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Abstract Bayesian hierarchical models have been used for smoothing splines,
thin-plate splines, and L-splines. In analyzing high dimensional data sets, additive
models and backfitting methods are often used. A full Bayesian analysis for such
models may include a large number of random effects, many of which are not intui-
tive, so researchers typically use noninformative improper or nearly improper priors.
We investigate propriety of the posterior for these cases. Our findings extend known
results for normal linear mixed models to certain cases with Bayesian additive smooth-
ing spline models.

Keywords Generalized linear mixed models · Gibbs sampling · Linear mixed
models · Markov chain Monte Carlo · Multivariate normal · Variance components

1 Introduction

There is a large literature on the use of improper priors with Gaussian linear mixed
models. Beginning with Hobert and Casella (1996), a number of authors have shown
how the use of improper priors can lead to improper posterior distributions, with con-
sequent disastrous performance in Markov chain Monte Carlo simulations. The impli-
cation is that nearly improper priors can also give misleading results. Speckman and
Sun (2003) considered a special case motivated by nonparametric function estimation
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500 D. Sun, P. L. Speckman

using Bayesian smoothing splines. Among all inverse gamma type prior distributions
on the variance components, they characterized the ones with proper posterior dis-
tributions. The purpose of this paper is to extend the results to additive regression
models.

Consider regression on a function of r variables, y = f (t1, . . . , tr ) + e. In high
dimensions, the problem of estimating f without assuming a parametric form suffers
from the “curse of dimensionality,” a practical problem that has led to a large number of
methods. One common assumption, introduced by Stone (1985) and implemented by
Hastie and Tibshirani (1990) among others, is that the regression function is additive,
e.g.,

f (t1, . . . , tr ) = β0 +
r∑

k=1

fk(tk), (1)

where for identifiability fk is orthogonal to the space of constants for all k. In fact,
there is no need to restrict the variables tk to be univariate; fk(tk) itself may be a
function of several variables. Variations on this model include tensor product splines
(Wahba 1990).

A convenient way to put priors on the functions in model (1) is via Wahba’s (1983)
Gaussian prior equivalent to spline smoothing. Consider the single component non-
parametric regression model

yi = f (ti ) + ei , i = 1, . . . , n.

One popular estimate of f is the smoothing spline, defined as the solution to the
optimization problem

f = arg min
g

[
n∑

i=1

{yi − g(ti )}2 + η

∫
{g(m)(t)}2 dt

]
,

for an appropriate smoothing parameter η and order m (see, e.g., Wahba 1990; Green
and Silverman 1994; Eubank 1999). The smoothing spline is intuitively appealing
because it balances fidelity to the data as measured by squared error with roughness
of the fit in terms of the L2 norm on g(m). The solution is a natural polynomial spline
of order 2m. In particular, the case m = 2 yields a cubic smoothing spline. Wahba
showed that the cubic smoothing spline arises as the limit of posterior means for suit-
able Gaussian process priors on the function f (t). Fully Bayesian versions have been
implemented by Carter and Kohn (1994, 1996), and Nychka (2000) has a nice account
of the connection between spatial smoothing and nonparametric regression.

Wahba’s limiting prior on f = ( f (t1), . . . , f (tn))′ can be shown to have the form

[ f | δ1] ∝ δ
−(n−m)/2
1 e− f ′ A f /(2δ1), (2)

where A is a positive semidefinite matrix of rank n − m depending on t1, . . . , tn and
m, and δ1 is a variance component that must be specified, estimated or given a prior
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Bayesian hierarchical linear mixed models 501

distribution. A derivation of representation (2) is given in Speckman and Sun (2003),
for example. The null space of A is exactly the linear subspace generated by polyno-
mials of degree at most m − 1, i.e., the subspace spanned by the vectors (t j

1 , . . . , t j
n )′,

j = 0, . . . , m − 1. This prior is “partially informative” in the sense that the prior is
improper (and noninformative) on the null space of A and a proper Gaussian prior on
the range space of A. Specifically, suppose A has spectral decomposition A = Γ ΛΓ ′
for Λ = diag(0, . . . , 0, λm+1, . . . , λn) and Γ ′Γ = In . Let Γ = (T , X), where
T is an n × m matrix spanning the space of polynomials of degree m − 1, and X
is an n × (n − m) matrix orthogonal to T . Let θ = (θ1, . . . , θm)′ have constant
prior, and let u ∼ Nn−m(0, δ1diag(λm+1, . . . , λn)−1). Then prior (2) is equivalent to
f = Tθ + Xu. Speckman and Sun (2003) termed this a partially improper normal
distribution with precision matrix δ−1

1 A, and denoted it by f ∼ PIN(0, δ−1
1 A). If the

error terms ei are independent of f and iid N(0, δ0), the posterior of f is easily seen
to be Nn(Sη y, δ0 Sη), where η = δ0/δ1 and Sη = (I + ηA)−1. (In the smoothing
literature, Sη is the smoother matrix.)

