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Abstract In the present paper a general theorem that links characterizations
of discrete life distributions based on relationship between failure rate and
conditional expectations with those in terms of Chernoff-type inequalities is
proposed. Exact expression for lower bounds to the variance is calculated for
distributions belonging to the modified power series family, Ord family and
mixture geometric models. It is shown that the bounds obtained here contain
the Cramer–Rao and Chapman–Robbins inequalities as special cases. An appli-
cation of the results to real data is also provided.

Keywords Characterizations · Chernoff-type inequalities · Failure rate ·
Unbiased estimation

1 Introduction

Several papers in literature address the problem of characterizing discrete prob-
ability distributions through relations between conditional expectations and
failure rates or reversed failure rates. Another independent stream of thought
is to characterize the same class of distributions through lower bound on the
variance of random variables by Chernoff-type inequalities satisfying specific
conditions. Alharbi and Shanbhag (1996) point out the application of the latter
results in characterizing life distributions through a result similar to Cox repre-
sentation of the survival function in terms of failure rate and suggest cases of
some continuous distributions as illustrations. In the present paper we establish
a general characterization theorem that combines the results available in the
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two approaches described above. By doing so, the theorem enables the criteria
for modeling lifetime data and also to infer the parameters contained in the
model, from among a large class of distributions. Apart from the reliability
context, the results provide an alternate methodology for unbiased estimation
that includes identical conclusions with those provided by Cramer–Rao in reg-
ular cases and ensures attainment of minimum variances in non-regular cases,
provided in the Chapman–Robbins inequality.

The concepts and definitions required for the work in the subsequent sections
consist of a class A of discrete probability distributions supported by the set N
of non-negative integers, the set B of real valued functions c(.), of a random
variable X defined on N having finite variance along with

m(x) = E
[
h(X)|X > x

]

r(x) = E
[
h(X)|X < x

]

for a function h(x) ∈ B such that E
(
h2(X)

)
< ∞, E(h(X)) = µandV(h(X)) =

σ 2. In the above formulation f (x), F(x) and R(x) = P(X ≥ x) denote respec-
tively the probability mass function, distribution function and survival function
of X so that

k(x) = f (x)

R(x)
(1)

and

λ(x) = f (x)

F(x)
(2)

are the failure rate and reversed failure rate of X, respectively. Of these, re-
versed failure rate, which is receiving considerable attention recently (see Block
et al. 1998; Gupta and Nanda 2001; Nair and Asha 2004; Nanda and Sengupta
2005) provides some interesting extensions hitherto not discussed in earlier
papers.

The research relating to characterization of distributions by bounds on var-
iance of a random variable had its origin in Chernoff’s (1981) inequality for
the normal distribution. Characterizations based on various extensions of this
inequality in the continuous and discrete cases have been obtained by Borokov
and Utev (1983), Cacoullos and Papathanasiou (1985, 1989, 1992, 1995, 1997),
Srivastava and Sreehari (1987, 1990), Prakasa Rao and Sreehari (1986, 1987,
1997), Sumitra and Bhandari (1990), Korwar (1991), Papathanasiou (1993),
Alharbi and Shanbhag (1996) and Borzadaran and Shanbhag (1998). Among
these Cacoullos and Papathanasiou (1997) established that for a non-negative
integer valued random variable X

V(c(X)) ≥ E2(z(X)�c(X))

E(z(X)�h(X))
(3)
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for every c(.) in B if and only if

z(x) = 1
f (x)

x∑

y=0

(µ − h(y))f (y), (4)

where all the functions and notations in the above expressions are as defined
earlier.

