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Abstract In this paper, we propose two bootstrap-based model checking tests
for a parametric linear model when data are affected by length-bias. These tests
are based on the measure of the discrepancy between nonparametric and para-
metric estimators for the regression function when the data are drawn under a
length-biased mechanism. We consider two different discrepancy measures: the
supremum and the integral of the quadratic difference between the parametric
and nonparametric estimators.

Keywords Bootstrap · Length-biased data · Model checking · Lack-of-fit
test · Local linear estimator

1 Introduction

Length-biased data appear naturally in many fields of research where direct
observation of the random phenomena of interest is not possible or is difficult.
For example, when studying wildlife populations, larger individuals or units are
more likely to be sighted, and hence they are more likely to be registered in
a sample. In some other situations, as is common in econometric and epide-
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miological contexts, when time is involved in a study, length-biased sampling
is related to the underlying renewal process driving the phenomena. We can
clearly see that, in those circumstances, observations cannot always be recorded
in such a way that they have an equal chance of appearing in the sample; rather,
the probability of an individual or an event being selected is proportional to
its size or duration. In Patil and Rao (1978), Patil et al. (1988), Rao (1997) and
Cristóbal and Alcalá (2001) we can find a wide range of examples illustrating
this and other sampling biases. It is worth mentioning that the sampling bias
in the response variable not only causes a distortion in the determination of
the true regression function, but also affects the variance estimation, see Vardi
(1982).

Whereas the problem of linear regression under usual data observation
assumptions has been extensively studied in the literature, the development
of methods to cope with biased data has mainly been carried out in the last half
century, and much of the theory is devoted to censored or truncated data. While
censored and truncated data are extreme cases of biased observations (some
individuals are unobservable or partially observable), most of the problems
they exhibit are shared by other kinds of biased data, see for example Que-
senberry and Jewell (1986) and the references therein. Although length-bias is
not an extreme situation, it should be pointed out that, as happens with trun-
cation and censoring, standard parametric estimation methods are not suitable,
or cannot properly be applied. In this regard, both the parametric and nonpara-
metric methods we propose in order to estimate the regression function (i.e.:
least squares and local least squares estimators) are based on compensating the
effect that the length-bias produces in the observations.

Smoothing methods have attracted a lot of attention during the last few
decades. While computer development has made possible the use of computer-
intensive methods and smoothing methods, what really makes these techniques
appealing is their ability to highlight data structure almost without any other
assumption being made about the data (see, for example, Fan and Gijbels 1996).
In particular, the lack of any assumption about the functional form makes local
polynomial estimates suitable for overcoming the problem of lack of specifica-
tion in the parametric model (see Kozek 1990; Härdle and Mammen 1993; Hart
1997) and, therefore, they avoid the drawbacks caused by the poor performance
of the power of the F-test.

When observed data are affected by lengthéd-bias, the problem of variance
misestimation in a linear model can be even worse. A possible solution to this
well known drawback consists of comparing both residuals, that is to say, the
parametric regression residuals and the local polynomial regression residuals,
in order to keep track of the deviation under different alternative hypotheses.
This approach has been suggested in the works of Cox et al. (1988), Kozek
(1990), Härdle and Mammen (1993) and Alcalá et al. (1999) amongst others,
and is the one we adopt here. As our data are affected by length-bias, we will
follow the approaches proposed by Cristóbal and Alcalá (2000) or Wu (2000)
to provide the appropriate estimators, while the distributional behavior of our
statistics will be based on the wild bootstrap technique, see Wu (1986) and
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Härdle and Mammen (1993). As is mentioned in Delgado and González Man-
teiga (2001), bootstrap methodology may help to overcome difficulties in the
complex asymptotic analysis and could lead to an improvement on the asymp-
totic convergence rates, see Hall (1991).

In this work, the main issue is how to obtain a view of the distributional
behavior of both parametric and local polynomial estimators, see Bickel and
Freedman (1981) and Freedman (1981). In the particular case of the regres-
sion problem, it is crucial that the bootstrap procedure resembles the structure
exhibited by the residuals, see Wu (1986). The approach we follow in order to
validate the proposed tests consists of proving that the statistics used to carry
out these tests and their bootstrap counterparts are based on some gaussian
process whose stochastic behavior is the same, and hence leading to statistics
with the same asymptotic distribution.

Section 2 of this paper introduces the linear models and the assumptions
required. Section 3 is devoted to the properties of the proposed estimators and
statistics, in particular to their strong uniform representation in terms of an
appropriate gaussian process. In Sect. 4 we derive the bootstrap tests proving
their consistency. Finally, in Sect. 5 we present a simulation study of the behavior
of these tests.

2 The model

We assume throughout the paper that (X, Y) is a two-dimensional random
variable with distribution function F and density function fXY (x, y), such that
Y > C > 0 and X ∈ [0, 1] with probability 1. The regression function m (x) is
then given by:

m (x) = E [Y|X = x].

In some situations, m (x) can be supposed to be a linear combination of given
functions gj:

m (x) = g (x)Tβββ =
k∑

j=1

βjgj (x), (1)

where βββ is the vector of linear combination coefficients (β1, . . . , βk) ∈ �, a
compact in Rk, and g (x) = (g1 (x), . . . , gk (x)), a column vector of functions. In
this way, we can define a class of linear models M0 as

M0 =
⎧
⎨

⎩

k∑

j=1

βjgj (x) : (β1, . . . , βk) ∈ � ⊂ Rk

⎫
⎬

⎭ . (2)

Hence, if for example gj (x) = xj−1, the class of the polynomial regressions of
degree k−1 is considered. Thus depending on gj, we can deal with a broad class
of different parametric functions. Therefore, provided that gj for j = 1, . . . , k
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are suitable for representing m (i.e. m ∈ M0), we have to determine the values
βββ0 such that m (x) = ∑k

j=1 β0jgj (x).
The problem that will be addressed is how to test the adequacy of such a

model when the observations are affected by length-bias. More precisely, we
will address the following hypothesis test:

H0 : m ∈ M0 vs. H1 : m /∈ M0 (3)

for a given M0, when the data are affected by length-bias. This will be achieved
by means of two different discrepancy measures: the integrated squared differ-
ence, a kind of weighted L2 norm, and the supremum norm, a kind of L∞
distance.

