≤T |v̂2
m(t) − v2(t)| > ε) → 0 as m1, m2 → ∞ where

v̂2
m(t) = m1 + m2

m1m2

∫ t

0

(K̃m(s))2Ym1Ym2

Ym(s)
d�̂m(s)

for every K̃m(t) = Rρ
m(t−)(1 − Rm(t−))δ where 0 ≤ δ, ρ ≤ 1.

Proof (i) In order to show the result we apply Rebolledo’s theorem to the

martingale
√

m1+m2
m1m2

Z̃m1m2 . It is easily seen from (17) that

〈√
m1 + m2

m1m2
Z̃m1m2(t)

〉
=

∫ t

0
(K̃m(s))2 Ym1(s)Ym2(s)

m1m2

1
Ym

m1+m2

λ1(s)ds.
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From Lemma 3 and Theorem 2 we conclude that
〈√

m1+m2
m1m2

Z̃m1m2(t)
〉

P→ v2(t).

The only jumps in the martingale
√

m1+m2
m1m2

Z̃m1m2 are due to K̃m. Thus,

〈
Z̃m1,m2(t)I{K̃m(s)

√
m1+m2
m1m2

>ε}

〉
=

∫ t

0
(K̃m(s))2 Ym1(s)Ym2(s)

m1m2

1
Ym

m1+m2

×λ1(s)I{
K̃m(s)

√
m1+m2
m1m2

>ε
}ds.

As K̃m(s) is bounded from above by 1, the result follows now by Rebolledo’s
theorem.
(ii) Since this can be shown in the same way as in Theorem 5 (ii) the proof is
omitted.

4.2 Nonparametric hypothesis testing for unknown parameter vector α and
unknown distribution function F

The one-sample tests in the case where α and F are unknown will be based on
the stochastic processes

Um(t) =
∫ t

0
Hm(s)d�̂m(s, α̂) −

∫ t

0
Hm(s)λ0(s)ds (18)

where Hm(s) = α̂Y̆′
m(s)Rρ

0 (s), 0 ≤ ρ ≤ 1. Here R0 denotes again the reliability
function under the hypothesis λ = λ0.

Remark 7 In the case where only F is unknown the test statistics (18) coincide
with the test statistics (15) if we replace α̂ by α.

Theorem 7 Let W be a zero mean Gaussian process with independent increments
and variance function

v̄1(t) = Var[W(t)] =
∫ t

0
E[Y(s)]R2ρ

0 (s)λ0(s)ds

+
(∫ t

0
e(s)Rρ

0 (s)λ0(s)ds
)

D(α)�−1(T, α)D(α)

(∫ t

0
e(s)Rρ

0 (s)λ0(s)ds
)′

.

Then under the Assumption 3 and under H0 : λ = λ0 we have

1√
m

Um ⇒ W on D[0, T] as m → ∞.
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Proof We have

1√
m

Um(t) = 1√
m

∫ t

0
Rρ

0 (s)dNm(s)

− 1√
m

(∫ t

0
(α̂ − α)Y̆′

m(s)Rρ
0 (s)λ0(s)ds +

∫ t

0
αY̆′

m(s)Rρ
0 (s)λ0(s)ds

)

= 1√
m

Zm(t) − 1√
m

∫ t

0
(α̂ − α)Y̆′

m(s)Rρ
0 (s)λ0(s)ds (19)

where Zm is defined as in Subsect. 4.1. Hence, according to Theorem 5

1√
m

Zm ⇒ W1 on D[0, T] as m → ∞

where W1 denotes the Gaussian process of Theorem 5.
From Kvam and Peña (2005) (cf. Theorem 1) it follows that the second term

in (19) can be written as

D(α)

(
1
m

Dm(T, α)

)−1 1√
m

Gm(T, α)

t∫

0

1
m

Y̆′
m(s)Rρ

0 (s)λ0(s)ds + oP(1) (20)

where the matrix-valued process
(

1
m Dm(·, α)

)−1 P→ �−1(·, α) and 1√
m

Gm(t, α)

is given by
1√
m

m∑

i=1

∫ t

0

[
δi(s) − α � Y̆m(s)

αY̆′
m(s)