Modeling lifetimes through relations between conditional expectations and
failure rates in the discrete time domain have been initiated by Osaki and Li
(1988) when they proved such a result for the negative binomial distribution.
This was followed by a similar result by Ahmed (1991) concerning the binomial
and Poisson distributions. In a more general framework Nair and Sankaran
(1991) showed that X follows the Ord family of distributions satisfying

f (x + 1) − f (x)

f (x)
= −(x + d)

a0 + a1x + a2x2 (5)

if and only if

E(X|X > x) = µ + (c0 + c1x + c2x2)k(x),

where ci = (1 − 2a2)
−1ai, a2 �= 1

2 , i = 0, 1, 2 and deduced the formulas of the
earlier researchers as particular cases. While all these results take h(x) = x,
Glanzel (1991) involved higher order conditional moments in the form

E
(

X2|X > x
)

= P(x)E(X|X ≥ x) + Q(x),

where P(x) and Q(x) are polynomials of degree at most one with real coefficients
to characterize (5). A further generalization aimed at including more distribu-
tions than in (5), Sindhu (2002) (see also Sankaran and Nair 2002) replaced the
linear function in the numerator on the right of (5) with a quadratic function
b0 + b1x + b2x2 to claim the characteristic property

b2E
(

X2|X > x
)

+ (b1 + 2a2)E(X|X ≥ x) + a1 − a2 +
(

a0 + a1x + a2x2
)

×k(x + 1) = 0.

Further results are available in Consul (1995) regarding the exponential family
and other extensions in Ruizz and Navarro (1994) and Navarro et al. (1998).

In Sect. 2, we present a general theorem that establish the link between the
two streams of characterizations reviewed above, by showing that the iden-
tities connecting (reversed) failure rates and left (right) truncated means are
necessary and sufficient conditions for the existence of lower bound to the
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variance. The expression for the lower bound is calculated for discrete distribu-
tions belonging to the modified power series family, Ord family and mixture of
geometric distributions, which cover most of the discrete lifetime models used
in practice. Section 3 explains the application of the results in unbiased esti-
mation of parametric functions. It is shown that the bound obtained in Sect. 2
contains as particular cases the Cramer–Rao and Chapman–Robbins inequali-
ties. In Sect. 4 we discuss how the results can be used in a practical situation by
illustration through a Poisson data.

2 Main result

As seen from the deliberations in Sect. 1, the reversed hazard rate and right
truncated means do not appear in the characterizations mentioned above which
is more appropriate when the observations are truncated from above. We pres-
ent a general result that meets this objective and also subsumes most of the
existing results.

Theorem 1 Let X be a discrete random variable supported on N or a sub-
set thereof and g(.), c(.), h(.) be functions in B such that E

(
c2(X)

)
< ∞,

E(�c(X)g(X)) < ∞ and E
(
h2(X)

)
< ∞. Then for every c(x) ∈ B and some

g(x) and h(x), the following statements are equivalent.

(i)

f (x + 1)

f (x)
= σg(x)

σg(x + 1) − µ + h(x + 1)
, x = 0, 1, 2, . . . (6)

with g(0) = (µ − h(0))/σ and f (0) is evaluated from
∑∞

0 f (x) = 1
(ii)

r(x + 1) = µ − σλ(x)g(x) (7)

(iii)

m(x) = µ + σk(x)g(x)

1 − k(x)
(8)

(iv)

V(c(X)) ≥ E2(g(X)�c(X)) (9)

provided E(g(X)�h(X)) = σ

Here µ and σ denote respectively the mean and variance of h(x) and
�c(x) = c(x + 1) − c(x).
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Proof Assuming (6)

h(x)f (x) = µf (x) + σ f (x − 1)g(x − 1) − σ f (x)g(x).

Summation from 1 to x and the use of the values of g(0) from (i) leads to

σ f (x)g(x) =
x∑

0

(µ − h(y))f (y)

or

σ f (x)g(x) = µF(x) − F(x)r(x + 1).