While m (x) depends on the random phenomena driven by (X, Y), as a con-
sequence of the length-bias sampling we cannot observe this variable directly
and, therefore, our sample (x1, y1), . . . , (xn, yn) is an i.i.d sample from a random
variable with distribution Fw whose density is given by:

dFw (x, y) = f w
XY (x, y) dxdy = y fXY (x, y)

µY
dxdy, (4)

where µY = ∫
yfXY (x, y)dxdy. This is precisely the meaning of length-bias in

the response, namely, the probability of the observation (x, y) is proportional to
y. Let us denote by Ew [·] and Varw [·] the mean and variance respectively for
the observed data, i.e.: computed with density f w

XY , in order to distinguish them
from E [·] and Var [·], which are defined from the unobserved random variable
(X, Y) (i.e.: computed with fXY). Therefore:

Ew [Y|X = x] = m (x)(1 + c2 (x)),

and as c (x) is the conditional coefficient of variation, a direct application of
the standard estimation techniques will lead to inconsistent estimators. Note
also that f w

X (x), the X marginal density for the biased distribution, is precisely
µ−1

Y m (x)fX (x) because of the length-bias.
One of the most commonly used estimators in the literature to obtain a value

for βββ in (1) is the least square method:

β̃ββn = arg min
βββ

n∑

i=1

wi

(
yi − g (xi)

Tβββ
)2

(5)

where wi are suitable weights. Under appropriate assumptions for M0 and
(X, Y), there exists a β̂ββn such that β̂ββn = βββ0 + o(1) almost surely; thus, β̂ββn is
strongly consistent for βββ0. Therefore:

m̃n (x) = g (x)Tβ̂ββn
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is a strongly consistent estimator for m (x) if M0 is the appropriate model (i.e.
m ∈ M0). Note that when the model is misspecified, g (x)Tβ̂ββn does not agree
with m (x) in (1), and then m̃n (x) converges to m̃ (x) = g (x)Tβββ �= m (x), that is
to say, the closest function to m within the class M0 in the least squares sense.

In order to carry out the least squares estimator for the regression function,
we require:

B1 The functions gj, i = 1, . . . , k are twice continuous differentiable in (0, 1).
B2 The Matrix

L = Ew
[µY

Y
g (X)g (X)T

]

is not singular.

The local polynomial estimator of order p for m (x) is given by m̂n (x) = α̂0,
where α̂0, . . . , α̂p are the solutions to the following weighted least square prob-
lem:

min
α0,...,αp

n∑

i=1

wi
(
yi − α0 − · · · − αp(xi − x)p)2Kh (xi − x), (6)

where Kh (u) is h−1K
(
u h−1) for a given kernel function K and bandwidth h.

Note in this expression the dependence of α0, . . . , αp on x. The local polynomial
estimator uses the weight Kh (xi − x) in every x to estimate the value m (x).
Therefore, using a suitable function K we are penalizing observations with xi
distant from x and, thus, considering the local behavior. As a consequence, mis-
specification in the model does not affect this estimator, which is adapted to the
functional form of m because of the local estimation. So, a comparison between
m̃n and m̂n can reveal any possible misspecification in the model. More pre-
cisely, if the difference between m̃n and m̂n is not statistically significant, then
we can accept that the regression function m belongs to M0; in other words,
the class of functions M0 is suitable for representing m.

As in the parametric case, we will require some additional assumptions in
order properly to carry out the local linear estimation (p = 1):

A1 m (x), fX (x) and vw (x) are twice continuously differentiable in (0, 1) and
there exists a constant C such that 0 < C < fX (x), vw (x) in [0, 1], where

vw (x) = Ew

[(
Y − m (X)

Y

)2∣∣∣X = x

]

L1 The kernel K is an even function with support [−a, a], which is twice con-
tinuously differentiable in the interior of the support, decreasing in [0, a]
with K (a) = 0, and such that

∫
K (u) du = 1.

L2 The bandwidth hn used in the local linear estimation is an O
(
n−1/5) quan-

tity.
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We also denote
∫

ujK (u) du by µj, and
∫

K(j−1) (x − u)K (u) du by K(j) (x),
where K(1) = K, while δnhn stands for

√
log n/(nhn).

Although it is common to use a quadratic discrepancy measure to perform
model checking, it is also sometimes useful, or even desirable, to consider
another measure based on the supremum norm. Note the different qualitative
behavior of these measurements: local differences determine the supremum
distance behavior, while quadratic distance is a global measurement. In the
following sections, we will derive the asymptotic distribution for these two dis-
crepancy measures when observations are length-biased. Therefore, we will be
able to use the following statistics

K∞
n = sup

x∈[0,1]

∣∣∣µ−1
Y

√
nhnfX (x)

(
m̂n (x) − m̃n (x)

)∣∣∣,

W2
n = µ−2

Y

∫

[0,1]
nhnfX (x)2(m̂n (x) − m̃n (x)

)2 dx,

to perform the test given in (3), where nhnfX (x)2µ−2
Y will be estimated from

the remark following Proposition 3.
In the next section, we will derive the statistics we use to handle the length-

bias in data when using both the least square estimator over the class M0 and
the local polynomial estimator. We will also study their main properties from
the point of view of our purposes: the consistency and the strong uniform repre-
sentation in terms of appropriate gaussian processes that will characterize their
stochastic behaviour. Thereafter, we will derive the bootstrap tests proving their
consistency.

3 Supremum and quadratic statistics

As can be seen from Eq. (4), the reciprocal of the responses can be used to
compensate the length–bias, see Cristóbal and Alcalá (2000). Hence, we can
use the reciprocal of each observation as a weight in (5), obtaining the follow-
ing optimization problem:

β̃ββn = arg min
βββ

n∑

i=1

1
yi

(
yi − g (xi)

Tβββ
)2

, (7)

from which we obtain:

β̃ββn = (GTBG)−1 GTBY,

where Y is the column vector with observations yi, G is a n × k matrix with
entries gj (xi), and B is given by diag(y−1

1 , . . . , y−1
n ). Besides the fact that the

reciprocal of the responses compensates the effect of length–bias present in
the data, it is worth mentioning that the nonparametric maximum likelihood
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estimator of the distribution function F under length–biased observations is
proportional to 1/yi at every given observation (xi, yi), see Cox (1969) and
Vardi (1982). Under the assumptions made in the previous section, it can be
proved that this estimator is strongly consistent.

