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Abstract The proportional hazards cure model generalizes Cox’s proportional
hazards model which allows that a proportion of study subjects may never expe-
rience the event of interest. Here nonparametric maximum likelihood approach
is proposed to estimating the cumulative hazard and the regression parameters.
The asymptotic properties of the resulting estimators are established using the
modern empirical process theory. And the estimators for the regression param-
eters are shown to be semiparametric efficient.
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1 Introduction

Survival models with a cure rate have received much attention in recent years
(Farewell, 1982, 1986; Kuk and Chen, 1992; Sy and Taylor, 2000; Peng and Dear,
2000, among others). These models are useful when a proportion of study sub-
jects never experience the event of interest. Applications of cure models can
be found in many disciplines, including biomedical sciences, economics, soci-
ology and engineering science. Maller and Zhou (1996) contains a list of such
applications.

Mixture modelling approach is commonly used to formulate a cure model,
which assumes that the underlying population is a mixture of susceptible and
nonsusceptible subjects. All susceptible subjects would eventually experience
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the event if there were no censoring, while the nonsusceptible ones are immune
from the event. Under mixture modelling approach, a decomposition of the
event time is given by

T = ηT∗ + (1 − η)∞, (1)

where T∗ < ∞ denotes the failure time of a susceptible subject and η indicates,
by the value 1 or 0, whether the sampled subject is susceptible or not. Thus, one
can model separately the survival distribution for susceptible individuals and
the fraction of nonsusceptible ones.

Parametric mixture models were explored earlier by a number of authors.
Berkson and Gage (1952) used a mixture of exponential distributions and a
constant cure fraction to fit survival data from studies of breast cancer and
stomach cancer. This parametric approach was extended by Farewell (1982,
1986) to Weibull regression for survival and logistic regression for the cure frac-
tion. Theoretical and empirical properties of the Weibull extension were fully
studied there via the parametric maximum likelihood method.

More recent attention has been focused on semiparametric mixture mod-
elling approaches. Kuk and Chen (1992) proposed the so-called proportional
hazards cure model in which the proportional hazards regression (Cox 1972)
models the survival times of susceptible subjects while the logistic regression
models the cure fraction.

The model is specified by the following two terms:

λ(t|Z, X) = lim
dt→0+ P(t ≤ T∗ < t + dt|T∗ ≥ t, Z, X)/dt = λ(t) exp(β ′Z), (2)

P (η = 1|X, Z) = exp(γ ′X)

1 + exp(γ ′X)
, (3)

where λ(t|Z, X) is the hazard function for a susceptible subject with p-dimen-
sional covariates Z and q-dimensional covariates X, and λ(t) the completely
unspecified baseline hazard function, and β and γ the unknown regression
parameter vectors of primary interest. Recall that Z and X may share some
common components and X includes 1 so that γ contains the intercept term.
Furthermore, we assume that the censoring time C is independent of T∗ and
η conditional on Z and X. Define T̃ = min{T, min(C, τ)} and δ = I{T ≤
min(C, τ)}, where τ denote the total follow-up of the study. Then the obser-
vations consist of (T̃i, δi, Zi, Xi), i = 1, . . . , n, which are independent copies of
(T̃, δ, Z, X). And the observed likelihood function can be written as

Ln(�, θ) =
n∏

i=1

[{
π(γ ′Xi)λ(T̃i)eβ ′Zie−�(T̃i) exp(β ′Zi)

}δi

×
{

1 − π(γ ′Xi) + π(γ ′Xi)e−�(T̃i) exp(β ′Zi)
}1−δi

]
, (4)
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where θ = (β ′, γ ′)′, π(a) = exp(a)/{1 + exp(a)} for any real number a, and
�(t) = ∫ t

0 λ(s)ds is the baseline cumulative hazard function.
As noted by Kuk and Chen (1992), if the cure fraction 1 − π(γ ′X) is not

equal to zero, the hazard function of T is no longer proportional and the simple
form of the partial likelihood function, like that for the usual Cox proportional
hazards model, can not be obtained here. To solve this difficulty, they proposed
to consider the following complete but unobserved likelihood function:

Lnc(�, θ) =
n∏

i=1

[{
π(γ ′Xi)λ(T̃i)eβ ′Zi e−�(T̃i) exp(β ′Zi)

}δiηi

×
{{

1 − π(γ ′Xi)
}1−ηi

{
π(γ ′Xi)e−�(T̃i) exp(β ′Zi)

}ηi
}1−δi

]
,

where ηi’s are only partially observed, i.e. when δi = 1, ηi = 1, while when δi = 0,
ηi is unobserved. Based on Lnc, they developed a Monte Carlo simulation-based
algorithm for approximating a rank-based likelihood function, thereby enabling
them to perform maximum marginal likelihood estimation. The proportional
hazards cure model was further studied by Peng and Dear (2000) and Sy and
Taylor (2000) among others to obtain alternative methods for computing the
joint semiparametric likelihood function. Their approaches largely relied on
the semiparametric EM algorithm that computes estimates for both the cumu-
lative baseline hazard and the regression parameters. However, the theoretical
properties of the resulting estimators for the proportional hazards cure model
remain to be established. Fang et al. (2005) studied the large sample proper-
ties of the maximum likelihood estimators under the proportional hazards cure
model.

Recently, Lu and Ying (2004) proposed an estimating equations approach for
the semiparametric transformation cure models, where the class of linear trans-
formation models are used for the failure times of susceptible subjects and the
logistic regression is used for the cure fraction. Their approach was motivated
by the work of Chen et al. (2002) and used the martingale integral represen-
tation to construct unbiased estimating equations. The large sample properties
of the resulting estimators were also studied. However, the proposed algorithm
for solving the equations may not converge and the resulting estimators for the
regression parameters are not efficient, even when the model specifies the pro-
portional hazards cure model, i.e. the error term of the linear transformation
models follows the extreme value distribution.

In this paper, we propose to estimate the parametric and the nonparametric
components in the proportional hazards cure model by using nonparametric
maximum likelihood. The joint parametric/nonparametric likelihood approach
to semiparametric problems was pioneered by Murphy (1994, 1995) for the
frailty model and Scharfsten et al. (1998) for the generalized odds-rate class of
regression models, among others. Here, we apply and extend their techniques
to the proportional hazards cure model and make use of the modern empirical
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process theory, as elucidated in van der Vaart and Wellner (1996), to drive the
large sample properties of the resulting estimators. In addition, We show that
the maximum likelihood estimators for the regression parameters are semipar-
ametrically efficient (Bickel et al., 1993).

The paper is organized in a natural order. We first compute the semipara-
metric variance bound (Sect. 2). Then, in Sect. 3, we define our estimators and
show that they are consistent, asymptotically normal, and achieve the variance
bound. Consistent variance estimators are also derived here. Section 4 gives
some discussions on generalization of our approach to include time dependent
covariates and other semiparametric cure models. Some technical lemmas are
put together and proved in the Appendix.

2 Semiparametric variance bound

First, note that the log likelihood function for a single observation is

l(�, θ) = δ[log{π(γ ′X)λ(T̃)} + β ′Z − �(T̃) exp(β ′Z)] + (1 − δ) log S(T̃, �, θ),

(5)

where S(t, �, θ) = 1 − π(γ ′X) + π(γ ′X) exp{−�(t) exp(β ′Z)}. Then the semi-
parametric variance bound is computed via the semiparametric efficiency theory
of Bickel et al. (1993). To be specific, a parametric submodel corresponding to
a parameterization of λ(t) is considered, say λ(t, α), where λ(t, α0) = λ(t) for
some α0.

So the log likelihood for such parametric submodel is given by

l(α, θ) = δ[log{π(γ ′X)λ(T̃, α)} + β ′Z − �(T̃, α) exp(β ′Z)]
+(1 − δ) log S{T̃, �(·, α), θ},

where �(t, α) = ∫ t
0 λ(s, α)ds. The score for θ is

∂l
∂θ

=
∫ τ

0
W{t, �(·, α), θ}dM{t, �(·, α), θ}, (6)

where M(t, �, θ) = N(t) − ∫ t
0 Y(s)g(s, �, θ) exp(β ′Z)d�(s) and W(t, �, θ) =

(Z′[1 − {1 − g(t, �, θ)} exp(β ′Z)�(t)], X ′{1 − g(t, �, θ)})′ with

g(t, �, θ) = π(γ ′X) exp{−�(t) exp(β ′Z)}
1 − π(γ ′X) + π(γ ′X) exp{−�(t) exp(β ′Z)} .

By the usual counting process and its associated martingale theory (Fleming and
Harrington 1991; Andersen et al. 1993), M(t, �, θ) is the Ft-counting process
martingale, where Ft is the smallest sigma-algebra generated by {N(s), Y(s), 0 ≤
s ≤ t}. The score for α is
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∂l
∂α

=
∫ τ

0

[
∂
∂α

λ(t, α)

λ(t, α)
− {1 − g(t, �, θ)} exp(β ′Z)

∫ t

0

∂λ(s, α)

∂α
ds

]
dM{t, �(·, α), θ}.