The complete Bayesian specification requires prior distributions on δ0 and δ1. While
it may be possible to elicit prior information on δ0, the second variance component δ1
appears to be more difficult, and consideration of noninformative priors seems natural.
Within the class of inverse gamma-type priors

[δk | ak, bk] ∝ 1

δ
ak+1
k

e−bk/δk , (3)

k = 0, 1, Speckman and Sun (2003) were able to characterize the conditions under
which the posterior is proper. (Here and in the rest of the paper, we follow the Bayes-
ian convention where [δk | ak, bk] denotes the density of δk given ak and bk .) This
model is closely related to the mixed models of Hobert and Casella (1996) and Sun
et al. (2001), but the fact that A has rank nearly equal to n necessitates new proofs.
The results of Speckman and Sun also pertain to CAR (Besag 1974) and IAR (Besag
and Kooperberg 1995) priors commonly used for discrete spatial models as well as
multidimensional thin-plate smoothing spline priors. One nice aspect of the priors
associated with spline smoothing is that they extend naturally to f (t) for arbitrary
unobserved t (Nychka 2000), so posterior inference involving f (t) at points not in the
data set is easy to obtain. In this respect, the smoothing spline priors are comparable
to some of the priors used in kriging unlike the CAR prior.

This class of Gaussian priors on the function f is easily extended to the additive
model

yi = β0 +
r∑

k=1

fk(tik) + ei , i = 1, . . . , n, (4)

with iid normal errors ei , adding the identifiability assumption
∑n

i=1 fk(tik) = 0. Let
fk = ( f (t1k), . . . , f (tnk))

′, k = 1, . . . , r . Since fk ⊥ 1 with 1 = (1, . . . , 1)′, we
assume independent singular priors with improper densities of the form
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[ fk | δk] ∝
{

δ
−(n−mk )/2
k e− f ′

k Ak fk/(2δk ), f ′
k1 = 0,

0, f ′
k1 �= 0,

(5)

k = 1, . . . , r , where Ak is positive semidefinite with rank qk = n − mk . The restric-
tion

∑n
i=1 fk(tik) = 0, k = 1, . . . , r , can be thought of as a projection onto the space

orthogonal to constants of the PIN(0, δ−1
k Ak) distribution. An explicit representation

is given in (9) below. By analogy, if the predictor variables t1, . . . , tr are all one dimen-
sional, this specification of priors corresponds to estimating model (1) by solving the
variational problem

min
β0,g1,...,gr

[ n∑

i=1

{
yi − β0 − g1(ti1) − · · · − gr (tir )

}2

+
r∑

k=1

ηk

∫ {
g(mk)

k (tk)
}2

dtk

]

with ηk = δ0/δk for k = 1, . . . , r . This model is commonly fit by the backfitting
algorithm (Hastie and Tibshirani 1990). The first Bayesian analysis of the additive
case of spline smoothing was given by Wong and Kohn (1996). Subsequent treat-
ments include Shively et al. (1999), Hastie and Tibshirani (2000), Fahrmeir and Lang
(2001), and Wood et al. (2002). These and other authors commonly use diffuse priors
on the variance components δk , k = 0, . . . , r . However, the question of propriety of
the posterior under improper priors remains.

To precisely specify the prior (5) corresponding to additive model (4), it is neces-
sary to have an identifiability assumption. Clearly the model is not identifiable if there
is collinearity among the explanatory variables ti j . The model is also not identifiable
if there is a polynomial dependency among the explanatory variables (“concurvity”).
These notions can be made precise with the following model representation. Let Tk be
an n × (mk − 1) matrix such that T ′

k1 = 0 and (1, Tk) spans the null space of Ak . We
assume that the model is identifiable in the sense that the matrix X0 = (1, T1, . . . , Tr )

has full rank

p = r(X0) = 1 +
r∑

k=1

(mk − 1). (6)

In addition, throughout the rest of the paper, we assume that the data are not fit perfectly
by the implicit linear model of rank p, i.e., suppose

y′(In − X0(X ′
0 X0)

−1 X ′
0) y > 0.

Finally, we assume the constant prior on β0,

[β0] ≡ 1. (7)
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Combined with the implicit constant prior on the range of Tk for all k, this implies a
constant prior on the range of X0.

While the mixed effects models here are closely related to models considered by
Hobert and Casella (1996), Sun et al. (2001), and others, there are several impor-
tant differences that make new proofs necessary. First, as customary in applications of
additive models, we do not include a separate term for an “error sum of squares.” In the
applications we have in mind, additive models are not used for designed experiments
and there are no repeated measurements. Secondly, the dimension of the random effect
terms is large, and there typically are more than n random components. For example,
with a simple additive model with two smooth terms and no fixed effects, the prior
corresponding to cubic spline smoothing has m1 = m2 = 2. The random effect vec-
tors for f1 and f2 both have n − 2 components, so previous results designed for fixed
length random effects do not apply. Note that the priors on f1, . . . , fr are always par-
tially improper since a flat prior is used for the range of X0. The first two results treat
propriety in terms of the prior on the smoothing parameters ηk = δ0/δk , k = 1, . . . , r .