Proposition 1 If assumptions B1 and B2 are fulfilled and if the regression func-
tion m belongs to the class of functions M0, then β̃ββn is a strongly consistent
estimator of βββ0, and, therefore:

m̃n (x) = g (x)Tβ̃ββn = m (x) + O

(√
log log n

n

)

uniformly in [0, 1] and almost surely.

It is interesting to note that this last statement means that there exists a
positive constant C, such that:

lim sup
n→∞

√
n

log log n
sup

x∈[0,1]

∣∣m̃n (x) − m (x)
∣∣ ≤ C a.s.

That is to say, with probability one, the supremum on [0, 1] of the parametric
error process m̃n (x) − m (x) decreases to zero as fast as C

√
log log n/n. It is

also worth mentioning that from the point of view of the test we are considering
this is precisely the important point. As we will see, this convergence rate to
zero is faster than the rate of the local linear error process

(
m̂n (x) − m (x)

)
.

In this way, we are able to use the stochastic behavior of the local linear error
process to address the stochastic behavior of the difference between the least
square estimator and the local linear estimator.

In the case of the local linear estimator, the use of the reciprocal of the re-
sponses to compensate the length–bias in Eq. (6) leads to the following weighted
least squares problem:

min
β0,β1

n∑

i=1

1
yi

(
yi − α0 − α1(xi − x)

)2Kh (xi − x)

The solution for α0 in this estimation equation for every x can be written in the
following form

m̂n (x) = α̂0 =
n∑

i=1

ww
ihn

(x)
∑n

i=1 ww
ihn

(x)
yi (8)

where

ww
ih (x) = 1

yi

(
sw

2 (x; h)K
(

xi − x
h

)
− sw

1 (x; h)K
(

xi − x
h

)(
xi − x

h

))
,
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and where

sw
j (x; h) = 1

nh

n∑

i=1

1
yi

K
(

xi − x
h

)(
xi − x

h

)j

.

While in the parametric case we were only concerned with the strong uniform
consistency, in the case of the nonparametric estimator we are mainly interested
in its stochastic behavior. In this regard, and from our point of view, the strong
and uniform representation of the local linear error process by means of a
suitable sequence of gaussian processes will be an invaluable tool. In order to
achieve the desired strong uniform approximation, we recall from Cristóbal
et al. (2004) that under our assumptions:

m̂n (x) = m (x) + h2
n

2
m′′ (x) + µY ew

0 (x; hn)

fX (x)
+ O

(
hnδnhn

)
(9)

uniformly in [0, 1] and almost surely, where

ew
j (x; hn) = 1

nhn

n∑

i=1

(
yi − m(xi)

yi

)
K
(

xi − x
hn

)(
xi − x

hn

)j

.

As we can see, the process ew
j (x; hn) comprises the main stochastic features

of the nonparametric error, and can be strongly and uniformly represented by
a sequence of gaussian processes of known covariance function. This, together
with the fact that ew

j (x; hn) is an O
(
δnhn

)
quantity uniformly in [0, 1] and almost

surely, leads not only to the strong uniform consistency of the nonparametric
estimator, but also to the strong uniform approximation of the nonparamet-
ric error process by means of a suitable sequence of known gaussian processes.
Therefore, in this way we have completely characterized the stochastic behavior
of the nonparametric estimator. Note also that Eq. (9) shows that the local lin-
ear estimator in this framework where data are length–biased shares the main
properties of the ordinary local linear estimator with respect to the asymptotic
rate of convergence of both the bias and variance terms. In this regard, it should
be mentioned that, with the corresponding changes in the variance asymptotic
expression, MSE and MISE bandwidth selectors are obtained in the same way,
see Cristóbal and Alcalá (2000), while a cross–validation bandwidth selector is
also proposed in Wu (2000).

Theorem 1 If assumptions L1, L2, A1 are satisfied, then

m̂n (x) = m (x) + O
(

h2
n + δnhn

)
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uniformly in [0, 1] and almost surely. Moreover, we have the following strong
uniform approximation:

m̂n (x) = m (x) + µY√
nhnfX (x)

Zw
n (x) + O

(
h2

n + δ2
nhn

+ hnδnhn

)

+ o

(
log2 n

nhn

)

uniformly in [0, 1] and almost surely, where Zw
n (x) is a sequence of second-order

gaussian processes with null expectation and covariance function given by:

Cov
[
Zw

n (s), Zw
n (t)

] = Ew

[
1

hn
K
(

s − X
hn

)
K
(

t − X
hn

)(
Y − m (X)

Y

)2
]

.

As
(
m̃n (x) − m (x)

)
decreases to zero faster than

(
m̂n (x) − m (x)

)
, because√

log log n/n = o
(
h2

n + δnhn

)
, we can use the stochastic behavior of this last

process to obtain that of the difference between the parametric and local linear
estimators defining our test statistics. As a consequence, from these expressions,
it is now possible to derive the distributions of K∞

n and W2
n.

Theorem 2 Under the assumptions made in Proposition 1 and Theorem 1, if H0
is true, then:

K∞
n = sup

x∈[0,1]

∣∣Zw
n (x)

∣∣ + O
(√

hn log log n
)

,

W2
n =

∫

[0,1]
Zw

n (x)
2 dx + O

(√
hn log n log log n

)
,

almost surely.

Here, it is worth mentioning that although these results are useful for obtain-
ing asymptotics, they suffer from a poor convergence rate. Because of such a
slow convergence, and because we have to work with finite samples, the boot-
strap can help us to avoid such a poor performance. In the next section, we
present a bootstrap scheme that will make it possible to use the bootstrap in
this setting, where data are length–biased in the response.