]
dMi(s)

and converges to W2 on D[0, T]. Here W2 denotes a Gaussian process with inde-
pendent increments and variance function v2(t) = �(t, α). Moreover
∫ t

0
1
m Y̆′

m(s)Rρ
0 (s)λ0(s)ds

P→ ∫ t
0 e(s)Rρ

0 (s)λ0(s)ds. Finally, the covariance process
between Zm and Gm is

〈Zm(t), Gm(t, α)〉 =
m∑

i=1

∫ t

0

Km(s)
Ym(s)

[
δi(s) − α � Y̆m(s)

αY̆′
m(s)

]
λ0(s)αY̆

′
i(s)ds

= 0

since δi(s)αY̆
′
i(s) = α � Y̆ i(s),

∑m
i=1 α � Y̆ i(s) = α � Y̆m(s), and

∑m
i=1 αY̆

′
i(s) =

αY̆′
m(s). This completes the proof.
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Our two-sample test statistics will be based on the processes

Ũm1,m2(t) =
∫ t

0
H̃m(s)

α̂1Y̆′
m1

(s) · α̂2Y̆′
m2

(s)

α̂1Y̆′
m1

(s) + α̂2Y̆′
m2

(s)
d�̂m1(s, α̂1)

−
∫ t

0
H̃m(s)

α̂1Y̆′
m1

(s) · α̂2Y̆′
m2

(s)

α̂1Y̆′
m1

(s) + α̂2Y̆′
m2

(s)
d�̂m2(s, α̂2) (21)

where H̃m is defined as Rρ
m(t−, (α̂1, α̂2))(1 − Rm(t−, (α̂1, α̂2))

δ where 0 ≤ δ, ρ ≤
1. Here and in the following, the subscript m as well as (α̂1, α̂2) stands for the
estimators in the pooled sample obtained by combining the Nelson–Aalen esti-
mators of the first and the second sequential 1-out-of-n system. The subscripts
1 and 2 will be used to distinguish between the quantities belonging to the first
and second system, respectively. In the following we let m1 = m2 = m.

Remark 8 It is easily seen that if the parameter vectors α1 = (α11, . . . , α1n1)

and α2 = (α21, . . . , α2n2) are known and if α̂1 and α̂2 are replaced by α1 and α2,
respectively, then the test statistics (21) coincide with the test statistics (17).

Theorem 8 Let W be a zero mean Gaussian process with independent increments
and variance function

v̄2(t) = Var[W(t)] =
∫ t

0

E[Y1(s)]E[Y2(s)]
E[Y1(s) + Y2(s)] (R(s−))2ρ(1 − R(s−))2δλ1(s)ds

+1
2

b(t, (α1, α2))D((α1, α2))�̃(T, (α1, α2))

×D((α1, α2))b′(t, (α1, α2))

where

�̃(t, (α1, α2)) =
(

�−1
1 (t, α1) 0

0 �−1
2 (t, α2)

)

with 0 denoting the zero matrix and

b(t, (α1, α2)) =
∫ t

0
(R(s−))ρ(1 − R(s−))δ(−α2e′

2(s)e1(s), α1e′
1(s)e2(s))

× 1
(α1, α2)(e1(s), e2(s))′

λ1(s)ds

As before, R denotes the reliability function under the hypothesis λ1 = λ2.
Then under the Assumption 3 and under H0 : λ1 = λ2 we have

√
2m
m2 Ũm1,m2(t) ⇒ W(t) on D[0, T] as m → ∞
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Proof Notice that

√
2m
m2 Ũm1,m2(t) =

√
2m
m2

∫ t

0
H̃m(s)

α̂2Y̆′
m2

(s)

α̂1Y̆′
m1

(s) + α̂2Y̆′
m2

(s)
dNm1(s)

−
√

2m
m2

∫ t

0
H̃m(s)

α̂1Y̆′
m1

(s)

α̂1Y̆′
m1

(s) + α̂2Y̆′
m2

(s)
dNm2(s). (22)

A first order Taylor expansion of
α̂2Y̆′

m2

α̂1Y̆′
m1

+α̂2Y̆
′
m2

and
α̂1Y̆′

m1
α̂1Y̆′

m1
+α̂2Y̆′

m2

around (α1, α2)

leads that (22) is equal to

√
2m
m2

(∫ t

0
H̃m(s)

Ym2(s)
Ym1(s) + Ym2(s)

dNm1(s) −
∫ t

0
H̃m(s)

Ym1(s)
Ym1(s) + Ym2(s)

dNm2(s)
)