Theorem 1 Under the priors given by (5) on the fk assuming the full rank condition
(6) and the constant prior (7) on β0, suppose the prior on η = (η1, . . . , ηr )

′ is proper.
If the prior on δ0 is proper and satisfies Eδ

−(n−p)/2
0 < ∞, then the joint posterior

distribution is proper.

Remark 1 This result covers many interesting priors. For example, if any proper prior
is used on η, a lognormal or (proper) gamma or inverse gamma prior may be taken for
δ0.

This theorem is much weaker than necessary. The prior moment condition on δ0 is
sufficient for propriety but far from necessary. In fact, the prior on δ0 need not even be
proper. An important special case is the invariance prior, where we have a complete
characterization.

Theorem 2 With the priors given by (5) assuming (6) holds, the constant prior (7) on
β0, and the invariance prior [δ0] ∝ δ−1

0 , the joint posterior distribution is proper if
and only if the prior on η = (η1, . . . , ηr )

′ is proper.

Following Hobert and Casella (1996), our next results concern independent im-
proper inverse gamma-type priors on the δk of the form

[δ0, δ1, . . . , δr | ak, bk, k = 0, . . . , r ] =
r∏

k=0

e−bk/δk

δ
ak+1
k

, (8)

where ak ∈ IR and bk ≥ 0, k = 1, . . . , r . In the general case under priors on the δk of
the form (8) with bk = 0 for all k, we have the following characterization.

Theorem 3 With priors given by (5) assuming (6), (7), and (8) with b0 = · · · = br =
0, the joint posterior distribution is proper if and only if

(a) ak < 0, k = 1, . . . , r .
(b) n − p + 2

∑r
k=0 ak > 0.
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The final result gives a sufficient condition for propriety when bk > 0 for all k.

Theorem 4 With priors given by (5) assuming (6), (7), and (8) with bk > 0 for
k = 0, . . . , r , the joint posterior distribution is proper if

n − p + 2
r∑

k=0

min(0, ak) > 0.

The paper is organized as follows. A small simulated example is presented in Sect. 2
illustrating the potential effects of running an MCMC algorithm with an improper pos-
terior distribution. The model is developed further and proofs of the main results are
presented in Sect. 3.

2 Simulation results

From the theory suggested in Theorem 1 and the proofs in the next section, the prob-
lem with improper priors of the form (3) with bk = 0 is that there is a spurious
mode in the posterior at 0 for the variance components δk . To illustrate the potential
harmful effects of the wrong chioce of noninformative priors, we conducted a small
simulation with n = 30 observations and two components. We sampled (t1, t2) from
a bivariate normal distribution with means zero, variances set to one, and correlation
0.7. We chose f1(t1) = sin(2t1) and f2(t2) = t2

2 . The observations were taken to be
yi = f1(ti1) + f2(ti2) + ei with independent, normally distributed error terms with
mean zero and standard deviation 0.4. For the first MCMC chain, the priors for the
variances were [δk] ∝ δ−1

k , i.e. ak = bk = 0, for k = 0, 1, 2. Part of the output from
an MCMC run of 90,000 cycles following 10,000 burnin cycles is shown in the left
panels of Fig. 1. Trace plots are shown for simulated draws from the posterior distri-
bution of δk sampled once every 10 iterations, k = 0, 1, 2. Note that the simulation
for δ2 is trapped in the spurious mode at zero for roughly the first 50,000 cycles. (This
behavior depends on the initial seed for the pseudo random number generator.) Trace
plots from a second run of 100,000 cycles with ak = −0.5, k = 0, 1, 2 are shown in
the right panels of Fig. 1. These plots show no such instability.

We should point out that this simulation study agrees with the results in Lambert
et al. (2005), who demonstrate the instability of the posterior estimates in linear mixed
models with inverse gamma (ε, ε) prior for variance components when ε is a small
value such as 0.01, 0.001, etc.

3 Bayesian additive models

Consider the additive model for y = (y1, . . . , yn)′,

y =
r∑

k=1

fk + e, e ∼ Nn(0, δ0W−1),
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Bayesian hierarchical linear mixed models 505

Fig. 1 Left panels: trace plots of δk from MCMC run of 90,000 cycles sampled every 20 iterations for
simulated data described in text and improper priors [δk ] ∝ δ−1

k , k = 0, 1, 2. Right panels: similar trace

plots with priors [δk ] ∝ δ−0.5
k , k = 0, 1, 2

where W is a known positive definite matrix and fk ∼ PIN(0, δ−1
k Ak). As stated

above, the model is typically not identifiable since each component fk includes a con-
stant term. However, with ηk = δ0/δk , the full conditional distributions of the fk are
proper normal:

( fk | y, δ0, η, f j , j �= k)

∼ N

⎧
⎨

⎩(W + ηk Ak)
−1W

⎛

⎝ y −
∑

j �=k

f j

⎞

⎠ , δ0(W + ηk Ak)
−1

⎫
⎬

⎭ .