The asymptotic distribution for the supremum statistic K∞
n can be addressed

in the same way as in Cristóbal et al. (2004), where confidence bands for the
regression function in this setting are given. In the case of the quadratic statistic
W2

n, it is possible to use the results in de Jong (1987) in a similar manner to
Härdle and Mammen (1993).
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4 Bootstrap statistics

In the previous section, we have presented several tools that allow us to per-
form testing hypotheses using two different criteria. While these tools enable
us to obtain asymptotic distributions for both statistics, and to prove the con-
sistency of the testing procedure, they suffer, as has been earlier mentioned,
from a very poor convergence rate. In the particular case of the statistic based
on the supremum, it is well known that the convergence rate is too slow (see,
for example, Leadbetter et al. 1983). In this regard, as is shown in Hall (1991)
in the context of local density estimation, the bootstrap may help to overcome
these difficulties.

As the subject of our study is data affected by length–bias, where the obser-
vations do not come directly from the random phenomena driven by F, but
from the random variable with distribution Fw, the bootstrap works by mim-
icking the way data behaves, and this imposes new difficulties when trying to
implement bootstrap ideas. We will show that for the estimators proposed in
the previous section we can use a bootstrap scheme that is similar to the one
used in the case of ordinary unbiased data.

Note first that our main interest lies in the distributional behavior of the
statistics K∞

n and W2
n. Moreover, as can be seen in the previous section, the sto-

chastic aspects of these quantities are determined by the compensated residuals
of the nonparametric regression, see (9). Thus, to mimic the random behavior
of K∞

n and W2
n, we should be able to model the stochastic behavior of these

compensated residuals.
To this end, let us consider the regression function estimators defined in

Sect. 3, namely m̂n (x) and m̃n (x), both adapted to length–biased data and,
further, let ε̂i be the local linear residuals:

ε̂i = yi − m̂n (xi) i = 1, . . . , n. (10)

The bootstrap sample is defined in the following manner:

x∗
i = xi; y∗

i = m̃n
(
x∗

i
) + ε̂∗

i ; ε̂∗
i = ε̂i γi i = 1, . . . , n; (11)

where γi, the wild bootstrap random variable, see Eq. (17) in the appendix, is
independent of ε̂i and can take only two values, having null expectation, and
variance and third moment equal to 1; see, for example Härdle and Mammen
(1993) and the references therein. It is not difficult to see that γi changes the sign
of the local linear residuals ε̂i randomly, making minor changes in their absolute
value. However, it does not change its main stochastic properties, namely the
first, second and third moments. In this way, and because the nonparametric
estimator is a consistent estimator for the regression function, it is clear how
this bootstrap sample mimics the stochastic behavior of the real sample.

In addition to all these considerations, and from a theoretical perspective, it
is also interesting to point out that the use of the bootstrap random variable γi
under these conditions makes the bootstrap sample lie in a probability space
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that enlarges the probability space where the given sample lies. Hence, we can
think of both samples as if they were in this enlarged probability space.

The bootstrap counterpart of β̃ββn is given by the following expression:

β̃ββ
∗
n = (GTBG)−1 GTBY∗, (12)

where Y∗ is a column vector with y∗
i entries and therefore m̃∗

n (x) = g (x)Tβ̃ββ
∗
n. It

is worth noting that, in this case, and as a consequence of the expectation of ε̂∗
i

being null, it is sure that m̃n (x) belongs to the class of functions M0. Moreover,
the bootstrap counterpart of m̂n (x) is given by

m̂∗
n (x) =

n∑

i=1

ww
ihn

(x)
∑n

i=1 ww
ihn

(x)
y∗

i (13)

where, as a consequence of x∗
i = xi, we can use the weights ww

ihn
(x) that were

defined in (8) to compensate the effect of the length–bias by means of the
reciprocal. Once the bootstrap scheme and the bootstrap estimators have been
defined, we can plug both into the definition of K∞

n and W2
n, obtaining, in this

way, a bootstrap observation of the test statistics by means of

K∞∗
n = sup

x∈[0,1]

∣∣∣µ−1
Y

√
nhnfX (x)

(
m̂∗

n (x) − m̃∗
n (x)

)∣∣∣,

W2∗
n = µ−2

Y

∫

[0,1]
nhnfX (x)2(m̂∗

n (x) − m̃∗
n (x)

)2 dx.

Note that, because x∗
i = xi, we estimate nhnfX (x)2µ−2

Y in the same way as in
the non-bootstrap case, see the remark following Proposition 3.

Using these statistics, we can perform the proposed tests in the previous
sections with the aid of the bootstrap distribution for them. Let us denote by
K∞∗

n(1−α)
and W2∗

n(1−α)
the K∞∗

n and W2∗
n bootstrap (1 − α)-quantile, respectively.

Thus, in order to test the adequacy of a model for the regression function using
the supremum norm, we should reject H0 at a given confidence level 1 − α if

K∞
n > K∞∗

n(1−α).

If we use the integrated squared error, then we should reject H0 at a given
confidence level 1 − α when

W2
n > W2∗

n(1−α).

The consistency of this procedure follows from the results presented below,
which prove that the assertions made in the previous section for m̂n (x) and
m̃n (x) are also valid for the bootstrap estimators m̂∗

n (x) and m̃∗
n (x). I should

be recalled that, in this case, as we have chosen the bootstrap response with
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mean value m̃n (x), the regression function we are estimating is simply m̃n (x),
the closest function in M0 to the true regression function of data m (x). Fur-
thermore, note that, in any event, as both bootstrap estimators are estimating
something that belongs to the class M0, this bootstrap procedure works under
the null and alternative hypotheses, just as in the case of ordinary samples; see
Härdle and Mammen (1993).

Proposition 2 If assumptions B1 and B2 are fulfilled, then, the estimator β̃ββ
∗
n is a

strongly consistent estimator of β̃ββn, therefore:

m̃∗
n (x) = g (x)Tβ̃ββ

∗
n = m̃n (x) + O

(√
log log n

n

)

uniformly in [0, 1] and almost surely.

The consistency of the bootstrap nonparametric estimator is proved in the
next result, showing that, as happened in the asymptotic case, the bootstrap
local linear error process

(
m̂∗

n (x) − m̃n (x)
)

decreases to 0 at a slower rate than
the bootstrap parametric error process

(
m̃∗

n (x) − m̃n (x)
)
. However, the most

important fact from our point of view is that the bootstrap local linear error
process can be uniformly approximated by a suitable sequence of gaussian pro-
cesses, whose asymptotic stochastic properties are the same as in the sequence
of processes Zw

n (x).