(7)

Let θ0 and �0 be the true values of θ and �, respectively. And denote Sθ and
Sα to be the corresponding scores for θ and α evaluated at the truth. Similar
to Scharfsten et al. (1998), we can define the following tangent set � in the
nonparametric direction,

� = {f (T̃, δ, Z, X) : f (T̃, δ, Z, X)

=
∫ τ

0
[a(t) − {1 − g0(t)} exp(β ′

0Z)

∫ t

0
a(s)d�0(s)]dM0(t),

where a(t) is any(p+q)−dimensional function of t, E[||f (T̃, δ, Z, X)||2] < ∞}.
Here g0(t) = g(t, �0, θ0) and M0(t) = M(t, �0, θ0). Then the efficient score

Seff for θ can be defined as Seff = Sθ − 
[Sθ |�], where 
[·|·] is the projection
operator.

To project Sθ onto �, we need to find the vector a(t) such that

E
(∫ τ

0
[W0(t) − a(t) + {1 − g0(t)} exp(β ′

0Z)

∫ t

0
a(s)d�0(s)]′dM0(t)

×
∫ τ

0
[a∗(t) − {1 − g0(t)} exp(β ′

0Z)

∫ t

0
a∗(s)d�0(s)]dM0(t)

)
= 0, (8)

for all a∗. Here W0(t) = W(t, �0, θ0). By some simple algebra, we can show
that the vector a(t) which satisfies (8) is a solution to the following Fredholm
integral equation of the second kind:

a(t) −
∫ τ

0
K(t, s)a(s)d�0(s) = f (t), t ∈ [0, τ ], (9)

where for 0 ≤ t, s ≤ τ ,

K(t, s) = E[g0(s ∨ t){1 − g0(s ∨ t)} exp(2β ′
0Z)Y(s ∨ t)]

E{Y(t)g0(t) exp(β ′
0Z)}

−
∫ τ

s∨t E[g0(u){1 − g0(u)}2 exp(3β ′
0Z)Y(u)]d�0(u)

E{Y(t)g0(t) exp(β ′
0Z)} ,

f (t) = E{W0(t)Y(t)g0(t) exp(β ′
0Z)}

E{Y(t)g0(t) exp(β ′
0Z)}

−
∫ τ

t E[W0(s)g0(s){1 − g0(s)} exp(2β ′
0Z)Y(s)]d�0(s)

E{Y(t)g0(t) exp(β ′
0Z)} .
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If the kernel K(·, ·) satisfies supt∈[0,τ ]
∫ τ

0 |K(t, s)|d�0(s) < ∞, then according
to Kress (1989), there exists a solution to this integral equation. Under mild
regularity conditions, which are given in the next section, we can show that the
kernel K defined above satisfies the above condition. Denote the solution by
aeff(t). Then, the efficient score for θ is

Seff =
∫ τ

0
[W0(t) − aeff(t) + {1 − g0(t)} exp(β ′

0Z)

∫ t

0
aeff(s)d�0(s)]dM0(t)

Therefore, provided that the E(SeffS′
eff) is nonsingular, the semiparametric var-

iance bound, �, is {E(SeffS′
eff)}−1. Furthermore, we can show that

E(SeffS
′
eff)=E

(∫ τ

0
W0(t)[W0(t)−aeff(t)+{1−g0(t)} exp(β ′

0Z)

∫ t

0
aeff(s)d�0(s)]′

×Y(t)g0(t) exp(β ′
0Z)d�0(t)

)
,

since based on (8),

E
(∫ τ

0
[W0(t) − aeff(t) + {1 − g0(t)} exp(β ′

0Z)

∫ t

0
aeff(s)d�0(s)]′

×[aeff(t)−{1−g0(t)} exp(β ′
0Z)

∫ t

0
aeff(s)d�0(s)]Y(t)g0(t) exp(β ′

0Z)d�0(t)
)

=0.

3 Estimation and asymptotic

Nonparametric maximum likelihood method is used to estimate the regression
parameters and the baseline cumulative hazard function. For convenience, we
assume that there are no tied death times, but our results can be easily tailored
to accommodate tied death times.

The log likelihood function for observed data is given by

n∑

i=1

(
δi[log{π(γ ′Xi)} + log λ(T̃i) + β ′Zi − �(T̃i) exp(β ′Zi)]

+(1 − δi) log Si(T̃i, �, θ)
)

, (10)

where Si is obtained from S by replacing Z and X by Zi and Xi, respectively. The
maximum of this function does not exists if �(·) is restricted to be absolutely
continuous. Thus, we allow �(·) to be discrete and replace λ(t) in (10) with the
jump size of � at time t, denoted by ��(t). Then we maximize the following
modified log likelihood function to obtain our estimates:
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nln(�, θ) =
n∑

i=1

(
δi[log{π(γ ′Xi)} + log{��(T̃i)} + β ′Zi − �(T̃i) exp(β ′Zi)]

+ (1 − δi) log Si(T̃i, �, θ)
)

. (11)

We observe that the maximizer �̂n of (11) must be a step function with jumps at
all the death times. Within the class of functions of this form, we can show that
the maximum likelihood estimators, �̂n and θ̂n, of (11) exist and are finite. Then,
we show that they are consistent and asymptotically normal. And the limiting
variance of θ̂n attains the semiparametric efficiency bound, �. To establish our
claims, we need the following conditions:

Condition 1. The function �0(t) is strictly increasing and continuously differ-
entiable, and �0(τ ) < ∞.

Condition 2. θ0 lies in the interior of a compact set C and the covariate vectors
Z and X are bounded in the sense that P (|Z| < m and |X| <

m) = 1 for some constant m > 0.
Condition 3. With probability one, there exists a positive constant ε such that

P (C ≥ T∗ ≥ τ |Z, X) > ε.
Condition 4. P {Y(t) = 1|Z, X} is continuous in t.

Remark 1 The conditions 1, 2 and 4 are the usual regularity conditions needed
for establishing the large sample results for the maximum partial likelihood
estimators under the proportional hazards model. Condition 3 is for the iden-
tifiability of the proportional hazards cure model on the interval [0, τ ], i.e. the
follow-up is sufficiently long for identifying �(t) on the interval [0, τ ].

3.1 Existence

Theorem 1 Assume that conditions 1–2 hold. Then the maximum likelihood
estimators of ln(�, θ), (�, θ) = (�̂n, θ̂n) exists and is finite.

Proof Since ln is a continuous function of θ and the jump sizes of �, it is equiva-
lent to show that the jump sizes are finite (Scharfsten et al., 1998). To see this, let
b1, . . . , bk(n) denote the jump sizes at the death times T̃(1) < T̃(2) < · · · < T̃(k(n)),
where k(n) is the total number of deaths. Then

ln <
1
n

k(n)∑

i=1

⎡

⎣log{π(γ ′X(i))} + β ′Z(i) + {log bi − exp(β ′Z(i))

i∑

j=1

bj}
⎤

⎦

<
1
n

k(n)∑

i=1

⎡

⎣log{π(γ ′X(i))} + β ′Z(i) + {log bi − exp(−M0)

i∑

j=1

bj}
⎤

⎦

where M0 is a positive constant and Z(i), X(i) are the covariate vectors cor-
responding to the ith death time, T̃(i). The first inequality above holds since
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0 < Si(T̃i, �, θ) < 1 and the second inequality is due to condition 2. Therefore,
ln diverges to −∞ if bj tends to ∞ for some j. This implies that the jump sizes
of � must be finite. 	

Remark 2 The maximization of ln(�, θ) in (11) can be carried out by the Nelder-
Mead simplex method. Such an algorithm is available in MATLAB software
with the build-in function “fminsearch”.

Remark 3 Since (�̂n, θ̂n) exists and is finite, the derivative of ln with respect to
the jump sizes of � should be zero. This leads to the following equation for �̂n:

�̂n(t) =
∫ t

0

dN̄(s)
1
n

∑n
j=1 Yj(s) exp(β̂ ′Zj){δj + (1 − δj)gj(T̃j, �̂n, θ̂ )} , 0 < t ≤ τ ,

(12)

where N̄(t) = (1/n)
∑n

i=1 Ni(t) and gi is obtained from g by replacing Z and X
by Zi and Xi, respectively.

3.2 Consistency

We apply the techniques used by Murphy (1994) and Scharfsten et al. (1998)
here for proving consistency. Specifically, define

�̃n(t) =
∫ t

0

dN̄(s)
1
n

∑n
j=1 Yj(s) exp(β ′

0Zj){δj + (1 − δj)gj(T̃j, �0, θ0)}
, 0 < t ≤ τ ,

(13)

which is a step function with jumps at each of the death times and converges
uniformly to �0 (see Lemma 2 of the Appendix).

Theorem 2 Assume that conditions 1–4 hold. Then

sup
t∈[0,τ ]

|�̂n(t) − �0(t)| → 0 a.s. and ||θ̂n − θ0|| → 0 a.s.

The proof of Theorem 2 is given in Appendix.

3.3 Asymptotic distribution

We extend the approach of Murphy (1995) and Scharfsten et al. (1998) to
derive the asymptotic distribution of our estimators (�̂n, θ̂n). Here we also
work with one-dimensional submodels through the estimators and the differ-
ence at the estimators. To be specific, set �d(t) = ∫ t

0{1 + dh1(s)d�̂n(s) and
θd = dh2 + θ̂n, where h1 is a function and h2 is a (p + q)-dimensional vec-
tor. Furthermore, write h2 = (h′

21, h′
22)

′, where h21 is the p-dimensional and
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h22 is the q-dimensional vectors corresponding to Z and X, respectively. Let
Sn(�̂n, θ̂n)(h1, h2) denote the derivative of ln with respect to d and evaluated at
d = 0. If (�̂n, θ̂n) maximizes ln, then Sn(�̂n, θ̂n)(h1, h2) = 0 for all (h1, h2). We
observe that Sn(�̂n, θ̂n)(h1, h2) = Sn1(�̂n, θ̂n)(h1) + Sn2(�̂n, θ̂n)(h2), where

Sn1(�̂n, θ̂n)(h1) = 1
n

n∑

i=1

∫ τ

0

[
h1(t) − {1 − gi(t, �̂n, θ̂n)} exp(β̂ ′Zi)

∫ t

0
h1(s)d�̂(s)

]

×
{

dNi(t) − Yi(t)gi(t, �̂n, θ̂n) exp(β̂ ′Zi)d�̂(t)
}

,

Sn2(�̂n, θ̂n)(h2) = 1
n

n∑

i=1

∫ τ

0
h′

2Wi(t, �̂n, θ̂n)

×{dNi(t) − Yi(t)gi(t, �̂n, θ̂n) exp(β̂ ′Zi)d�̂(t)}.