Here η = (η1, . . . , ηr ). To compensate for the lack of identifiability, Hastie and
Tibshirani (2000) suggested projecting fk onto the space orthogonal to constants after
each MCMC iteration. This is standard practice and justifiable in the Gaussian case
(e.g., Besag et al. 1995; Gelfand and Sahu 1999). Shively et al. (1999) and Hastie and
Tibshirani (2000) have efficient algorithms for sampling from the full conditionals.

123



506 D. Sun, P. L. Speckman

For our purposes, we need an alternative approach with an explicit representation
for each of the partially informative terms, conditioning on the subspace orthogonal
to constants. For each k, let Ak = XkΛk X ′

k , where Λk is diagonal, Λk > 0, and
X ′

k Xk = In−mk . In addition, let Tk be an n × (mk −1) matrix that spans the null space
of Ak and is orthogonal to the space of constants. Then

fk = 1nβk + Tkθk + Xk uk

is a unique representation. Assuming independence, the PIN prior implies that θk has
constant prior and

uk
indep∼ Nn−mk (0, δkΛ

−1
k ). (9)

Collecting constant terms with β0 = ∑r
k=1 βk , we have the model

y = 1nβ0 +
r∑

k=1

(Tkθk + Xk uk) + e.

Without loss of generality, we assume that W equals In, the n-dimensional identity
matrix. The linear terms in the equation can be collected in a single full rank component
of the form 1nβ0 + ∑r

k=1 Tkθk = X0θ , resulting in the reduced model

y = X0θ +
r∑

k=1

Xk uk + e, e ∼ Nn(0, δ0 In). (10)

An interesting and broad class of models related to model (10) is Bayesian P-splines
(see Lang and Brezger 2004). One essential difference between the models treated here
and P-splines is that the rank of Xk is fixed at some dimension rk 
 n for P-splines,
so results obtained here do not apply.

It is not hard to show that the full conditionals of θ and the uk are multivariate
normal. For a fully Bayesian model, assume inverse-gamma-type priors (possibly
improper) (3) on the variance components. Then the full conditional distributions of
the δk are again inverse-gamma. These distributions form the basis of a straightforward
MCMC algorithm. In our notation, Hastie and Tibshirani (2000) suggested priors of
the form (3) with a0 = b0 = 0, ak = 1 for k > 1, and bk very small.

From a practical standpoint, the most difficult part of the implementation is choos-
ing parameters of the hyperpriors for the δ j . In his discussion of Hastie and Tibshirani’s
article, Gelfand questioned the uncritical use of nearly improper priors for the variance
components. The results of Speckman and Sun (2003) for the one component case
show that the limiting posterior under Hastie and Tibshirani’s prior when b1 = 0 is in
fact not proper.

Recall that Xk has rank qk = n − mk and ηk = δ0/δk , k = 1, . . . , r . In addition,
define

u = (u′
1, . . . , u′

r )
′, Bη = diag(η−1

1 Λ1, . . . , η
−1
r Λr ),
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and q = q1 + · · · + qr . Then (9) is equivalent to

(u | δ0, η) ∼ Nq(0, δ0 Bη). (11)

Without loss of generality, we assume that Xk X ′
k is idempotent, that is, (Xk X ′

k)
2 =

Xk X ′
k . If not, take the singular value decomposition XkΛ

1/2
k = Pk Dk Q′

k , where Pk

and Qk are suborthogonal matrices and Dk is a positive definite diagonal matrix. Then
(10) and (11) hold with Xk replaced by Pk , uk replaced by Dk Q′

kΛ
−1/2
k uk , and Λk

replaced by D2
k . Let X = (X1, . . . , Xr ). We can rewrite (10) and (11) as follows:

[ y | θ , u, δ0] = 1

(2πδ0)n/2 exp

{
− 1

2δ0
( y − X0θ − Xu)′( y − X0θ − Xu)

}
,

[u | δ0, η] = 1

(2πδ0)q/2|Bη|1/2 exp

{
− 1

2δ0
u′ B−1

η u
}

.

To be consistent with the prior specification in the introduction, we assume indepen-
dent priors for θ and δ0 with the form

[θ ] ∝ 1, (12)

[δ0] ∝ 1

δ
a0+1
0

e−b0/δ0 . (13)

A popular prior for δ0 is the so-called “invariance prior” corresponding to a0 = b0 = 0.
If there are no random effects uk , the likelihood is a scale and location family, and the
invariance prior is a commonly used objective prior. See, for example, Berger (1985).