Theorem 3 If assumptions L1, L2, A1, and B1 are fulfilled, then

m̂∗
n (x) = m̃n (x) + O

(
h2

n + δnhn

)

uniformly in [0, 1] and almost surely. Moreover, we have the following strong
uniform approximation:

m̂∗
n (x) = m̃n (x) + µY√

nhnfX (x)
Z∗

n (x) + O
(

h2
n + δ2

nhn
+ hnδnhn

)

+ o

(
log2 n

nhn

)

uniformly in [0, 1] and almost surely, where Z∗
n (x) is a second–order gaussian

process with null expectation and covariance function given by:

Cov
[
Z∗

n (s), Z∗
n (t)

] = Ew

[
1

hn
K
(

s − X
hn

)
K
(

t − X
hn

)(
Y − m (X)

Y

)2
]

.

As a consequence of Theorem 3, both bootstrap estimators m̂∗
n (x) and m̃∗

n (x)

behave as their non–bootstrap counterparts m̂n (x) and m̃n (x) regarding the
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rates of convergence. Moreover, both processes Zn (x) and Z∗
n (x), are second–

order gaussian processes with the same mean and covariance function, which
means that Zn (x) and Z∗

n (x) are stochastically equivalent. Furthermore, in the
bootstrap case the estimators m̂∗

n (x) and m̃∗
n (x) tend to the parametric estima-

tor m̃n (x) which, as has been mentioned, ensures the consistency of the tests
under both the null and the alternative hypotheses. Finally, using the same argu-
ments given in the previous section, we obtain the stochastic behavior of K∞∗

n
and W2∗

n .

Theorem 4 Under the assumptions made in Proposition 2 and Theorem 3, if H0
is true, then:

K∞∗
n = sup

x∈[0,1]

∣∣Z∗
n (x)

∣∣ + O
(√

hn log log n
)

,

W2
n =

∫

[0,1]
Z∗

n (x)
2 dx + O

(√
hn log n log log n

)
,

almost surely.

Remark 1 Note that both second–order gaussian processes Zn (x) and Z∗
n (x)

are stochastically equivalent, because they are defined in the same probability
space that depends on the sample data and the bootstrap sample. Hence, the
consistency of the bootstrap procedure follows from Theorems 2 and 4, given
that the statistics K∞

n , W2
n and their bootstrap versions K∞∗

n and W2∗
n can be

asymptotically written as continuous functionals of Zn (x) and Z∗
n (x), respec-

tively, which are second–order stochastically equivalent gaussian processes. In
this way, the statistics K∞∗

n and W2∗
n behave as K∞

n and W2
n given that the

distributional behavior of Zw
n and Z∗

n is the same.

5 Brief simulation study

In order to obtain an idea of the finite sample behavior of the proposed tests,
we have carried out a brief simulation study in this section. We have consid-
ered a bivariate random variable (X, Y) defined, as in Cristóbal et al. (2004),
in such a way that X is distributed uniformly in [0, 1] and Y = m (X)(1 + 0.1ε),
where ε is a uniform random variable in [−√

3,
√

3] independent of X, but in
this case, and following Härdle and Mammen (1993), we are going to consider
a polynomial regression function because our main concern is model checking.
Therefore m (x) is defined as:

m (x) = g (x) + A∆(x) = 2x − x2 + A∆(x). (14)

When A = 0, m belongs to the following class of functions

M0 =
{

ax + bx2 : a, b ∈ [−5, 5]
}

,
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Fig. 1 Regression functions for A = 0 (continuous line), and A = 0.5, 1 with � = �1 (dashed
line), � = �2 (dotted line)

and, allowing ∆ to be

∆1 (x) = 1
4

exp
(
−100(x − 1/2)2

)
,

∆2 (x) = 2(x − 1/16)(x − 1/2)(x − 15/16),

when A �= 0, we obtain that m /∈ M0. In this way, the term A∆(x) in (14) acts as
a perturbation whose intensity depends on A. Using both kinds of function, we
can examine the behavior of the proposed tests under two different situations.
Note that in the case of ∆1, the regression function has an extreme value that is
considerably larger than those of ∆2; on the other hand ∆2 is much flatter, see
Fig. 1.

The hypothesis test (3) has been performed using the statistics presented at
the end of Sect. 2. In the following tables, the rate of acceptances of the null
hypotheses is presented for 500 simulations of each of the different values of
the sample size n = 50, 100, 200, the confidence level 1 − α = 0.9, 0.95, and the
intensity A = 0, 0.5, 1, with both perturbation functions ∆1 and ∆2. We have
considered a bootstrap sample of size B = 8000 (Tables 1–3).

The numerical computation of the statistics for every bootstrap sample(
x∗

1, y∗
1

)
, . . . ,

(
x∗

n, y∗
n
)
, has been carried out obtaining the values of m̃∗

n (x) and
m̂∗

n (x) for x on the grid 0, 0.01, 0.02, . . . , 0.99, 1 using a Cross-Validation band-
width selector (see Wu, 2000) for hn. To estimate nhnfX (x) µ−2

Y on that grid
we have used the remark following Proposition 3. Next, we have computed the
error process µ−1

Y

√
nhnfX (x)

(
m̂∗

n (x) − m̃∗
n (x)

)
on that grid, and then, W2∗

n by
means of the integral of the square of this error process using a simple Riemann
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Table 1 Acceptance rate of H0 for K∞
n with ∆1

α n A K∞
n Accep. α n A K∞

n Accep.

0.10 50 0.0 0.898 0.05 50 0.0 0.948
0.5 0.576 0.5 0.662
1.0 0.150 1.0 0.186

100 0.0 0.880 100 0.0 0.950
0.5 0.302 0.5 0.364
1.0 0.012 1.0 0.018

200 0.0 0.854 200 0.0 0.944
0.5 0.078 0.5 0.098
1.0 0.002 1.0 0.006

Table 2 Acceptance rate of H0 for W2
n with ∆1

α n A W2
n Accep. α n A W2

n Accep.

0.10 50 0.0 0.876 0.05 50 0.0 0.964
0.5 0.570 0.5 0.630
1.0 0.114 1.0 0.132

100 0.0 0.896 100 0.0 0.942
0.5 0.220 0.5 0.260
1.0 0.008 1.0 0.006

200 0.0 0.856 200 0.0 0.958
0.5 0.046 0.5 0.056
1.0 0.002 1.0 0.004

Table 3 Acceptance rate of H0 for K∞
n with ∆2

α n A K∞
n Accep. α n A K∞

n Accep.