Dividing by F(x), we reach (7). Retracing the steps we get (6). Thus (i) ⇔ (ii).
Now, from

r(x + 1)F(x) + m(x)(1 − F(x)) = µ

one can solve for F(x) and R(x), and then use (1) and (2) to reach the identity

µ − r(x + 1)

λ(x)
= (m(x) − µ)(1 − k(x))

k(x)

which proves the equivalence of (ii) and (iii). From the results of Cacoullos and
Papathanasiou (1997) stated at (3) and (4), we take z(x) = σg(x) and obtain

V(c(X)) ≥ σE2(g(X)�c(X))

E(g(X)�h(X))

if and only if (ii) or equivalently (iii) is satisfied. Further

E(g(X)�h(X)) =
∞∑

0

(h(x + 1) − h(x))g(x)f (x)

= σ−1
∞∑

0

(h(x + 1) − h(x))

(
x∑

0

(µ − h(y))f (y)

)

= σ−1
∞∑

0

h(x)(h(x) − µ)f (x)

= σ−1V(h(X)) = σ .

This proves that (ii) ⇔(iii) ⇔(iv). Since (iv)⇒(ii) ⇒(i), the chain of implications
in the theorem is complete. ��
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Remarks

1. The equality in (9) holds if and only if c(x)is linear in h(x).
2. E(g(X)) = σ−1Cov(X, h(X)).

This follows from

E(g(X)) = σ−1
∞∑

x=0

x∑

y=0

(µ − h(y))f (y)

= σ−1
∞∑

x=0

x∑

y=x+1

(h(y) − µ)f (y)

= σ−1
∞∑

x=0

x(h(x) − µ)f (x).

3. The value of g(x) is unique for a particular choice of h(x). But we can have
different forms for g(x) for the same distribution, when h(x) is different.

4. For a given h(x) the value of g(x)characterizes the distribution of X. Thus
for h(x) = x, the random variable X has the Poisson distribution in the
class A if and only if g(x) ≡ λ1/2 for all x.

We now consider some illustrations of the above results. Since for model-
ing and inference, families of distributions are more desirable and results for
individual distributions can be easily deduced, we look at the modified power
series family (MPSD) and the Ord family which together covers most of the
discrete distributions in common use. MPSD is defined as distributions having
probability mass functions of the form

f (x) = a(x)[u(θ)]x

A(θ)
,

where X ∈ N or a subset of N, a(x) ≥ 0, u(θ) and A(θ) are positive, finite and
differentiable. From

A(θ)F(x) =
x∑

0

a(y)(u(θ))y

successive differentiation w. r. t θ (denoted by primes) yield

r(x + 1) = µ
[
1 + (log A(θ))′(log F)′

]
(10)

when h(x) = x and

r(x + 1) = (log F)′
(
log F ′)′ + 2(log F)′(log A(θ))′ + (

log A′(θ)
)′
(log A(θ))′

(11)
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when

h(x) = (
log u′(θ)

)2x(x − 1) + (
log u′(θ)

)′
(log u(θ))′x − (

log A′(θ)
)′
(log A(θ))′

Using the expressions for E(X) and the recurrence relations for moments in
Johnson et al. (1992),

g(x) = −µ

σ

A(θ)

A′(θ)

1
f (x)

∂F
∂θ

= − u(θ)

u′(θ)

1
σ f (x)

∂F
∂θ

(12)

corresponding to (10) and

g(x) = 1
σ f (x)

(
∂2F
∂θ2 + 2

A′(θ)

A(θ)

∂F
∂θ

)
(13)

corresponding to (11), since in that case E(h(X)) = µ = 0. The results of Osaki
and Li (1998), Ahmed (1991), Consul (1995) etc can be derived from (10) as
particular cases of (10) for specific distributions, through the use of (8) and the
g(x) values given above. Further these results also suggest that characterizations
in terms of relationship between failure rate and mean residual lives are not
independent of those between the corresponding reversed concepts. But the
two sets of results are useful in their own right depending on whether the data
is left or right truncated.