By assumption, X0 has rank p (full rank). Define

H0 = X0(X ′
0 X0)

−1 X ′
0,

Gη = B−1
η + X ′(In − H0)X, (14)

Rη = In − H0 − (In − H0)X G−1
η X ′(I − H0).

Lemma 1 Consider the linear mixed model (10) and (11).

(a) Under prior (12), the marginal likehood function of (δ0, η) is given by

L1(δ0, η) ≡
∫

IRq

∫

IRp
[ y | θ , u, δ0][u | δ0, η] dθ du

= 1

(2πδ0)
n−p

2 |X ′
0 X0| 1

2 |Bη| 1
2 |Gη| 1

2

exp
{
− y′ Rη y

2δ0

}
. (15)
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(b) Under prior (12) and (13) with n − p +2a0 > 0, the marginal likehood function
of η is

L2(η) ≡
∫ ∞

0
L1(δ0, η)

e−β0/δ0

δ
a0+1
0

dδ0

= 2a0Γ
( n−p

2 + a0
)

π
n−p

2
∣∣X ′

0 X0
∣∣ 1

2
∣∣Bη

∣∣ 1
2
∣∣Gη

∣∣ 1
2
(

y′ Rη y + 2b0
) n−p

2 +a0
. (16)

Proof Note that ( y − X0θ − Xu)′( y − X0θ − Xu) can be decomposed as

( y − Xu)′(In − H0)( y − Xu) + (θ − θ̂)X ′
0 X0(θ − θ̂),

where θ̂ = (X ′
0 X0)

−1 X ′
0 y. Then

∫

IRp
[ y | θ , u, δ0] dθ = |X ′

0 X0|− 1
2

(2πδ0)
n−p

2

exp
{

− 1

2δ0
( y−Xu)′(In − H0)( y−Xu)

}
.

It is easy to verify that

( y − Xu)′(In − H0)( y − Xu) + u′ B−1
η u

= (u − c)′Gη(u − c) + y′(In − H0) y − c′Gηc,

where c = G−1
η X ′(In − H0) y. Thus

L1(δ0, η) =
∫

IRq

exp
{

− 1
2δ0

( y − Xu)′(In − H0)( y − Xu)
}

(2πδ0)
n−p

2 |X ′
0 X0| 1

2

[u | δ0, η] du

= |X ′
0 X0|− 1

2

(2πδ0)
n−p

2
∣∣Bη

∣∣ 1
2
∣∣Gη

∣∣ 1
2

exp
{

− 1

2δ0
[ y′(In − H0) y − c′Gηc]

}
.

Because

c′Gηc = y′(In − H0)X G−1
η X ′(In − H0) y,

we have y′(In − H0) y − c′Gηc = y′ Rη y, and (15) holds. Part (b) follows from part
(a) immediately.

In the following, we use the partial ordering on m × m matrices A1 ≤ A2 if and
only if A2 − A1 is nonnegative definite. We need the following condition.

Assumption A (In − H0)Xk X ′
k = In − H0 for k = 1, . . . , r.
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Note that Assumption A is satisfied automatically for the additive models con-
sidered here since, for each k = 1, . . . , r , Hk = Xk X ′

k is a projection matrix with
null(Hk) ⊂ range(H0).

Remark 2 This assumption does not hold for typical linear mixed models and seems
characteristic of the mixed models associated with smoothing treated here. In partic-
ular, the assumption does not hold for P-splines.

We will write Λk = diag(λk1, . . . , λk qk ), k = 1, . . . , r , and define

λmin = min(λk j , k = 1, . . . , r, j = 1, . . . , qk),

λmax = max(λk j , k = 1, . . . , r, j = 1, . . . , qk).

Lemma 2 Under Assumption A,

( r∏

k=1

qk∏

j=1

λk j

λmax

)(
1+λmax

r∑

k=1

1

ηk

)n−p

≤ |Gη| |Bη| ≤
( r∏

k=1

qk∏

j=1

λk j

λmin

)(
1+λmin

r∑

k=1

1

ηk

)n−p

, (17)

1

1 + λmax
∑r

k=1
1
ηk

(In − H0) ≤ Rη ≤ 1

1 + λmin
∑r

k=1
1
ηk

(In − H0). (18)

Proof Write X̃ = (In − H0)X . Then

Gη = B−1
η + X̃ ′ X̃ .