0.10 50 0.0 0.884 0.05 50 0.0 0.944
0.5 0.824 0.5 0.852
1.0 0.544 1.0 0.690

100 0.0 0.870 100 0.0 0.940
0.5 0.622 0.5 0.734
1.0 0.188 1.0 0.304

200 0.0 0.870 200 0.0 0.922
0.5 0.440 0.5 0.572
1.0 0.048 1.0 0.080

Table 4 Acceptance rate of H0 for W2
n with ∆2

α n A W2
n Accep. α n A W2

n Accep.

0.10 50 0.0 0.894 0.05 50 0.0 0.944
0.5 0.854 0.5 0.864
1.0 0.606 1.0 0.704

100 0.0 0.896 100 0.0 0.936
0.5 0.710 0.5 0.802
1.0 0.218 1.0 0.318

200 0.0 0.882 200 0.0 0.930
0.5 0.494 0.5 0.588
1.0 0.068 1.0 0.104
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summation formula, and the supremum K∞∗
n as the maximum of the absolute

value of this error process over the grid.
As can be seen in tables 1, 2, 3, 4 in the case A = 0, the null hypotheses is

accepted in about 100(1 − α)% of the simulations in each different situation.
When A �= 0, this rate decreases when n increases in a noticeable manner, as
was expected. This illustrates, from an empirical perspective, the consistency of
the test procedures we have presented.
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A Appendix

A.1 The estimators

Proof of Proposition 1 Using a matrix notation, Eq. (7) can be written as

	(βββ) = (Y − Gβββ)TB(Y − Gβββ).

The value β̃ββn of βββ that minimizes this expression is given by

GTBGβ̃ββn = GTBY.

Note that GTBG is a matrix whose (j, l)th element is

1
n

n∑

i=1

1
yi

gj (xi)gl (xi),

and that

Ew
[

1
Y

gj (X)gl (X)

]
= 1

µY
E
[
gj (X)gl (X)

]
.

As all these matrix elements have finite second–order moments, the application
of the Law of the Iterated Logarithm gives that

GTBG = 1
µY

L + O

(√
log log n

n

)
(15)

almost surely, where L is given in Assumption B2. Hence, for a sufficiently large
n, we know GTBG is a non-singular matrix. Moreover, as a consequence of yi
being m (xi) + εi, for m ∈ M0 we obtain that yi = g (xi)

Tβββ0 + εi, and we can
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write Y = Gβββ0 + εεε for a column vector εεε with entries εi. Therefore:

β̃ββn = βββ0 +
(

GTBG
)−1

GTBεεε.

Now, as GTBεεε is a vector with entries given by

1
n

n∑

i=1

gj (xi)
εi

yi
,

the application, once more, of the Law of the Iterated Logarithm to each of
these entries means that GTBεεε is a matrix whose elements are O

(√
log log n/n

)

quantities almost surely and, hence,

β̃ββn = βββ0 + O

(√
log log n

n

)
. 
�

For the proofs related to the strong uniform consistency of the nonparametric
error we will follow those given in Cristóbal et al. (2004). The following result
shows the strong uniform convergence of the processes sw

j (x; hn) and ew
j (x; hn),

exhibiting their convergence rate.

Proposition 3 Under assumptions L1, L2, we have that:

sw
i (x; hn) = 1

µY

(
µifX (x) + µi+1f ′

X (x)hn
) + O

(
h2

n + δnhn

)

ew
j (x; hn) = O

(
δnhn

)

uniformly in [0, 1] and almost surely.

Proof See Proposition A3 and A4 in Cristóbal et al. (2004). 
�
Remark 2 As a consequence of the previous result, we obtain that

n∑

i=1

ww
ihn

(x) = (nhn)2

(
1

µ2
Y

µ2fX (x)2 + O
(

h2
n + δnhn

))
.

From here we can obtain an estimation of nhnfX (x)2 µ−2
Y by means of

(nhnµ2)
−1 ∑n

i=1 ww
ihn

(x).

Now, we tackle the strong uniform approximation of the process ew
0 (x; hn) by

means of a sequence of second–order gaussian processes, where we will follow
part of the proof of Proposition A.5 in Cristóbal et al. (2004).
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Proposition 4 Under assumptions L1 and L2 in Sect. 2:

ew
0 (x; hn) = 1√

nhn
Zw

n (x) + o
(
δnhn

)

uniformly in [0, 1] and almost surely, where Zw
n is a second–order gaussian pro-

cess with null expectation and covariance function given by:

Cov
[
Zw

n (s), Zw
n (t)

] = Ew

[
1

hn
K
(

s − X
hn

)
K
(

t − X
hn

)(
Y − m (X)

Y

)2
]

.

Proof Let us denote by Y0
n (x) the following process:

Y0
n (x) =

√
nhnew

0 (x; hn)

=
√

nhn

∫ (
y − m (z)

y

)
1

hn
K
(

z − x
hn

)
dEw

n (z, y),

where Ew
n (·) is

√
n
(
Fw

n (·) − Fw (·)), that is to say, the empirical process of the
length–biased sample. Using results presented in Tusnády (1977), this empirical
process can be approximated uniformly in R2 and almost surely by means of a
suitable sequence of Brownian Motions Bn (H (z, y)), in such a way that

∥∥Ew
n (·) − Bn (H (·))∥∥∞ = O

(
log2 n√

n

)

almost surely, where H is the so-called Rosenblatt transformation

H (z, y) =
(

Fw
X (z), Fw

Y|X (y | z)
)

,

with Fw
X (z) and Fw

Y|X (y | z) being the Xw marginal and Yw|Xw conditional dis-
tributions, respectively. Hence, using integration by parts and as
(y − m (z))y−1K

(
h−1

n (z − x)
)

has bounded variation, and vanishes at the bound-
ary, we obtain that

Y0
n (x) =

∫ (
y − m (z)

y

)
1

hn
K
(

z − x
hn

)
dBn (H (z, y))

+ O

(
log2 n√

n

)
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uniformly in [0, 1] and almost surely. Therefore, and defining Zw
n (x) as:

∫ (
y − m (z)

y

)
1

hn
K
(

z − x
hn

)
dBn (H (z, y))

we obtain the first part of the proof.
For the second part, note that if Wn (u, v) is the bivariate Brownian Motion

in [0, 1] × [0, 1], such that Bn (u, v) = Wn (u, v) − uvWn (1, 1). As a consequence
of the identity (u, v) = H (z, y) we obtain that

Cov
[
Zw

n (s), Zw
n (t)

]

=
∫

1
hn

K
(

s − z
hn

)
K
(

t − z
hn

)(
y − m (z)

y

)2

f w
XY (z, y) dzdy. 
�

Proof of Theorem 1 The proof of the strong uniform consistency follows the
same reasoning that was given in Theorem 2.1 and its corollary in Cristóbal
et al. (2004).