+
√

2m
m2

∫ t

0
H̃m(s)((α̂1, α̂2) − (α1, α2))(−ζ 2Y̆′

m2
(s)Y̆m1(s), ζ 1Y̆′

m1
(s)Y̆m2(s))

′

× 1

(ζ 1Y̆′
m1

(s) + ζ 2Y̆′
m2

(s))2
dNm1(s)

−
√

2m
m2

∫ t

0
H̃m(s)((α̂1, α̂2) − (α1, α2))(ζ 2Y̆′

m2
(s)Y̆m1(s), −ζ 1Y̆′

m1
(s)Y̆m2(s))

′

× 1

(ζ 1Y̆′
m1

(s) + ζ 2Y̆′
m2

(s))2
dNm2(s) (23)

where (ζ 1, ζ 2) = (1, ζ12, . . . , ζ1n1 , 1, ζ22, . . . , ζ2n2) lies in the line segment con-
necting (α̂1, α̂2) and (α1, α2).

The first line in (23) equals (17) except that K̃m is replaced by H̃m. Hence,
we conclude as in Theorem 6 that under the hypothesis

√
2m
m2

(∫ t

0
H̃m(s)

Ym2(s)
Ym1(s) + Ym2(s)

dNm1(s)

−
∫ t

0
H̃m(s)

Ym1(s)
Ym1(s) + Ym2(s)

dNm2(s)
)

⇒ W1(t) on D[0, T],

where W1 is the Gaussian process from Theorem 6. Noticing that (ζ 1, ζ 2) =
(α1, α2) + op(1) the second and the third line in (23) equal asymptotically
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√
2m
m2

∫ t

0
H̃m(s)((α̂1, α̂2) − (α1, α2))(−ζ 2Y̆′

m2
(s)Y̆m1(s), ζ 1Y̆′

m1
(s)Y̆m2(s))

′

× 1

ζ 1Y̆′
m1

(s) + ζ 2Y̆′
m2

(s)
λ1(s)

=
√

m
2

((α̂1, α̂2) − (α1, α2))

∫ t

0
H̃m(s)

1
m2 (−α2Y̆′

m2
(s)Y̆m1(s), α1Y̆′

m1
(s)Y̆m2(s))

× 1
α1Y̆′

m1
(s)+α2Y̆′

m2
(s)

2m

λ1(s) + op(1)

=
√

m
2

((α̂1, α̂2) − (α1, α2))

∫ t

0
H̃m(s)

1
m2 (−α2Y̆′

m2
(s)Y̆m1(s), α1Y̆′

m1
(s)Y̆m2(s))

× 1
Ym1 (s)+Ym2 (s)

2m

λ1(s) + op(1).

As in the proof of Theorem 7 it follows that

√
m((α̂1, α̂2) − (α1, α2)) =

(
D(α1)

(
1
m

Dm1(T, α1)

)−1 1√
m

Gm1(T, α1),

D(α2)

(
1
m

Dm2(T, α2)

)−1 1√
m

Gm2(T, α2)

)
+ op(1)

where ( 1√
m

Gm1(·, α1), 1√
m

Gm2(·, α2)) converges to a Gaussian process with inde-
pendent increments and covariance function

�̃(t, (α1, α2)).

The structure of the covariance function follows from Theorem 7 and the inde-
pendence of α̂1 and α̂2.
Moreover, we have

∫ t

0
H̃m(s)

1
m2 (−α2Y̆′

m2
(s)Y̆m1(s), α1Y̆′

m1
(s)Y̆m2(s))

′

× 1
Ym1 (s)+Ym2 (s)

2m

λ1(s)

P→
∫ t

0
(R(s−))ρ(1 − R(s−))δ(−α2e′

2(s)e1(s), α1e′
1(s)e2(s))

× 1
(α1, α2)(e1(s), e2(s))′

λ1(s)ds.
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Using the independence of the processes Nm1 , Ym1 , Y̆m1 and Nm2 , Ym2 , Y̆m2 it
follows as in Theorem 7 that the covariance process between

∫ t

0
H̃m(s)

Ym2(s)
Ym1(s) + Ym2(s)

dNm1(s) −
∫ t

0
H̃m(s)

Ym1(s)
Ym1(s) + Ym2(s)

dNm2(s)

=
∫ t

0
H̃m(s)

Ym2(s)
Ym1(s) + Ym2(s)

dMm1(s) −
∫ t

0
H̃m(s)

Ym1(s)
Ym1(s) + Ym2(s)

dMm2(s)

and (
1√
m

Gm1(·, α1),
1√
m

Gm2(·, α2)

)

is zero.