Let B̃η = diag( 1
η1

Iq1, . . . ,
1
ηr

Iqr ). We know that

λ−1
max B̃−1

η + X̃ ′ X̃ ≤ Gη ≤ λ−1
min B̃−1

η + X̃ ′ X̃ . (19)

Using a well-known formula (e.g., Christensen 2002, p. 416), for any c > 0,

(c−1 B̃−1
η + X̃ ′ X̃)−1 = c B̃η − c2 B̃η X̃ ′(In + cX̃ B̃η X̃ ′)−1 X̃ B̃η. (20)

Noting that

X̃ B̃η = (In − H0)X B̃η = (In − H0)
( 1

η1
X1, . . . ,

1

ηr
Xr

)
,
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we have

X̃ B̃η X̃ ′ = (In − H0)

( r∑

k=1

1

ηk
Xk X ′

k

)
(In − H0)

=
( r∑

k=1

1

ηk

)
(In − H0). (21)

The last equality follows from Assumption A. Thus for any c > 0,

In + cX̃ Bη X̃ ′ = H0 +
(

1 + c
r∑

k=1

1

ηk

)
(In − H0),

(
In + cX̃ Bη X̃ ′)−1 = H0 +

(
1 + c

r∑

k=1

1

ηk

)−1

(In − H0), (22)

and

|In + cX̃ Bη X̃ ′| =
(

1 + c
r∑

k=1

1

ηk

)n−p

.

The last two equalities hold because H0 is a projection matrix. If two positive definite
matrices satisfy A1 ≤ A2, then |A1| ≤ |A2|. (To see this, note that A−1/2

1 A2 A−1/2
1 ≥

I .) Moreover, for any invertible q × q matrix A and n × q matrix X , |A + X ′X| =
|A||In + X A−1 X ′| (e.g., Harville 1997, p. 188). Thus, from (19),

|Gη| ≥ |λ−1
max B̃−1

η + X̃ ′ X̃| = 1

λ
q
max|B̃η|

∣∣∣In + λmax X̃ B̃η X̃ ′
∣∣∣;

|Gη| ≤ |λ−1
min B̃−1

η + X̃ ′ X̃| = 1

λ
q
min|B̃η|

∣∣∣In + λmin X̃ B̃η X̃ ′
∣∣∣.

Since |Bη|/|B̃η| = ∏r
k=1

∏qk
j=1 λk j , inequality (17) holds.

From its definition (14) and the first inequality of (19),

Rη = In − H0 − X̃ G−1
η X̃ ′

≤ In − H0 − X̃
(
λ−1

min B̃−1
η + X̃ ′ X̃

)−1
X̃ ′.
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Using (20) and (22),

Rη ≤ In − H0 − X̃
[
λmin B̃η − λ2

min B̃η X̃ ′(In + λmin X̃ B̃η X̃ ′)−1 X̃ B̃η

]
X̃ ′

= In − H0 − λmin X̃ B̃η X̃ ′

+λ2
min X̃ B̃η X̃ ′[H0 +

(
1 + λmin

r∑

k=1

1

ηk

)−1

(In − H0)
]

X̃ B̃η X̃ ′.

Finally, because H0 X̃ = 0 and (In − H0)X̃ = X̃ , equality (21) implies

Rη ≤ In − H0 − λmin

r∑

k=1

1

ηk
(In − H0)

+λ2
min

( r∑

k=1

1

ηk

)2(
1 + λmin

r∑

k=1

1

ηk

)−1

(In − H0)

=
(

1 + λmin
∑r

k=1
1
ηk

) (
1 − λmin

∑r
k=1

1
ηk

)
+ λ2

min

(∑r
k=1

1
ηk

)2

1 + λmin
∑r

k=1
1
ηk

(In − H0)

= 1

1 + λmin
∑r

k=1
1
ηk

(In − H0).

This proves the righthand inequality of (18). The other inequality can be shown simi-
larly.

Proof of Theorem 1. Applying the last lemma, the term |BηGη| is bounded below by
a positive constant.

Lemma 3 Consider the linear mixed model (10) and (11) under priors (12) and
(13) with n − p + 2a0 > 0, and suppose Assumption A is satisfied. Then for all
η = (η1, . . . , ηr ) with ηk > 0,

K (a0, λmin)
(

1 + λmin
∑r

k=1
1
ηk

)− n−p
2

[
y′(In−H0) y

1+λmin
∑r

k=1
1
ηk

+ 2b0

] n−p
2 +a0

≤ L2(η) ≤
K (a0, λmax)

(
1 + λmax

∑r
k=1

1
ηk

)− n−p
2

[
y′(In−H0) y

1+λmax
∑r

k=1
1
ηk

+ 2b0

] n−p
2 +a0

, (23)

where K (·, ·) is the positive function

K (a, λ) = 2aΓ
( n−p

2 + a
)

π
n−p

2 |X ′
0 X0| 1

2

( r∏

k=1

qk∏

j=1

λ

λk j

) 1
2

, a, λ ∈ IR. (24)
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Proof Inequality (18) implies that

y′(In − H0) y

1 + λmax
∑r

k=1
1
ηk

≤ y′ Rη y ≤ y′(In − H0) y

1 + λmin
∑r

k=1
1
ηk

. (25)

Applying (17) and (25) to (16), we have

L2(η) ≥
Γ

( n−p
2 + a0

) (∏r
k=1

∏qk
j=1

λmin
λk j

)1/2

π
n−p

2 |X ′
0 X0| 1

2

[
y′(In−H0) y

1+λmin
∑r

k=1
1
ηk

+ 2b0

] n−p
2 +a0

(
1 + λmin

r∑

k=1

1

ηk

)− n−p
2

,

L2(η) ≤
Γ
(

n−p
2 + a0

) (∏r
k=1

∏qk
j=1

λmax
λk j

)1/2

π
n−p

2 |X ′
0 X0| 1

2

[
y′(In−H0) y

1+λmax
∑r

k=1
1
ηk

+ 2b0

] n−p
2 +a0

(
1 + λmax

r∑

k=1

1

ηk

)− n−p
2

.