Now, using Proposition 4 jointly with the strong uniform representation given
in Eq. (9), the strong uniform approximation by means of a sequence of gaussian
processes is proved. 
�
Proof of Theorem 2 Let us introduce the following notation:

ζ̃n (x) = µ−1
Y

√
nhnfX (x)

(
m̃n (x) − m (x)

)

ζ̂n (x) = µ−1
Y

√
nhnfX (x)

(
m̂n (x) − m (x)

)

ζn (x) = µ−1
Y

√
nhnfX (x)

(
m̂n (x) − m̃n (x)

)
.

As a consequence of Proposition 1, we obtain that

ζn (x) = ζ̂n (x) − ζ̃n (x) = ζ̂n (x) + O
(√

hn log log n
)

uniformly in [0, 1] and almost surely. Furthermore, the second consequence of
Theorem 1 gives that

ζ̂n (x) = Zw
n (x) + o

(
log2 n√

nhn

)

uniformly in [0, 1] and almost surely, hence

ζn (x) = Zw
n (x) + O

(√
hn log log n

)
(16)

uniformly in [0, 1] and almost surely.
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Now, bearing in mind the last equation, for the first test statistic we proposed
we obtain that

K∞
n = ‖ζn (x)‖∞ = ∥∥Zw

n (x)
∥∥∞ + O

(√
hn log log n

)

almost surely.
In the case of W2

n, note that because of Theorem 1:

W2
n =

∫ 1

0
ζn (s)2 ds =

∫ 1

0

(
ζ̂n (s) + O

(√
hn log log n

))2
ds

=
∫ 1

0
Zw

n (s)2 ds + O
(√

hn log n log log n + hn log log n
)

,

almost surely. 
�

A.2 Bootstrap estimators

From the bootstrap scheme given in Sect. 4, and the regression estimators
presented in Sect. 3, the proofs in this Appendix follow essentially those argu-
mentations given in Appendix A.1.

In what follows, the main changes are due to the introduction of the wild
bootstrap random variable, whose involvement is such that we must deal with
the bootstrap distribution Fw∗

n , where Fw∗
is defined as

dFw∗
(z, y, γ ) = dFw (z, y) pγ

where pγ , γ ∈ {a, b} is the probability function of the wild bootstrap random
variable �, verifying the following equations:

pa + pb = 1

apa + bpb = 0 (17)

alpa + blpb = 1 l = 2, 3

see Wu (1986) or Härdle and Mammen (1993). We will use Ew∗
[·] to denote

expectations with regard to the distribution Fw∗
. Note also that both sam-

ples, the original observations (x1, y1), . . . , (xn, yn), and the bootstrap sample(
x∗

1, y∗
1

)
, . . . ,

(
x∗

n, y∗
n
)

have the same size n as a consequence of the bootstrap
scheme employed.

Proof of Proposition 2 As x∗
i = xi, Eq. (15) is also valid in this setting, and

because of y∗
i = g (xi)

Tβ̃ββn + ε∗
i , we have that the vector Y∗ is GTβ̃ββn + εεε∗ and

hence

β̃ββ
∗
n = β̃ββn +

(
GTBG

)−1
GTBεεε∗.
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The rest of the proof follows the same arguments that were given in the proof of
Proposition 1, as the random variables in Bεεε∗ are y−1

i ε∗
i = γiy−1

i ε̂i, which have
null expectation and finite second–order moment under the assumptions. 
�

From the local linear estimator perspective, and bearing in mind that x∗
i = xi

we have to consider the same sw
j (x; h) as before. The main change that the

bootstrap scheme introduces with respect to the previous part of the Appendix
is that, in this case, we have to deal with the process

e∗
j (x; hn) = 1

nhn

n∑

i=1

γi

(
yi − m(xi)

yi

)
K
(

xi − x
hn

)(
xi − x

hn

)j

instead of the process ew
j (x; hn).

Proposition 5 Under assumptions L1, L2 we have that:

e∗
j (x; hn) = O

(
δnhn

)

uniformly in [0, 1] and almost surely.

Proof Note that

Ew∗
[
�

(
Y − m (X)

Y

)]
= 0

and that follow the same argument used in the proof of Proposition 3. 
�
Proposition 6 Under assumptions L1 and L2 in Sect. 2:

e∗
0 (x; hn) = 1√

nhn
Z∗

n (x) + o
(
δnhn

)

uniformly in [0, 1] and almost surely, where Z∗
n is a second–order gaussian process

with null expectation and covariance function given by:

Cov
[
Z∗

n (s), Z∗
n (t)

] = Ew∗
[

1
hn

K
(

s − X
hn

)
K
(

t − X
hn

)
�2

(
Y − m (X)

Y

)2
]

= Ew

[
1

hn
K
(

s − X
hn

)
K
(

t − X
hn

)(
Y − m (X)

Y

)2
]

.

Proof If we define ri to be γi(yi − m(xi))y−1
i , the process can be written in the

following way:

e∗
j (x; hn) = 1

nhn

n∑

i=1

ri K
(

xi − x
hn

)(
xi − x

hn

)j

,
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where (xi, ri), . . . , (xi, ri) is an i.i.d. sample from the random variable (X, R) with
distribution Fr, and where R = �Q and Q = Y−1(Y − m (X)). Note that the
distribution of (X, R) can be written in terms of the distribution Fq of (X, Q) as
a mixture:

Fr (x, r) = Fq
(

x,
r
a

)
pa + Fq

(
x,

r
b

)
pb,

and, as a consequence, Fr is a continuous distribution. Moreover, the expecta-
tion of R is null, and its variance is given by

E
[
R2

]
=

∫
r2 dFr (x, r)

=
∫

r2

a
dFq

(
x,

r
a

)
pa +

∫
r2

b
dFq

(
x,

r
b

)
pb

=
∫

a2q2 dFq (x, q)pa +
∫

b2q2 dFq (x, q)pb

= E
[
Q2

](
a2pa + b2pb

)
= Ew

[(
Y − m (X)

Y

)2
]

.