Let BV[0, τ ] denote the space of bounded variation functions defined on
[0, τ ]. We assume that the class of h belongs to the space H = BV[0, τ ]⊗Rp+q.
For h ∈ H, we define the norm on H to be ||h||H = ||h1||v + |h2|1, where ||h1||v
is the absolute value of h1(0) plus the total variation of h1 on the interval [0, τ ]
and |h2|1 is the L1-norm of h2. Define Hm = {h ∈ H : ||h||H ≤ m}. If m = ∞,
then the inequality is strict. In addition, define 〈�, θ〉(h) = ∫ τ

0 h1(t)d�(t) + h′
2θ .

The 〈�, θ〉 indexes the space functionals

� =
{

〈�, θ〉 : sup
h∈Hm

|〈�, θ〉| < ∞
}

.

Now � ⊂ l∞(Hm), where l∞(Hm) is the space of bounded real-valued functions
on Hm under the supremum norm ||U|| = suph∈Hm

|U(h)|. The score function
Sn is a random map � to l∞(Hm) for all finite m. Convergence in probability
(denoted by P∗) and weak convergence will be in terms of outer measure.

Theorem 3 Assume that conditions 1–4 hold. Then

〈√n(�̂n − �0),
√

n(θ̂ − θ0)〉 ⇒ G (14)

weakly in l∞(Hm), where G is a tight Gaussian process in l∞(Hm) with mean
zero and covariance process

Cov{G(h), G(h∗)} =
∫ τ

0
h1(t)σ

−1
(1)

(h∗)(t)d�0(t) + h′
2σ

−1
(2) (h∗), (15)
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where σ = (σ1, σ2) is a continuous linear operator from H∞ to H∞ with inverse
σ−1 = (σ−1

(1)
, σ−1

(2) ). The form of σ is given as follows:

σ1(h)(t) = E{V(t, ϒ0)(h)Y(t)g(t, ϒ0) exp(β ′
0Z)}

−E
[∫ τ

t
V(s, ϒ0)(h)Y(s)g(s, ϒ0){1 − g(s, ϒ0)} exp(2β ′

0Z)d�0(s)
]

,

and

σ2(h) = E
[∫ τ

0
W(t, ϒ0)V(t, ϒ0)(h)Y(t)g(t, ϒ0) exp(β ′

0Z)d�0(t)
]

,

where ϒ0 = (�0, θ0) and

V(t, �, θ) = h1(t) − {1 − g(t, �, θ)} exp(β ′Z)

∫ t

0
h1(s)d�(s) + h′

2W(t, �, θ).

The proof of Theorem 3 is given in the Appendix and follows the following
theorem from (van der Vaart and Wellner 1996, Theorem 3.3.1). In this theo-
rem, the parameter space � is a subset of l∞(Hm) and the score function is a
random map Sn : � → l∞(Hm). Let ϒ = (�, θ) and ϒ̂n = (�̂n, θ̂n). Further-
more, denote the asymptotic version of Sn by S, i.e S(ϒ) = E{Sn(ϒ)}. Then we
have that Sn(ϒ̂n) = 0, S(ϒ0) = 0 and ϒ̂n − ϒ0 = oP∗(1) as elements in l∞(Hm).
The notation “lin” before a set denotes the set of all finite linear combinations
of the elements of the set.

Theorem 4 Assume the following:

1. (Asymptotic distribution of the score function)
√

n{Sn(ϒ0) − S(ϒ0)} ⇒ G∗,
where G∗ is a tight Gaussian process on l∞(Hm).

2. (Fréchet differentiability of the asymptotic score)

√
n{S(ϒ̂n) − S(ϒ0)} = −√

nṠ(ϒ0)(ϒ̂n − ϒ0) + oP∗(1 + √
n||ϒ̂n − ϒ0||),

where Ṡ(ϒ0) : lin{ϒ − ϒ0 : ϒ ∈ �} → l∞(Hm) is a continuous linear
operator.

3. (Invertibility) Ṡ(ϒ0) is continuously invertible on its range.
4. (Approximation condition) ||√n{(Sn − S)(ϒ̂n) − (Sn − S)(ϒ0)}|| = oP∗(1 +√

n||ϒ̂n − ϒ0||).
Then,

√
n(ϒ̂n − ϒ0) ⇒ Ṡ(ϒ0)

−1G∗.

Remark 4 From (15) of Theorem 3, we have

Var{G(h)} =
∫ τ

0
h1(t)σ

−1
(1)

(h)(t)d�0(t) + h′
2σ

−1
(2) (h), (16)
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which provides the asymptotic variances of many quantities of interest. For
example, if we choose h1(t) = 0 for all t and h2 = ei, the ith unit vector, then
we obtain the asymptotic variance of the ith element of θ̂n. Alternatively, if we
choose h1(s) = I(s ≤ t) and h2 = 0, then we obtain the asymptotic variance of
�̂n(t).

Remark 5 A natural estimator of the asymptotic variance of 〈√n(θ̂−θ0),
√

n(�̂n
− �0)〉(h) can be given as

∫ τ

0 h1g1d�̂n + h′
2g2, where g = (g1, g2) is the solution

to h1 = σ̂1(g) and h2 = σ̂2(g), with σ̂1(g) and σ̂2(g) defined as

σ̂1(g)(t) = 1
n

n∑

i=1

Vi(t, ϒ̂n)(g)Yi(t)gi(t, ϒ̂n) exp(β̂ ′
nZi)

− 1
n

n∑

i=1

∫ τ

t
Vi(s, ϒ̂n)(g)Yi(s)gi(s, ϒ̂n){1−gi(s, ϒ̂n)} exp(2β̂ ′

nZi)d�̂n(s)

σ̂2(g) = 1
n

n∑

i=1

∫ τ

0
Wi(t, ϒ̂n)Vi(t, ϒ̂n)(g)Yi(t)gi(t, ϒ̂n) exp(β̂ ′

nZi)d�̂n(t)

Here σ̂1(g) and σ̂2(g) are the empirical versions of σ1(g) and σ2(g) with the true
parameter values θ0 and �0 replaced by the maximum likelihood estimators θ̂n
and �̂n, respectively.

In the following theorem, we want to show that the asymptotic variance
estimator defined above exists and converges to the true value given in (16).

Theorem 5 Assume that conditions 1–4 hold, then for h ∈ Hm, the solution
g = σ̂−1(h) exists with probability going to one as n increases. Furthermore,∫ τ

0 h1g1d�̂n + h′
2g2 converges to

∫ τ

0 h1(t)σ
−1
(1)

(h)(t)d�0(t) + h′
2σ

−1
(2) (h) in proba-

bility.

The proof of Theorem 5 is given in the Appendix. Finally, we want to show that
the asymptotic variance of

√
n(θ̂n − θ0) achieve the semiparametric efficiency

bound, �, established in Sect. 2. By the Cramer-Wold device (see Serfling
1980), it suffices to demonstrate that the asymptotic variance of a′√n(θ̂n − θ0)

is equal to a′�a, where a is any vector in Rp+q. To do this, we need to find an
h = (h1, h2) such that σ1(h)(t) = 0 for all t and σ2(h) = a. Consider the solution,
h2 = �a and h1(t) = −a′

eff(t)A
−1(B� − I)a, where

B = E
{∫ τ

0
W⊗2(t, ϒ0)Y(t)g(t, ϒ0) exp(β ′

0Z)d�0(t)
}

,

A = E
(∫ τ

0
W(t, ϒ0)[aeff (t) − {1 − g(t, ϒ0)} exp(β ′

0Z)

×
∫ t

0
aeff(s)d�0(s)]′Y(t)g(t, ϒ0) exp(β ′

0Z)d�0(t)
)

.
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Note that with the h define above

σ2(h) = E
(∫ τ

0
W(t, ϒ0)

[
−a′

eff(t)A
−1(B� − I)a + {1 − g(t, ϒ0)} exp(β ′

0Z)

×
∫ t

0
a′

eff(s)A
−1(B� − I)ad�0(s) + W′(t, ϒ0)�a

]

×Y(t)g(t, ϒ0) exp(β ′
0Z)d�0(t)

)

= −AA−1(B� − I)a + B�a = a

and

σ1(h)(t) = E
([

−aeff(t) + {1 − g(t, ϒ0)} exp(β ′
0Z)

∫ t

0
aeff(s)d�0(s)

]

×Y(t)g(t, ϒ0) exp(β ′
0Z)

)
A−1(B� − I)a

+E{W(t, ϒ0)Y(t)g(t, ϒ0) exp(β ′
0Z)}�a

−E
(∫ τ

t

[
−aeff(s) + {1 − g(s, ϒ0)} exp(β ′

0Z)