This proves the lemma.

As an immediate consequence of the lemma, we have the following characteriza-
tion.

Theorem 5 For the linear mixed model (10) and (11) together with priors (12) and
(13) and Assumption A, if a0 = b0 = 0, the joint posterior of (θ , u, δ0, η) is proper if
and only if the prior of η is proper.

Proof Noting that if a0 = b0 = 0, (23) becomes

K (a0, λmin)
[

y′(In − H0) y
](n−p)/2

≤ L2(η) ≤ K (a0, λmax)
[

y′(In − H0) y
](n−p)/2

.

Because the upper and lower bounds do not depend on η, the result holds.

Theorem 2 follows from Theorem 5 as a special case.
We now restrict consideration to independent inverse gamma-type priors for the δk

of the form (8). Note that (8) is equivalent to (δ0, η) having joint prior

[δ0, η] = e−b0/δ0

δ
1+a+
0

r∏

k=1

η
ak−1
k e−bkηk/δ0 , (26)

where a+ = ∑r
k=0 ak . The following conditions will be needed.

Condition C1. n − p + 2a+ > 0.
Condition C2. ak < 0 for k = 0, 1, . . . , r .
Condition C3. n − p + 2

∑r
k=0 min(0, ak) > 0.
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Lemma 4 (a) Under Condition C1, we have

∫ ∞

0
L1(δ0, η)[δ0, η] dδ0

= 2a+Γ
( n−p

2 + a+
)∏r

k=1 η
ak−1
k

π
n−p

2
∣∣X ′

0 X0
∣∣ 1

2
∣∣Bη

∣∣ 1
2
∣∣Gη

∣∣ 1
2
(

y′ Rη y + 2b0 + 2
∑r

k=1 bkηk
) n−p

2 +a+
.

(b) If Assumption A and Condition C1 hold and b0 = · · · = br = 0, we have

K (a+, λmin)g(λmin, η)
[

y′(In − H0) y
] n−p

2 +a+
≤

∫ ∞

0
L1(δ0, η)[δ0, η] dδ0 ≤ K (a+, λmax)g(λmax, η)

[
y′(In − H0) y

] n−p
2 +a+

,

where K (·, ·) is given by (24) and

g(c, η) =
( r∏

k=1

η
ak−1
k

)(
1 + c

r∑

k=1

1

ηk

)a+
, c > 0, ηk > 0.

(c) If Assumption A and Condition C1 hold, bk > 0 for k = 0, . . . , r , and y′(In −
H0) y > 0, there exist positive constants 0 < K1, K2 < ∞ such that

K1h(η) ≤
∫ ∞

0
L1(δ0, η)[δ0, η] dδ0 ≤ K2h(η),

where

h(η) = g(1, η)
[
1 +

(
1 + ∑r

k=1
1
ηk

)
(1 + ∑r

k=1 ηk)
](n−p)/2+a+ , ηk > 0.

Proof Integrating out the product of L1(δ0, η) in (15) and the prior (26) with respect
to δ0, we get part (a). Parts (b) and (c) follow from (25) as in the proof of Lemma 3.

The following result contains the assertions of Theorem 3.

Theorem 6 Consider the linear mixed model (10) and (11). Assume that [θ ] ≡ 1, and
let the prior for (δ0, δ1, . . . , δk) be specified by (8).

(a) If b0 = · · · = br = 0, then Condition C1 is necessary for the existence of the
posterior of (θ , u, δ0, η).

(b) Under Assumption A, if b0 = · · · = br = 0, then Conditions C1 and C2 are
necessary and sufficient for the existence of the posterior of (θ , u, δ0, η).

(c) Under Assumption A, if bk > 0, k = 0, . . . , r , then Condition C3 is sufficient
for the existence of the posterior of (θ , u, δ0, η).
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Proof To prove (a), we note that in part (a) of Lemma 4, L1(δ0, η)[δ0, η] is integrable
with respect to δ0 only if Condition C1 holds. To prove (b), we need only show that

Jc ≡
∫ ∞

0
· · ·

∫ ∞

0
g(c, η) dη1 · · · dηr < ∞, c > 0,

if and only if Condition C2 holds. In fact, by the transformation tk = c/ηk , we have

Jc = ca1+···+ar

∫ ∞

0
· · ·

∫ ∞

0

(1 + t1 + · · · + tr )a0+a1+···+ar

ta1+1
1 · · · tar +1

r

dt1 · · · dtr .