In a similar way, it can also be shown that

E
[
R2g (X)

]
= Ew

[(
Y − m (X)

Y

)2

g (X)

]
,

and furthermore, not only is the conditional mean E [R|X = x] null for every
x ∈ [0, 1], but we also have that E

[
R2|X = x

] = vw (x).
Now, the proof follows the same argumentation that was given to prove Prop-

osition 4, but with the distribution Fr instead of Fw. Let us denote by Y0∗
n (x)

the following process

Y0∗
n (x) =

√
nhne∗

0 (x; hn)

=
√

nhn

∫
r

1
hn

K
(

z − x
hn

)
dEr

n (z, r)

where Er
n (·) is the empirical process

√
n
(
Fr

n (·) − Fr (·)). As a consequence, in
this case we obtain that

Y0
n (x) =

∫
r

1
hn

K
(

z − x
hn

)
dBn

(
Hr (r, y)

) + O

(
log2 n√

n

)

= Z∗
n (x) + O

(
log2 n√

n

)
.
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where Hr (r, y) =
(

Fr
X (z), Fr

R|X (r | z)
)

, and

Cov
[
Z∗

n (s), Z∗
n (t)

] =
∫

1
hn

K
(

s − z
hn

)
K
(

t − z
hn

)
r2dFr (z, y)

= Ew

[(
Y − m (X)

Y

)2 1
hn

K
(

s − X
hn

)
K
(

t − X
hn

)]
. 
�

Proof of Theorem 3 This proof is quite similar to the proof of Theorem 1, but
using Propositions 5 and 6 to handle e∗

0 (x; hn).
Notice first that, as a consequence of y∗

i = m̃n (xi) + ε̂∗
i , and

ε̂∗
i = γi

(
εi + O

(
h2

n + δnhn

))
almost surely because of Theorem 1, we have:

m̂∗
n (x) =

∑n
i=1 ww

ihn
(x)m̃n (xi)

∑n
i=1 ww

ihn
(x)

+
∑n

i=1 ww
ihn

(x)γiεi
∑n

i=1 ww
ihn

(x)

+
∑n

i=1 ww
ihn

(x)γi
∑n

i=1 ww
ihn

(x)
O
(

h2
n + δnhn

)
= A + B + C.

The second–order asymptotic expansion of m̂∗
n (xi) at x takes the following form:

m̃n (x) + hn

(
xi − x

hn

)
m̃′

n (x) + h2
n

(
xi − x

hn

)2 m̃′′
n (x)

2
.

Hence, using Proposition 3 we have that:

A = m̃n (x) + 0 + h2
n

m̃′′
n (x)

2

sw
2 (x; hn)sw

2 (x; hn) − sw
1 (x; hn)sw

3 (x; hn)

sw
2 (x; hn)sw

0 (x; hn) − sw
1 (x; hn)sw

1 (x; hn)

= m̃n (x) + µ2h2
n

m′′ (x)

2

(
1 + O

(
h2

n + δnhn

))

uniformly in [0, 1] and almost surely. In addition,

B = sw
2 (x; hn)e∗

0(x; hn) − sw
1 (x; hn)e∗

1(x; hn)

sw
2 (x; hn)sw

0 (x; hn) − sw
1 (x; hn)sw

1 (x; hn)

= µY e∗
0 (x; hn)

fX (x)
+ O

(
hnδnhn

)

uniformly in [0, 1] and almost surely. For the third term C, arguing as in Prop-
osition 5, but bearing in mind that � and X are independent and � has null
expectation, we obtain

∑n
i=1 ww

ihn
(x)γi

∑n
i=1 ww

ihn
(x)

= O
(
δnhn

)
,
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uniformly in [0, 1] and almost surely, hence

C = O
(
δnhn

)
O
(
h2

n + δnhn

)
,

almost surely.
All these arguments lead to the following uniform and almost sure represen-

tation for m̂∗
n (x):

m̂∗
n (x) = m̃n (x) + µ2h2

n
m′′ (x)

2

(
1 + O

(
h2

n + δnhn

))

+ µY e∗
0 (x; hn)

fX (x)
+ O

(
hnδnhn

) + O
(
δ2

nhn
+ h2

nδnhn

)
. (18)

This concludes the proof of the strong uniform consistency since e∗
0 (x; hn) =

O
(
δnhn

)
uniformly and almost surely. Moreover, Proposition 4, jointly with the

strong uniform representation given in Eq. (18), proves the strong uniform
approximation by means of gaussian processes. 
�

Proof of Theorem 4 In this case, the changes the bootstrap scheme introduces
require the following changes in notation:

ζ̃ ∗
n (x) = µ−1

Y

√
nhnfX (x)

(
m̃∗

n (x) − m̃n (x)
)

ζ̂ ∗
n (x) = µ−1

Y

√
nhnfX (x)

(
m̂∗

n (x) − m̃n (x)
)

ζ ∗
n (x) = µ−1

Y

√
nhnfX (x)

(
m̂∗

n (x) − m̃∗
n (x)

)
.

Because of Proposition 2:

ζ ∗
n (x) = ζ̂ ∗

n (x) − ζ̃ ∗
n (x) = ζ̂ ∗

n (x) + O
(√

hn log log n
)

uniformly in [0, 1] and almost surely, and as a consequence of Theorem 3 we
obtain

ζ̂ ∗
n (x) = Z∗

n (x) + o

(
log2 n√

nhn

)

uniformly in [0, 1] and almost surely, hence

ζ ∗
n (x) = Z∗

n (x) + O
(√

hn log log n
)

(19)

uniformly in [0, 1] and almost surely. The rest of the proof follows the same
arguments that were given in Theorem 2. 
�
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