∫ s

0
aeff(u)d�0(u)

]

×Y(s)g(s, ϒ0){1 − g(s, ϒ0)} exp(2β ′
0Z)d�0(s)

)
A−1(B� − I)a

−E
[∫ τ

t
W(s, ϒ0)Y(s)g(s, ϒ0){1 − g(s, ϒ0)} exp(2β ′

0Z)d�0(s)
]

�a

If A−1(B� − I) = �, then

σ1(h)(t) =
(

E
([

−aeff(t) + {1 − g(t, ϒ0)} exp(β ′
0Z)

∫ t

0
aeff(s)d�0(s)

]

× Y(t)g(t, ϒ0) exp(β ′
0Z)

)
+ E{W(t, ϒ0)Y(t)g(t, ϒ0) exp(β ′

0Z)}

−E
(∫ τ

t

[
−aeff(s) + {1 − g(s, ϒ0)} exp(β ′

0Z)

∫ s

0
aeff(u)d�0(u)

]

× Y(s)g(s, ϒ0){1 − g(s, ϒ0)} exp(2β ′
0Z)d�0(s)

)

−E
[∫ τ

t
W(s, ϒ0)Y(s)g(s, ϒ0){1 − g(s, ϒ0)} exp(2β ′

0Z)d�0(s)
])

�a

= {aeff(t) −
∫ τ

0
K(t, s)aeff(s)d�0(s) − f (t)}E{Y(t)g(t, ϒ0) exp(β ′

0Z)}�a

= 0
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the last equality above holds since aeff(t) is the solution to (9). To check
A−1(B� − I) = �, it is equivalent to show that B − A = �−1. This easily
follows the definition of � and some simple algebra. Therefore, we have proved
that the asymptotic variance of

√
n(θ̂n − θ0) achieve the semiparametric effi-

ciency bound.

4 Concluding remarks

We have developed in this paper the nonparametric maximum likelihood
estimators and their associated asymptotic properties for statistical inference
related to the proportional hazards cure model. And the proposed estimators
for the regression parameters have been shown to be semiparametric efficient.
Our methods and derivation rely on modern empirical process theory.

In this paper, a logistic regression is used for modeling the cure fraction.
Other parametric models, such as the probit model, can also be easily accom-
modated. However, the choice of such parametric models is difficult to test in
practice. In addition, the covariate vector Z in the Cox model (2) is assumed
to be time independent for convenience. This assumption can be relaxed to
include time dependent covariates by adding the following condition on Z(·)
(also see condition 1 of Bilias et al. (1997)):
Condition 2∗. There exists a constant B such that ||Z||v ≤ B, where ||Z||v is the
absolute value of Z(0) plus the total variation of Z on the interval [0, τ ].

Furthermore, the methods proposed here can also be applied to analysis
of other semiparametric cure models. For example, the class of transforma-
tion mixture cure models considered by Lu and Ying (2004), and the class of
semiparametric nonmixture cure models (Tsodikov 1998, 2001; Tsodikov et al.
2003). In particular, Zeng et al. (2006) studied a class of transformation non-
mixture cure models using the nonparametric maximum likelihood estimation.
The models are specified as

P(T > t|X) = G{exp(γ ′X)F(t)}

where F(t) is a completely unspecified distribution function and G(x) is a known
monotone decreasing transformation function with G(0) = 1. The cure proba-
bility for a subject with covariate vector X is then P(T = ∞|X) = G{exp(γ ′X)}.
A main difference between the above nonmixture cure model and the propor-
tional hazards mixture cure model considered in the paper is that the parameter
γ affects both the cure fraction and the underlying survival distribution of a
susceptible subject in the nonmixture cure model while it only affects the cure
fraction in the mixture cure model. The goodness-of-fit tests of different types
of semiparametric cure models need to be further investigated and warrant
future research.

Acknowledgement The author is grateful to Professor Zhiliang Ying for the helpful discussion
of the paper. Wenbin Lu’s research was partially supported by National Science Foundation Grant
DMS-0504269.
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Appendix

Lemma 1 Assume that conditions 1-4 hold, then supn �̂n(τ ) < ∞.

Proof We prove this result by contradiction. That is, suppose that supn �̂n(τ )

goes to ∞ as n increases. Then note that

0 ≤ ln(�̂n, θ̂ ) − ln(�̃n, θ0)

= 1
n

n∑

i=1

δi log
π(γ̂ ′

nXi)

π(γ ′
0Xi)

+ 1
n

n∑

i=1

δi(β̂n − β0)
′Zi

+ 1
n

n∑

i=1

δi

{
log

��̂n(T̃i)

��̃n(T̃i)
− �̂n(T̃i) exp(β̂ ′

nZi) + �̃n(T̃i) exp(β ′
0Zi)

}

+ 1
n

n∑

i=1

(1 − δi) log
S(T̃i, �̂n, θ̂n)

S(T̃i, �̃n, θ0)

= Õp(1) + 1
n

n∑

i=1

δi

{
log

��̂n(T̃i)

��̃n(T̃i)
− �̂n(T̃i) exp(β̂ ′

nZi)

}

= Õp(1) + 1
n

n∑

i=1

∫ τ

0
log

⎡

⎣1
n

n∑

j=1

Yj(t) exp(β ′
0Zj){δj + (1 − δj)g(T̃j, ϒ0)}

⎤

⎦dNi(t)

− 1
n

n∑

i=1

∫ τ

0
log

⎡

⎣1
n

n∑

j=1

Yj(t) exp(β̂ ′
nZj){δj + (1 − δj)g(T̃j, ϒ̂n)}

⎤

⎦dNi(t)

− 1
n

n∑

i=1

δi�̂n(T̃i) exp(β̂ ′
nZi)

= Õp(1) − 1
n

n∑

i=1

δi�̂n(T̃i) exp(β̂ ′
nZi)

≤ Õp(1) − 1
n

n∑

i=1

δi�̂n(T̃i)Yi(τ ) exp(β̂ ′
nZi)

≤ Õp(1) − �̂n(τ )
1
n

n∑

i=1

δiYi(τ ) exp(β̂ ′
nZi)

≤ Õp(1) − exp(−c0)�̂n(τ )
1
n

n∑

i=1

δiYi(τ )

where c0 is a positive constant and Õp(1) represents quantities, which are
bounded away from positive infinity with probability one as n becomes large.
Since the limit of 1

n

∑n
i=1 δiYi(τ ) is E{π(γ0X)P(C ≥ T∗ ≥ τ |Z, X)}, which is

bigger than 0 according to conditions 2 and 3. Thus, as n goes to ∞, the right-
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hand side of the above inequality diverges to −∞ with probability one, which
is a contradiction. 	


Lemma 2 Assume that conditions 1–4 hold, then supt∈(0,τ ] |�̃n(t) − �0(t)| → 0,
a.e., and for each ω ∈ �,

(i) �∗ is absolutely continuous.

(ii) supt∈(0,τ ]
∣∣∣d�̂nk

d�̃nk
(t) − γ (t)

∣∣∣→ 0.

(iii) supt∈(0,τ ] |�̂nk(t) − ∫ t
0 γ (s)d�0(s)| → 0.

Proof Note that M0(t) = N(t) − ∫ t
0 Y(s) exp(β ′

0Z)g(s, ϒ0)d�0(s) is mean zero
and E{Y(t) exp(β ′

0Z)g(t, ϒ0)} > 0 for t ∈ [0, τ ], we have

�0(t) =
∫ t

0
E{Y(s) exp(β ′

0Z)g(s, ϒ0)}−1dE{N(s)}

where E{N(t)} = E{∫ t
0 Y(s) exp(β ′

0Z)g(s, ϒ0)d�0(s)}. Then

�̃n(t) − �0(t) =
∫ t

0

⎡

⎣1
n

n∑

j=1

Yj(s) exp(β ′
0Zj){δj + (1 − δj)gj(T̃j, �0, θ0)}

⎤

⎦
−1

dN̄(s)

−
∫ t

0
E{Y(s) exp(β ′

0Z)g(s, ϒ0)}−1dE{N(s)}

By the Glivenko-Cantelli theorem, 1
n

∑n
j=1 Yj(s) exp(β ′

0Zj){δj +(1−δj)gj(T̃j, �0,

θ0)} uniformly converges to E[Y(s) exp(β ′
0Z){δ + (1 − δ)g(T̃, �0, θ0)}] on [0, τ ].