5 Simulation study

In this section, we present three simulation studies for the Nelson–Aalen esti-
mator if the true parameter vector α = (α1, . . . , αn) is assumed to be known.
Note that the Nelson–Aalen estimator (6) depends on the failure times and
the assumed parameter vector α̃ = (α̃1, . . . , α̃n). To distinguish between the
assumed and the true parameter vector they are denoted by α̃ = (α̃1, . . . , α̃n)

and α = (α1, . . . , αn), respectively. The first simulation study shows the behavior
of the Nelson–Aalen estimator if the true parameter vector α = (α1, . . . , αn) is
correctly specified. The second and the third simulation study concern the case
where the true parameter vector α = (α1, . . . , αn) is misspecified.
The simulations were carried out using R. Notice that (9) provides an easy
formula for the simulation of n sequential order statistics with parameters
α1, . . . , αn and distribution function F. First, we simulate n independent beta
random variables where Bi ∼ Beta((n − i + 1)αi, 1), 1 ≤ i ≤ n. Then we calcu-
late the n products B1,B1B2, . . . ,

∏n
i=1 Bi. The i-th sequential order statistics X∗

i ,
1 ≤ i ≤ n, is then obtained by setting X∗

i = F−1(1 − ∏i
j=1 Bj). Finally, we use

the simulated failure times to compute the Nelson–Aalen estimator according
to (6).
By W(a, b) we denote a Weibull distribution with density

f (x) = a
b

(x
b

)a−1
e−( x

b )a
, 0 < x < ∞

where a, b > 0.
Figure 1 shows the Nelson–Aalen estimator for the cumulative hazard func-

tion of a W(2, 1.5) distribution. The calculation of the Nelson–Aalen estimator
was based on the failure times of 20 simulations of a sequential 1-out-of-10 sys-
tem with parameter vector α = (1, 1.65, 1.90, 2.20, 2.60, 3.10, 3.55, 4.10, 4.40, 5.25),
distribution function F = W(2, 1.5), and assumed parameter vector α̃ = α. It
can be seen from Fig. 1 that the Nelson–Aalen estimator seems to perform well
for correctly specified α.
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Fig. 1 Nelson–Aalen estimator of the cumulative hazard function of a W(2, 1.5) distribution based
on 20 observations of a 1-out-of-10 system with correctly specified α

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

t

Nelson–Aalen–estimator: dotted line
Cumulative hazard function: solid line 

Fig. 2 Nelson–Aalen estimator of the cumulative hazard function of a W(2, 1.5) distribution based
on 20 observations of a 1-out-of-10 system with slightly misspecified α
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Fig. 3 Nelson–Aalen estimator of the cumulative hazard function of a W(2, 1.5) distribution based
on 20 observations of a 1-out-of-10 system with strongly misspecified α

For the calculation of the Nelson–Aalen estimator in Figures 2 and 3 we used the
failure times of 20 simulations of a sequential 1-out-of-10 system based on α =
(1, 1.65, 1.90, 2.20, 2.60, 3.10, 3.55, 4.10, 4.40, 5.25), F = W(2, 1.5) and assumed
parameter vector α̃ = (1, 1.55, 1.95, 2.30, 2.75, 3.25, 3.60, 4.25, 4.50, 5.10) and α̃ =
(1, 2.45, 2.60, 3.30, 4.65, 5.30, 6.60, 7.95, 8.25, 10.05), respectively. Figure 2 indi-
cates that a slight misspecification of α has only a slight impact on the Nelson–
Aalen estimator, and Fig. 3 indicates that a strong misspecification has a strong
impact on the behavior of the Nelson–Aalen estimator.
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