By virtue of Theorem 1 and above discussion, we conclude that for the MPSD

inf
c(x) ∈ B

V(c(X))

E2(g(X)�c(X))
= 1

with g(x) as stated in (12) and (13) for the prescribed values of h(x).
The implication of these results in unbiased estimation of θ will be discussed

in the next section. It may be noted that, though (12) appears to be compli-
cated, it ends up with a simple forms for various members. For example, in
the case of binomial (n, p), Poisson, Borel Tanner and Geeta distributions, the
value of g(x) are (n − x)p

1
2 (nq)− 1

2 , λ1/2, −θµ∂F
∂θ

/σnf and −θµ∂F
∂θ

/σ f , respec-
tively. When u(θ) = θ in the above equations, the results for the sub-class of
generalized power series distributions can be obtained.

For the Ord family of distributions specified by (5), from Nair and Sankaran
(1991), (when h(x) = x)

r(x + 1) = µ
[
1 −

(
b0 + b1x + b2x2

)
λ(x)

]

with bi = µ−1(1 − 2a2)
−1ai, a2 �= 1

2 , i = 0, 1, 2. Thus for the family

g(x) = µ.σ−1
(

b0 + b1x + b2x2
)
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and

inf
c(x) ∈ B

σ 2V(c(X))

E2
((

c0 + c1X + c2X2
)
�c(X)

) = 1.

where ci = (1 − 2a2)
−1ai, a2 �= 1

2 , i = 0, 1, 2. Generally for the Ord family, the
g(x) turns out to be polynomials, e.g. linear for binomial, quadratic for hyper
geometric and discrete t models (see also Korwar 1991).

We now show that Theorem 1 can be applied to some finite mixture of
discrete distributions as well. The mixture of geometric laws

f (x) = αp1qx
1 + (1 − α)p2qx

2, 0 < pi < 1, qi = (1 − pi),

i = 1, 2; 0 ≤ α ≤ 1; x ∈ N

is characterized by Nair et al. (1999)

E(X − x|X > x) = p1 + p2

p1p2
− 1

p1p2
k(x + 1)

so that by taking h(X) = X − x and comparing with (8)

g(x) = [
σp1p2f (x)

]−1[
(p1 + p2 − µp1p2)R(x + 1) − f (x + 1)

]
.

3 Unbiased estimation

The present section is a discussion of the implications of Theorem 1 to unbi-
ased estimation and a comparison of inequality (9) with the Cramer–Rao and
Chapman–Robbins lower bounds to the variance of an unbiased estimator. First
we take h(x) = x and note that h(x) ∈ B. The lower bound in (9) is attained
when c(x) = h(x), in which case

V(c(X)) = σ 2. (14)

A necessary and sufficient condition for this is

r(x + 1) = µ − σλ(x)g(x)

which is equivalent to

x∑

0

h(t)f (t) = µ

x∑

0

f (t) + µ
A(θ)

A′
(θ)

∂

∂θ

x∑

0

f (t) (15)
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on using (12). From (15),

h(x)f (x) = µf (x) + µ
A(θ)

A′(θ)

∂f
∂θ

or

∂ log f
∂θ

= u′(θ)

u(θ)
(h(x) − µ)

Now the Cramer–Rao lower bound for unbiasedly estimating µ using h(x) is

V(c(X)) =
[
µ′(θ)

]2

E
(

∂ log f
∂θ

)2

= u(θ)

u′(θ)

∂µ

∂θ
= σ 2. (16)

Hence the two bounds in (14) and (16) are equal. Notice that MPSD’s are linear
exponential and hence include cases in which the Cramer–Rao lower bound is
attained, under regularity conditions.