In addition,

E{Y(t) exp(β ′
0Z)δ} = E[I(C ≥ t) exp(β ′

0Z)E{I(t ≤ T ≤ C)|Z, X, C}]
= E

(
I(C≥ t) exp(β ′

0Z)π(γ ′
0X)[exp{−�0(t) exp(β ′

0Z)}−exp{−�0(C) exp(β ′
0Z)}]

)

and

E{Y(t) exp(β ′
0Z)(1 − δ)g(T̃, �0, θ0)}

= E
[
I(C ≥ t) exp(β ′

0Z)g(C, �0, θ0)E{I(T > C)|Z, X, C}
]

= E
[
I(C ≥ t) exp(β ′

0Z)π(γ ′
0X) exp{−�0(C) exp(β ′

0Z)}
]
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Therefore,

E[Y(t) exp(β ′
0Z){δ + (1 − δ)g(T̃, �0, θ0)}]

= E
[
I(C ≥ t) exp(β ′

0Z)π(γ ′
0X) exp{−�0(t) exp(β ′

0Z)}
]

= E
[
I(C ≥ t) exp(β ′

0Z)g(t, �0, θ0)E{I(T ≥ t|Z, X)}
]

= E{Y(t) exp(β ′
0Z)g(t, �0, θ0)}

Since inf t∈[0,τ ] E{Y(t) exp(β ′
0Z)g(t, �0, θ0)} > 0, by Lemma A.2 of Tsiatis (1981),

we have supt∈(0,τ ] |�̃n(t) − �0(t)| → 0, a.e.
For (i), let f be any non-negative, bounded, continuous function. Then

∫ τ

0
f (t)d�∗(t)

=
∫ τ

0
f (t)d{�∗(t) − �̂nk(t)}

+
∫ τ

0
f (t)

⎡

⎣ 1
nk

nk∑

j=1

Yj(t) exp(β̂ ′
nk

Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ̂nk)}
⎤

⎦
−1

dN̄nk(t)

≤
∫ τ

0
f (t)d{�∗(t) − �̂nk(t)} + M4

∫ τ

0
f (t)

⎧
⎨

⎩
1

nk

nk∑

j=1

Yj(t)

⎫
⎬

⎭

−1

dN̄nk(t)

where N̄nk(t) =∑nk
i=1 Ni(t) and M4 is a positive constant. The existence of such

constant M4 is because

exp(β̂ ′
nk

Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ̂nk)}
≥ exp(−c0)π(γ̂ ′

nk
Xj) exp{−�̂nk(τ ) exp(c0)}

≥ c1 exp(−c0) exp{−c2 exp(c0)}

where c1 and c2 are two positive constants. By the Helly-Bray Lemma (p. 180
of Loeve 1963),

∫ τ

0 f (t)d{�∗(t) − �̂nk(t)} → 0 as k → ∞. Using Lemmas of A.1
and A.2 of Tsiatis (1981), we know that

∫ τ

0
f (t)

⎧
⎨

⎩
1

nk

nk∑

j=1

Yj(t)

⎫
⎬

⎭

−1

dN̄nk(t)

→
∫ τ

0
f (t)[E{Y(t)}]−1E{Y(t) exp(β ′

0Z)g(t, �0, θ0)}d�0(t)

as k → ∞. Since E{Y(t)} is bounded away from zero for all t ∈ [0, τ ], we know
that
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∫ τ

0
f (t)d�∗(t) ≤ M4

∫ τ

0
f (t)[E{Y(t)}]−1E{Y(t) exp(β ′

0Z)g(t, �0, θ0)}d�0(t)

By choosing f appropriately, this inequality implies that �∗ must be continuous
at the continuity points of �0. Since �0 is absolutely continuous, then so is �∗.

For(ii), since

d�̂nk(t)

d�̃nk(t)
=

1
nk

∑nk
j=1 Yj(t) exp(β ′

0Zj){δj + (1 − δj)gj(T̃j, �0, θ0)}
1

nk

∑nk
j=1 Yj(t) exp(β̂ ′

nk
Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ̂nk)}

and we have already shown that

sup
t∈[0,τ ]

∣∣∣∣∣∣
1

nk

nk∑

j=1

Yj(t) exp(β ′
0Zj){δj + (1 − δj)gj(T̃j, �0, θ0)}

−E{Y(t) exp(β ′
0Z)g(t, �0, θ0)}

∣∣∣∣∣∣

converges to 0 as k goes to ∞. Then we need to show

sup
t∈[0,τ ]

∣∣∣∣∣∣
1

nk

nk∑

j=1

Yj(t) exp(β̂ ′
nk

Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ̂nk)}

−E[Y(t) exp(β∗′Z){δ + (1 − δ)g(T̃, �∗, θ∗)}]
∣∣∣∣∣∣

converges to 0 as k goes to ∞. In fact, the term in above supremum norm is
bounded above by

∣∣∣∣∣∣
1

nk

nk∑

j=1

Yj(t) exp(β̂ ′
nk

Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ̂nk)}

− 1
nk

nk∑

j=1

Yj(t) exp(β∗′Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ∗)}
∣∣∣∣∣∣

+
∣∣∣∣∣∣

1
nk

nk∑

j=1

Yj(t) exp(β∗′Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ∗)}

− 1
nk

nk∑

j=1

Yj(t) exp(β∗′Zj){δj + (1 − δj)gj(T̃j, �∗, θ∗)}
∣∣∣∣∣∣
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+
∣∣∣∣∣∣

1
nk

nk∑

j=1

Yj(t) exp(β∗′Zj){δj + (1 − δj)gj(T̃j, �∗, θ∗)}

− E[Y(t) exp(β∗′Z){δ + (1 − δ)g(T̃, �∗, θ∗)}]
∣∣∣∣∣∣

≤ M5||θ̂nk − θ∗||∞ + M6 sup
t∈[0,τ ]

||�̂nk(t) − �∗(t)||

+
∣∣∣∣∣∣

1
nk

nk∑

j=1

Yj(t) exp(β∗′Zj){δj + (1 − δj)gj(T̃j, �∗, θ∗)}

− E[Y(t) exp(β∗′Z){δ + (1 − δ)g(T̃, �∗, θ∗)}]
∣∣∣∣∣∣

where M5, M6 are two positive constants. The first two terms converge to 0 by
the uniform consistency of �̂nk and θ̂nk . The third term needs to be handled
more carefully. As noted by Scharfsten et al. (1998), the space of absolutely,
bounded, increasing functions {�∗(t)} is separable under the supremum norm.
Thus, the space has a countably dense subset. Let {�∗

l }, l ≥ 1, denote this set.
Then we have

sup
t∈[0,τ ]

∣∣∣∣∣∣
1

nk

nk∑

j=1

Yj(t) exp(ξβ
′Zj){δj + (1 − δj)gj(T̃j, �∗

l , ξθ )}

−E[Y(t) exp(ξβ
′Z){δ + (1 − δ)g(T̃, �∗

l , ξθ )}]
∣∣∣∣∣∣

converges to 0 as k goes to ∞, for each rational ξθ = (ξ ′
β , ξ ′

γ )′ and l ≥ 1. The
third term can be bounded above by

∣∣∣∣∣∣
1

nk

nk∑

j=1

Yj(t) exp(β∗′Zj){δj + (1 − δj)gj(T̃j, �∗, θ∗)}

− 1
nk

nk∑

j=1

Yj(t) exp(ξβ
′Zj){δj + (1 − δj)gj(T̃j, �∗, ξθ )}

∣∣∣∣∣∣

+
∣∣∣∣∣∣

1
nk

nk∑

j=1

Yj(t) exp(ξβ
′Zj){δj + (1 − δj)gj(T̃j, �∗, ξθ )}

− 1
nk

nk∑

j=1

Yj(t) exp(ξβ
′Zj){δj + (1 − δj)gj(T̃j, �∗

l , ξθ )}
∣∣∣∣∣∣
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+
∣∣∣∣∣∣

1
nk

nk∑

j=1

Yj(t) exp(ξβ
′Zj){δj + (1 − δj)gj(T̃j, �∗

l , ξθ )}

− E[Y(t) exp(ξβ
′Z){δ + (1 − δ)g(T̃, �∗

l , ξθ )}]
∣∣∣∣∣∣

≤ M7||θ∗ − ξθ ||∞ + M8 sup
t∈[0,τ ]

||�∗(t) − �∗
l (t)||

+
∣∣∣∣∣∣

1
nk

nk∑

j=1

Yj(t) exp(ξβ
′Zj){δj + (1 − δj)gj(T̃j, �∗

l , ξθ )}

− E[Y(t) exp(ξβ
′Z){δ + (1 − δ)g(T̃, �∗

l , ξθ )}]
∣∣∣∣∣∣

where M7, M8 are two positive constants. By appropriate choice of ξ and l, the
right-hand side of the above inequality converges to 0 in supremum norm. So,
(ii) holds.

For(iii), since

∣∣∣∣�̂nk(t) −
∫ t

0
γ (s)d�0(s)

∣∣∣∣

=
∣∣∣∣
∫ t

0

[
1

nk

nk∑

j=1

Yj(s) exp(β̂ ′
nk

Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ̂nk)}
]−1

dN̄nk(s)

−
∫ t

0
γ (s)d�0(s)

∣∣∣∣

=
∣∣∣∣
∫ t

0

[
1

nk

nk∑

j=1

Yj(s) exp(β̂ ′
nk

Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ̂nk)}
]−1

dN̄nk(s)

−
∫ t

0

(
E[Y(s) exp(β∗′Z){δ + (1 − δ)g∗(T̃)}]

)−1
dEN(s)

∣∣∣∣

≤
∣∣∣∣
∫ t

0

{[
1

nk

nk∑

j=1

Yj(s) exp(β̂ ′
nk

Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ̂nk)}
]−1

−
∫ t

0

(
E[Y(s) exp(β∗′Z){δ + (1 − δ)g∗(T̃)}]

)−1
}

dN̄nk(s)

∣∣∣∣

+
∣∣∣∣
∫ t

0

(
E[Y(s) exp(β∗′Z){δ + (1 − δ)g∗(T̃)}]

)−1

d{N̄nk(s) − EN(s)}
∣∣∣∣

≤ sup
t∈[0,τ ]

∣∣∣∣

[
1

nk

nk∑

j=1

Yj(t) exp(β̂ ′
nk

Zj){δj + (1 − δj)gj(T̃j, �̂nk , θ̂nk)}
]−1
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−
(

E[Y(t) exp(β∗′Z){δ + (1 − δ)g∗(T̃)}]
)−1∣∣∣∣

+
∣∣∣∣
∫ t

0

(
E[Y(s) exp(β∗′Z){δ + (1 − δ)g∗(T̃)}]

)−1
d{N̄nk(s) − EN(s)}

∣∣∣∣

the first term was shown to converge to 0 in (ii) and the second term converges
to zero by the Helly-Bray Lemma. In addition, pointwise convergence can be
strengthened to uniform convergence by applying the same monotonicity argu-
ment used in the proof of the Glivenko-Cantelli Theorem (p. 96 of Shorack and
Wellner 1986). 	