Second popular lower bound to the variance of an unbiased estimator is
provided by the Chapman–Robbins inequality. When E(h(X)) = µ(θ) where
θ ∈ � ⊂ R and ϕ ∈ � such that fθ (x) and fφ(x) are different, satisfying

{fθ (x) > 0} ⊃ {
fφ(x) > 0

}
, we can set c(x) =

(
fφ(x)

fθ (x)
− 1

)
in (9) to claim

E(g(X)�c(X)) = σ−1
∞∑

x=0

⎛

⎝
x∑

y=0

(µ − h(y))f (y)

⎞

⎠
(

fφ(x + 1)

fθ (x + 1)
− fφ(x)

fθ (x)

)
. (17)

Equation (17) simplifies to

E(g(X)�c(X)) = σ−1

⎧
⎨

⎩

∞∑

x=1

⎛

⎝
x−1∑

y=0

(µ − h(y))fθ (y)
fφ(x)

fθ (x)

⎞

⎠

−
∞∑

x=0

⎛

⎝
x∑

y=0

(µ − h(y))fθ (y)
fφ(x)

fθ (x)

⎞

⎠

⎫
⎬

⎭

= −σ−1
∞∑

0

(µ − h(x))fφ(x)

= σ−1[µ(ϕ) − µ(θ)]
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Inequality (9) now reduces to

V(c(X)) ≥ [µ(φ) − µ(θ)]2

V(h(X))

or

V(h(X)) ≥ [µ(φ) − µ(θ)]2

V
(
fφ(X)/fθ (X)

)

which is the Chapman–Robbins inequality. It is well known that this bound
does not require the regularity conditions of the Cramer–Rao inequality, is
valid when � is discrete and provides bounds sharper than the latter. The last
statement is also true for the Chernoff-type inequality (9) derived in Theorem 1,
which is more general. Moreover (9) provides a more general alternative meth-
odology to extract UMVUE’s when h(x) is taken as a statistic that is unbiased
for µ.

4 Illustration

Although the above deliberations were essentially directed towards modeling
and inference of lifetime data, the methodology is applicable for identification
of distribution and estimation of parameters in other contexts as well. We illus-
trate the procedure for the data on the count of alpha particles giving rise to
Poisson distribution reported in Mould (2005)

X 0 1 2 3 4 5 6 7 8 9 10 11 12
Frequency: 57 203 383 525 532 408 273 139 45 27 10 4 2

The failure rate, mean residual life (which has no physical interpretation in
the present data) and g(x) are plotted in Figs. 1, 2 and 3.
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Fig. 2 Mean residual life of X
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Fig. 3 The values of g(x)

The values of g(x) corresponding to x from 0 through 12 are respectively
2.00, 2.06, 2.07, 1.96, 1.87, 1.85, 1.65, 1.61, 2.81, 2.01, 2.23 and 2.12. Except for a
small aberration around the value 2.81 (Caused due to the observed frequency
45 at x = 8 which in the Poisson fit gives a clear distant theoretical value of 60.
It is also seen from the graph of the failure rate that at this point the failure
rate is decreasing which is not so for the Poisson model) g(x) remains constant
about it’s average value 2.02 showing that Poisson model adequately describes
the data. If we consider the random variable as X, the sum of n independent
and identically distributed observations following Poisson distribution so that
E(X) = nλ, n = 2, 608, from the results in Sect. 3, the UMVUE for λ is 3.87.
This is also very close to the unbiased estimate of λ obtained from E(g(X)).

If we look at the unbiased estimation of the probability mass function

f (r) = e−λλr

r! , r = 0, 1, 2, . . .

by solving the equation

∞∑
0

h(x)e−nλ (nλ)x

x! = f (r)
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one finds

h(x) =
(

x
r

)(
1
n

)r(
1 − 1

n

)x−r

. (18)

Taking in c(x) = h(x) in Theorem 1, Eq. (7) gives

g(x) = x
(nλ)x

x∑

y=0

{f (r) − h(y)}(nλ)y/y!

so that h(x) in (18) is unbiased for f (r) and attain the minimum variance
bound (9).

In conclusion, this expository paper arrives at the class of discrete proba-
bility distributions typified by (6) that can be used for reliability modeling in
terms of characteristic properties represented in (7) and (8) in terms of failure
rate and right truncated expectations. The link established with Chernoff-type
inequalities further enables to assist in the unbiased estimation of parametric
functions with properties that subsume some of the well-known results in the
classical theory of estimation.
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