Proof of Theorem 2 We first show that (�̂n, θ̂n) converges to (�0, θ0) a.s. To
do this, we need to show the following three things: (i) supn �̂n(τ ) < ∞; (ii)
there exists a convergent subsequence of (�̂n, θ̂n), say (�̂nk , θ̂nk) → (�∗, θ∗) a.s.;
(iii) (�∗, θ∗) = (�0, θ0). The proof of (i) is given in Lemma 1 of the Appendix.
For (ii), since every bounded sequence in Rp+q has a convergent subsequence,
there exists a θ∗ such that θ̂mk → θ∗. By Helly’s theorem (Ash 1972), there
exists a function �∗ and a subsequence {�̂nk} of {�̂mk} such that �̂nk → �∗ for
all t ∈ [0, τ ] at which �∗ is continuous. Therefore, (�̂nk , θ̂nk) must converge to
(�∗, θ∗).

For (iii), we show in Lemma 2 of the Appendix that �∗ is continuous at the
continuity points of �0. And we know that

0 ≤ lnk(�̂nk , θ̂nk) − lnk(�̃nk , θ0)

= 1
nk

nk∑

i=1

∫ τ

0
log{χnk,i(t)}{dNi(t) − Yi(t)gi(t, �̃nk , θ0) exp(β ′

0Zi)d�̃nk(t)}

+ 1
nk

nk∑

i=1

∫ τ

0
[log{χnk,i(t)} − {χnk,i(t) − 1}]Yi(t)gi(t, �̃nk , θ0) exp(β ′

0Zi)d�̃nk(t),

where

χnk,i(t) = ��̂nk(t)gi(�̂nk , θ̂nk) exp(β̂ ′
nk

Zi)

��̃nk(t)gi(�̃nk , θ0) exp(β ′
0Zi)

.

The second term on the right-hand side of the above inequality is less or equal
to zero since for x > 0, log(x) − (x − 1) ≤ 0. Using the results and techniques
of Lemma 2 of the Appendix, the first term can be shown to converge to zero
and the second term converges to

E
(∫ τ

0

[
log

{
g∗(t) exp(β∗′Z)

g0(t) exp(β ′
0Z)

γ (t)
}

−
{

g∗(t) exp(β∗′Z)

g0(t) exp(β ′
0Z)

γ (t) − 1
}]

× Y(t)g0(t) exp(β ′
0Z)d�0(t)

)
, (17)
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where g∗(t) = g(t, �∗, θ∗) and

γ (t) = E[Y(t) exp(β ′
0Z){δ + (1 − δ)g0(T̃)}]

E[Y(t) exp(β∗′Z){δ + (1 − δ)g∗(T̃)}] . (18)

Note that (17) is the negative Kullback-Leibler information, E[l(�∗, θ∗)] −
E[l(�0, θ0)]. Due to the above inequality, the Kullback-Leibler information
must equal zero. Thus, with probability one, we have

∫ τ

0
log{λ∗(t) exp(β∗′Z)g∗(t)}dN(t) −

∫ τ

0
Y(t) exp(β∗′Z)g∗(t)d�∗(t)

=
∫ τ

0
log{λ0(t) exp(β ′

0Z)g0(t)}dN(t) −
∫ τ

0
Y(t) exp(β ′

0Z)g0(t)d�0(t),

where λ∗(t) = d�∗(t)/dt. This equality holds for the following two cases: (i)
Y(τ ) = 1, N(τ ) = 0, and (ii) Y(τ ) = 1, N(t−) = 0, and N(τ ) = 1 for ∀ t ∈ (0, τ ].
The difference between the equalities from these two cases entails that

λ∗(t) exp(β∗′Z)g∗(t) = λ0(t) exp(β ′
0Z)g0(t), ∀ t ∈ (0, τ ].

After integrating form 0 to t on both sides of the above equality, we have

log{S(t, �0, θ0)} = log{S(t, �∗, θ∗)},
which implies

1 − exp{−�0(t) exp(β ′
0z)}

1 − exp{−�∗(t) exp(β∗′z)} = π(γ ∗′X)

π(γ ′
0X)

, ∀ t ∈ (0, τ ].

Since the right-hand side of the above equality is independent of t, we have
that �∗ = �0 and β∗ = β0. This further implies that γ ∗ = γ0. Therefore,
(�̂nk , θ̂nk) must converge to (�0, θ0) a.s. By Helly’s theorem, we know that
(�̂n, θ̂n) must converge to (�0, θ0) a.s. Furthermore, the point-wise convergence
can be strengthened to uniform convergence by applying the same monotonic-
ity argument used in the proof of the Glivenko-Cantelli Theorem (Shorack and
Wellner 1986). 	

Proof of Theorem 3 To prove Theorem 3, we validate each of the four condi-
tions of Theorem 4. First, note that S = S1 + S2, where

S1(ϒ) = E
(∫ τ

0

[
h1(t) − {1 − g(t, ϒ)} exp(β ′Z)

∫ t

0
h1(s)d�(s)

]

×{dN(t) − Y(t)g(t, ϒ) exp(β ′Z)d�(t)}
)

,

S2(ϒ) = E
[∫ τ

0
h′

2W(t, ϒ){dN(t) − Y(t)g(t, ϒ) exp(β ′Z)d�(t)}
]

.
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For ϒ − ϒ0 ∈ l∞(Hm), we need the following bounds on ||ϒ − ϒ0||:

m||θ − θ0||1 ∨ m||� − �0||∞ ≤ ||ϒ − ϒ0|| ≤ m||θ − θ0||1 ∨ 2m||� − �0||∞

Step 1. We want to establish condition 1 for all finite m. To do this, we show
that the class of score function S∗ ≡ {S∗(ϒ0)h : h ∈ Hm} is Donsker, where
S∗(ϒ)h = S�(ϒ)(h1) + h′

2Sθ (ϒ), with

S�(ϒ)(h1) =
∫ τ

0

[
h1(t) − {1 − g(t, ϒ)} exp(β ′Z)

∫ t

0
h1(s)d�(s)

]

×{dN(t) − Y(t)g(t, ϒ) exp(β ′Z)d�(t)}

= δh1(T̃) − {δ + (1 − δ)g(T̃, ϒ)} exp(β ′Z)

∫ T̃

0
h1(t)d�(t),

Sθ (ϒ) =
∫ τ

0
W(t, ϒ)

{
dN(t) − Y(t)g(t, ϒ) exp(β ′Z)d�(t)

}

Conditions 1 and 2 imply that Sθ (ϒ0) is a uniformly bounded function, which
implies that {h′

2Sθ (ϒ0) : h ∈ Rp+q, |h2|1 ≤ m} is Donsker (see Example 2.10.10
of van der Vaart and Wellner 1996). Since the sum of bounded Donsker classes
is Donsker, the class {S�(ϒ0)(h1) : h1 ∈ BV[0, τ ], ||h1||v ≤ m} is Donsker if the
following two classes

F1 = {δh1(T̃) : h1 ∈ BV[0, τ ], ||h1||v ≤ m},

F2 =
{
{δ+(1−δ)g(T̃, ϒ0)} exp(β ′

0Z)

∫ T̃

0
h1(t)d�0(t) : h1 ∈ BV[0, τ ], ||h1||v ≤m

}

are Donsker and uniformly bounded. The class F1 is uniformly bounded and
Donsker since h1 varies over bounded variation functions (see Example 2.5.4 of
van der Vaart and Wellner, 1996). In addition, F2 equals a uniformly bounded

function times the class {∫ T̃
0 h1(t)d�0(t) : h1 ∈ BV[0, τ ], ||h1||v ≤ m}, and this

class is Donsker because �0 is a monotone function (see Example 2.10.27 of
van der Vaart and Wellner 1996). Also F2 is uniformly bounded because h1
varies over bounded variation functions. Thus, we conclude that S∗ is Donsker,
so the first condition holds.
Step 2. To check condition 2, it suffices to show that ||S(ϒ)−S(ϒ0)+ Ṡ(ϒ0)(ϒ −
ϒ0)|| is o(||ϒ − ϒ0)|| as ||ϒ − ϒ0|| goes to 0. To do this, write S(ϒ) linearly in
d(� − �0) and θ − θ0. To be specific,
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S1(ϒ)(h) = (θ − θ0)
′E
(∫ τ

0
W(t, ϒ0)[h1(t) − {1 − g(t, ϒ0)} exp(β ′

0Z)

×
∫ t

0
h1(s)d�0(s)]Y(t)g(t, ϒ0) exp(β ′

0Z)d�0(t)
)

+E
(∫ τ

0
[h1(t) − {1 − g(t, ϒ0)} exp(β ′

0Z)

∫ t

0
h1(s)d�0(s)]

×Y(t)g(t, ϒ0) exp(β ′
0Z)d{�(t) − �0(t)}

)

−E
(∫ τ

0
[h1(t) − {1 − g(t, ϒ0)} exp(β ′

0Z)

∫ t

0
h1(s)d�0(s)]

×{�(t) − �0(t)}Y(t)g(t, ϒ0){1 − g(t, ϒ0)} exp(2β ′
0Z)d�0(t)

)

+ error1(ϒ)(h),

S2(ϒ)(h) = (θ − θ0)
′E
{∫ τ

0
W(t, ϒ0)h′

2W(t, ϒ0)d�0(t)
}

+E
[∫ τ

0
h′

2W(t, ϒ0)Y(t)g(t, ϒ0) exp(β ′
0Z)d{�(t) − �0(t)}

]

−E
[∫ τ

0
h′

2W(t, ϒ0){�(t) − �0(t)}

×Y(t)g(t, ϒ0){1 − g(t, ϒ0)} exp(2β ′
0Z)d�0(t)

]
+ error2(ϒ)(h).

And the error terms can be very easily shown to satisfy

sup
h∈Hm

||errori(ϒ)(h)||
||θ − θ0||1 ∨ ||� − �0||∞ → 0

as ||θ − θ0||1 ∨ ||� − �0||∞ → 0, where i = 1, 2. This follows from the bound-
edness of Z, X, N, Y, θ and �. Furthermore,

||S(ϒ) − S(ϒ0) + Ṡ(ϒ0)(ϒ − ϒ0)||
||ϒ − ϒ0|| ≤ ||error1(ϒ)(h)|| + ||error2(ϒ)(h)||

m||θ − θ0||1 ∨ m||� − �0||∞
Since m||θ − θ0||1 ∨ m||� − �0||∞ → 0 as ||ϒ − ϒ0|| → 0, we conclude that

||S(ϒ) − S(ϒ0) + Ṡ(ϒ0)(ϒ − ϒ0)|| is o(||ϒ − ϒ0)|| as ||ϒ − ϒ0|| goes to 0. Note
that S(ϒ0) = 0, combining S1 and S2 we have

Ṡ(ϒ0)(ϒ̂n − ϒ0)(h) =
∫ τ

0
σ1(h)(t)d(�̂n − �0)(t) + (θ̂n − θ0)

′σ2(h). (19)

Step 3. To check condition 3, we need to show that Ṡ(ϒ0) is continuously invert-
ible. Following Scharfsten et al. (1998), we need to show that σ(h) is invertible
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everywhere due to the discreteness of �̂n. To do this, we first show that σ(h) is
one-to-one map on L2(d�0)

⊗
Rp+q, i.e.

∫ τ

0
σ1(h)(t)h1(t)d�0(t) + h′

2σ2(h) = 0 (20)

implies that h2 = 0 and h1(t) = 0 almost everywhere (d�0). Plug σ1(h)(t) and
σ2(h) into the above equation, we have

0 = E
(∫ τ

0
h1(t)

[
V(t, ϒ0)Y(t)g(t, ϒ0) exp(β ′

0Z)

−
∫ τ

t
V(s, ϒ0)Y(t)g(s, ϒ0){1 − g(s, ϒ0)} exp(2β ′

0Z)d�0(s)
]

d�0(t)
)

+ h′
2E
∫ τ

0

{
W(t, ϒ0)V(t, ϒ0)Y(t)g(t, ϒ0) exp(β ′

0Z)d�0(t)
}

= E
[∫ τ

0
{h1(t) + h′

2W(t, ϒ0)}V(t, ϒ0)Y(t)g(t, ϒ0) exp(β ′
0Z)d�0(t)

]

− E
[∫ τ

0

∫ t

0
h1(s)d�0(s)V(t, ϒ0)Y(t)g(t, ϒ0){1−g(t, ϒ0)} exp(2β ′

0Z)d�0(t)
]

= E
[∫ τ

0
V⊗2(t, ϒ)Y(t)g(t, ϒ0) exp(β ′

0Z)d�0(t)
]

.

Since Y(t)g(t, ϒ0) exp(β ′
0Z) > 0 a.e. on [0, τ ], it implies V(t, ϒ0) = 0 a.e. (d�0).

Therefore, for almost all ω ∈ �,

h1(t) + {1 − g(t, ϒ0)}[h′
22X(ω)

− exp{β ′
0Z(ω)}

∫ t

0
{h′

21Z(ω) + h1(s)}d�0(s)] = −h′
21Z(ω)

a.e. (d�0). From this, h21 must be zero. It further implies that

h1(t)
1 − g(t, ϒ0)

− exp{β ′
0Z(ω)}

∫ t

0
h1(s)d�0(s) = −h′

22X(ω)

a.e. (d�0). Similarly, h22 must be zero. With h2 = (h′
21, h′

22)
′ = 0, we have

h1(t) − {1 − g(t, ϒ0)} exp(β ′
0Z)

∫ t
0 h1(s)d�0(s) = 0 a.e. (d�0). This is a Volterra

integral equation of the first kind. It is easy to show that the solution, h1(·), to
this equation must be zero a.e. (d�0). Now based on the fact (20), we want to
show that σ is one-to-one everywhere, i.e. set σ = 0 and show that h2 = 0 and
h1(t) = 0 for all t on [0, τ ]. If σ1(h)(t) = 0 for all t and σ2(h) = 0, from (20) we
have h2 = 0 and h1(t) = 0 a.e. (d�0). Then
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0 = σ1(h)(t) = E{V(t, ϒ0)Y(t)g(t, ϒ0) exp(β ′
0Z)}

−E
[∫ τ

t
V(s, ϒ0)g(s, ϒ0){1 − g(s, ϒ0)} exp(2β ′

0Z)d�0(s)
]

.

Based on the fact h1(t)d�0(t) = 0 for all t on [0, τ ], we have

σ1(h)(t) = h1(t)E{Y(t)g(t, ϒ0) exp(β ′
0Z)} = 0.

Since E{Y(t)g(t, ϒ0) exp(β ′
0Z)} > 0 for all t on [0, τ ], we conclude that h1(t) = 0

for all t. Therefore, σ is one-to-one everywhere.
Then, we want to show that σ , as a continuous linear operator from H∞ to

H∞, has a continuous inverse. Note that H∞ is a Banach space, if σ is invertible,
then the inverse will be continuous (see p. 149, Luenberger, 1969). To show that
σ is invertible, since σ is one-to-one, we only need to show that it can be written
as the difference of a bounded, linear operator with a bounded inverse and a
compact, linear operator (see Corollary 3.8 and Theorem 3.4 of Kress, 1989).
To do this, we define the following linear operator

�(h)(t) =
(

h1(t)E{Y(t) exp(β ′
0Z)g(t, ϒ0)},

h2E
{∫ τ

0
W⊗2(t, ϒ0)Y(t) exp(β ′

0Z)g(t, ϒ0)d�0(t)
})

This is a bounded linear operator due to the boundedness of Z, X, θ0, Y(t) and
�0(t). In addition, under conditions 1–4, E{Y(t) exp(β ′

0Z)g(t, ϒ0)} > ε on [0, τ ]
for some ε > 0 and W⊗2(t, ϒ0) is positive definite a.e. on [0, τ ], which implies

E
{∫ τ

0
W⊗2(t, ϒ0)Y(t) exp(β ′

0Z)g(t, ϒ0)d�0(t)
}

is a positive definite matrix. Hence, the inverse of �(h)(t) exists, which is given by

�−1(h)(t) =
(

h1(t)E{Y(t) exp(β ′
0Z)g(t, ϒ0)}−1,

h2E
{∫ τ

0
W⊗2(t, ϒ0)Y(t) exp(β ′

0Z)g(t, ϒ0)d�0(t)
}−1)

and it is also a bounded linear operator.
Now we want to show that �(h) − σ(h) is compact. Let {hn} be a sequence

in Hm. Then it only needs to show that there exists a convergent subsequence
of �(hn) − σ(hn). Since h1n is of bounded variation, we can write h1n as the
difference of increasing functions (see Lemma 2.3.3 of Ash 1972). In addition,
both of these increasing functions are bounded in absolute value by 2m.This
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implies that there exists a pointwise convergent subsequence according to Hel-
ly’s theorem. Let {hnk} be the convergent subsequence with limit h∗. We must
prove that �(hnk) − σ(hnk) converges to �(h∗) − σ(h∗) in ||h||H norm. To do
this, note that �(h) − σ(h) can be written as

(
E
([{

1−g(t, ϒ0)

}
exp(β ′

0Z)

∫ t

0
h1(s)d�0(s)−h′

2W(t, ϒ0)

]
Y(t)g(t, ϒ0) exp(β ′

0Z)

)

+E
[ ∫ τ

t
V(s, ϒ0)Y(s)g(s, ϒ0){1 − g(s, ϒ0)} exp(2β ′

0Z)d�0(s)
]

,

−E
(∫ τ

0
W(t, ϒ0)

[
h1(t) − {1 − g(t, ϒ0)} exp(β ′

0Z)

∫ t

0
h1(s)d�0(s)

]

×Y(t)g(t, ϒ0) exp(β ′
0Z)d�0(t)

))

Therefore,

||�(hnk) − σ(hnk) − �(h∗) + σ(h∗)||H
≤
∣∣∣
∣∣∣E
(
[{1 − g(t, ϒ0)} exp(β ′

0Z)

∫ t

0
(h1nk − h∗

1)(s)d�0(s)

−(h2nk − h∗
2)

′W(t, ϒ0)]Y(t)g(t, ϒ0) exp(β ′
0Z)
)

+E
(∫ τ

0
[(h1nk − h∗

1)(s) − {1 − g(s, ϒ0)} exp(β ′
0Z)

∫ s

0
(h1nk − h∗

1)(u)d�0(u)

+(h2nk − h∗
2)

′W(s, ϒ0)]Y(s)g(s, ϒ0){1 − g(s, ϒ0)} exp(2β ′
0Z)d�0(s)

)∣∣∣
∣∣∣
H

+
∣∣∣
∣∣∣E
(∫ τ

0
W(t, ϒ0)[(h1nk − h∗

1)(t) − {1 − g(t, ϒ0)} exp(β ′
0Z)

×
∫ t

0
(h1nk − h∗

1)(s)d�0(s)]Y(t)g(t, ϒ0) exp(β ′
0Z)d�0(t)

)∣∣∣
∣∣∣
v

Due to the boundedness of Z, X, θ0, Y(t) and �0(t) and the fact that 0 <

g(t, ϒ0) < 1 on [0, τ ], the right-hand side of the above inequality is bounded
above by

M1||h2nk − h∗
2||1+

∫ τ

0
{M2|(h1nk − h∗

1)(t)| + M3

∫ t

0
|(h1nk − h∗

1)(s)|d�0(s)}d�0(t)

where M1, M2 and M3 are some positive constants. Then applying the dom-
inated convergence theorem, we can show that this sum converges to zero.
Hence, �(h) − σ(h) is a compact linear operator from Hm onto its range for
all finite m. Now following the similar steps (14) and (15) of Scharfsten et al.
(1998) , we can show that Ṡ(ϒ0) is continuously invertible on its range.
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Step 4. To check condition 4, it suffices to show (by Lemma 1 of van der Vaart
1995) that F = {S∗(ϒ)(h) − S∗(ϒ0)(h) : h ∈ Hm, ||ϒ − ϒ0|| < ε} is Donsker
for some ε > 0 and suph∈Hm

E[{S∗(ϒ)(h) − S∗(ϒ0)(h)}2] converges to 0 as ϒ

converges to ϒ0. We can write F = F3 + F4, where

F3 =
{

h′
2

{∫ τ

0
W(t, ϒ)dM(t, ϒ) −

∫ τ

0
W(t, ϒ0)dM(t, ϒ0)

}
: h2 ∈Rp+q, ||h2||1 ≤m,

θ ∈ [−ε, ε]p+q, � nonnegative, increasing with �(τ) ≤ 2�0(τ )

}

F4 =
{
{δ + (1 − δ)g(T̃, ϒ)} exp(β ′Z)

∫ T̃

0
h1(t)d�(t)

−{δ + (1 − δ)g(T̃, ϒ)} exp(β ′Z)

∫ T̃

0
h1(t)d�(t) : h1 ∈ BV[0, τ ], ||h1||v ≤m,

θ ∈ [−ε, ε]p+q, � nonnegative, increasing with �(τ) ≤ 2�0(τ )

}

We want to show that F3 and F4 are Donsker with uniformly bounded enve-
lopes. Using the result from empirical process theory, that classes of smooth
functions are Donsker (see Theorem 2.7.1 of van der Vaart and Wellner 1996),
we know that the following two classes

{
δW(t, ϒ) : θ ∈ [−ε, ε]p+q, � nonnegative, increasing with �(τ) ≤ 2�0(τ )

}

and

{∫ τ

0
W(t, ϒ)Y(t)g(t, ϒ) exp(β ′Z)d�(t) : θ ∈ [−ε, ε]p+q,

� nonnegative, increasing with �(τ) ≤ 2�0(τ )

}

are Donsker. In addition, both classes are uniformly bounded due to the bound-
edness of Z, X, θ , Y(t) and �(t). Hence, according to the result, that classes of
Lipschitz transformations of Donsker classes with integrable envelope func-
tions are Donsker (see Theorem 2.10.6 of van der Vaart and Wellner (1996), F3
is Donsker with uniformly bounded envelope.

Theorem 2.10.6 of van der Vaart and Wellner (1996) also implies that the
class BVM of all real-valued functions on [0, τ ], which are uniformly bounded
by a constant M and are of variation bounded by M, is Donsker. Since

∣∣∣∣∣

∣∣∣∣∣

∫ T̃

0
h1(t)d�(t)

∣∣∣∣∣

∣∣∣∣∣
v

≤ ||h1||∞ × ||�||v < ∞,
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the class

{∫ T̃

0
h1(t)d�(t) : h1 ∈ BV[0, τ ], ||h1||v ≤ m,

� nonnegative, increasing with �(τ) ≤ 2�0(τ )

}

is Donsker and uniformly bounded. In addition, since {δ + (1 − δ)g(T̃, ϒ)}
exp(β ′Z) is uniformly bounded, F4 is also Donsker with uniformly bounded
envelope (see Example 2.10.8 of van der Vaart and Wellner 1996). Thus, we
have shown that all the four conditions in Theorem 4 hold. Then, we know that
for all finite m

−Ṡ(ϒ0)
√

n(ϒ̂n − ϒ0)(h) = −
∫ τ

0
σ1(h)(t)d(

√
n�̂n − �0)(t) − √

n(θ̂n − θ0)
′σ2(h)

= √
n{S(ϒ̂n) − S(ϒ0)} + oP∗(1)

= √
n{Sn(ϒ̂n) − Sn(ϒ0)} + oP∗(1)

= −√
n{Sn(ϒ0) − S(ϒ0)} + oP∗(1)

uniformly in h ∈ Hm, where the last equality in the above equation holds since
Sn(ϒ̂n) = S(ϒ0) = 0. Hence,

√
n(ϒ̂n −ϒ0) ⇒ Ṡ(ϒ0)

−1G∗. Following the similar
steps of Scharfsten et al. (1998), we can show that Ṡ(ϒ0)

−1G∗ = G, where G is
defined in Theorem 3. 	


Proof of Theorem 5 Since σ is continuously invertible on its range, σ̂ is con-
tinuously invertible on a set of probability going to 1. According to Scharfsten
et al. (1998), it suffices to show that sup||h||H=1 ||σ̂ (h) − σ(h)||H converges in
probability to 0.

The most difficult part in the proof is to deal with the terms in σ̂ (h) − σ(h)

involving h1. For example, one such term can be written as

1
n

n∑

i=1

∫ τ

0

[
h1(t) − {1 − gi(t, ϒ̂n)} exp(β̂ ′

nZi)

∫ t

0
h1(s)d�̂n(s)

]

×Wi(t, ϒ̂n)Yi(t)gi(t, ϒ̂n) exp(β̂ ′
nZi)d�̂n(t)

−E
(∫ τ

0

[
h1(t) − {1 − g(t, ϒ0)} exp(β ′

0Z)

∫ t

0
h1(s)d�0(s)

]

×W(t, ϒ0)Yi(t)g(t, ϒ0) exp(β ′
0Z)d�0(t)

)
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The variation of this term can be bounded by the variation of

1
n

n∑

i=1

(∫ τ

0

[
h1(t) − {1 − gi(t, ϒ̂n)} exp(β̂ ′

nZi)

∫ t

0
h1(s)d�̂n(s)

]

×Wi(t, ϒ̂n)Yi(t)gi(t, ϒ̂n) exp(β̂ ′
nZi)d�̂n(t)

−
∫ τ

0

[
h1(t) − {1 − gi(t, ϒ0)} exp(β ′

0Z)

∫ t

0
h1(s)d�0(s)

]

×Wi(t, ϒ0)Yi(t)gi(t, ϒ0) exp(β ′
0Z)d�0(t)

)

plus the variation of

1
n

n∑

i=1

{∫ τ

0

[
h1(t) − {1 − gi(t, ϒ0)} exp(β ′

0Z)

∫ t

0
h1(s)d�0(s)

]

×Wi(t, ϒ0)Yi(t)gi(t, ϒ0) exp(β ′
0Z)d�0(t)

−E
(∫ τ

0

[
h1(t) − {1 − g(t, ϒ0)} exp(β ′

0Z)

∫ t

0
h1(s)d�0(s)

]

×W(t, ϒ0)Yi(t)g(t, ϒ0) exp(β ′
0Z)d�0(t)

)}

Uniform consistency of ϒ̂ implies the first term converges to zero. The variation
of the second term is bounded by

∫ τ

0

∣∣∣∣

∣∣∣∣
1
n

n∑

i=1

Wi(t, ϒ0)Yi(t)gi(t, ϒ0) exp(β ′
0Z)

−E{W(t, ϒ0)Yi(t)g(t, ϒ0) exp(β ′
0Z)}

∣∣∣∣

∣∣∣∣
v
d�0(t) × ||h1||v

+
∫ τ

0

∣∣∣∣

∣∣∣∣
1
n

n∑

i=1

Wi(t, ϒ0)Yi(t)gi(t, ϒ0){1 − gi(t, ϒ0)} exp(2β ′
0Z)

−E[W(t, ϒ0)Yi(t)g(t, ϒ0){1 − g(t, ϒ0)} exp(2β ′
0Z)]

∣∣∣∣

∣∣∣∣
v
d�0(t) × ||h1||v�0(τ )

The integrand converges to zero by the strong law of large numbers. Thus the
term converges to zero by the dominated convergence theorem, since ||h1||v ≤ 1
and �0(τ ) is finite. All other terms in σ̂ (h) − σ(h) can be handled similarly. The
details of the proof is omitted here. 	
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