Make the transformation s1 = t1/(1+ t1), s2 = t2/(1+ t1 + t2), . . . , sr = tr/(1+ t1 +
· · ·+tr ). It is easy to see that sk ∈ (0, 1) and (1+t1 · · ·+tk) = 1/[(1−s1) · · · (1−sk)],
for all k = 1, . . . , r , hence t1 = s1/(1 − s1), t2 = s2/[(1 − s1)(1 − s2)], . . . , tr =
sr/[(1 − s1) · · · (1 − sr )]. The Jacobian of the transformation is

∣∣∣∣
∂(t1, . . . , tr )

∂(s1, . . . , sr )

∣∣∣∣ = 1

(1 − s1)2

r∏

k=2

1

(1 − s1) · · · (1 − sk−1)(1 − sk)2

=
r∏

k=2

1

(1 − sk)r−k+2 .

After some simplification,

Jc = ca1+···+ar

r∏

k=1

∫ 1

0
s−ak−1

k (1 − sk)
−(a0+a1+···+ak−1)−1 dsk .

But Jc clearly is finite if and only if Condition C2 holds, i.e., if and only if ak < 0 for
all k.

To prove (c), define

V ≡
∫ ∞

0
· · ·

∫ ∞

0
h(η) dη.

Using Lemma 4 and Condition C1,

V <

∫ ∞

0
· · ·

∫ ∞

0

∏r
k=1 η

ak−1
k(

1 + ∑r
k=1

1
ηk

)(n−p)/2 (
1 + ∑r

k=1 ηk
)(n−p)/2+a+

dη.
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For an ordered subset J ⊂ {1, . . . , r}, define

V0(J ) =
∫

0<ηk<1,k∈J

∏
k∈J η

ak−1
k(

1 + ∑
k∈J

1
ηk

)(n−p)/2
dηJ

V∞(J ) =
∫

1≤ηk<∞,k∈J

∏
k∈J η

ak−1
k(

1 + ∑
k∈J ηk

)(n−p)/2+a+ dηJ .

(The notation dηJ means dηk1 · · · dηk j when J = {k1, . . . , k j }.) Then

V <
∑

allJ

V0(J )V∞(J c),

where the sum is over all ordered subsets J of {1, · · · , r} including the empty set.
Without loss of generality, consider J = {1, . . . , r}. Using the transformations from
the proof for part (b) above,

V0({1, . . . , r}) =
∫ ∞

1
· · ·

∫ ∞

1

r∏

k=1

t−ak−1
k (1 + t1 + · · · + tr )

− n−p
2 dt1 · · · dtr

=
∫ 1

1
2

∫ 1

1
3

· · ·
∫ 1

1
r+1

r∏

k=1

s−ak−1
k

r∏

k=1

(1 − sk)
n−p

2 +∑r
j=k a j −1 ds1 · · · dsr .

Clearly, V0(J ) is finite if (n − p)/2 + ∑r
j=k a j > 0 for k = 1, . . . , r . Considering

all subsets J , if

(n − p)/2 +
∑

k∈J

ak > 0 for all J ⊂ {1, . . . , r}, (27)

then V0(J ) < ∞ for all J .
Similarly, using the transformation s1 = η1/(1 + η1), s2 = η2/(1 + η1 + η2), …,

sr = ηr/(1 + η1 + · · · + ηr ),

V∞({1, . . . , r}) =
∫ 1

1
2

∫ 1

1
3

· · ·
∫ 1

1
r+1

r∏

k=1

sak−1
k

r∏

k=1

(1 − sk)
n−p

2 +∑k
j=0 a j −1 ds1 · · · dsr ,

which is finite if (n − p)/2 + ∑k
j=1 a j > 0 for k = 1, . . . , r . Thus V∞(J ) < ∞ for

all subsets J if

(n − p)/2 + a0 +
∑

k∈J

ak > 0 for all J ⊂ {1, . . . , r}. (28)

Taken together, conditions (27) and (28) are equivalent to Condition C3.
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Remark 3 Consider the special case of independent priors of the form [δk] ∝ δ
−ak−1
k .

If (θ , δ0) has joint prior [θ , δ0] = 1/δ
a0+1
0 and Assumption A holds, Theorems 5 and

6 imply that there are exactly two choices for a0:

(a) If a0 = 0, one must use a proper prior for η. Consequently, the joint posterior of
(θ , u, δ0, δ1, . . . , δr ) (or (θ , u, δ0, η)) is improper for any prior of (δ1, . . . , δr )

of the form

[δ1, . . . , δr ] =
r∏

k=1

1

δ
ak+1
k

. (29)

(b) If a0 < 0, then one can choose priors for (δ1, . . . , δr ) given by (29) as long as
ak < 0 for every k = 1, . . . , r and (n − p)/2 + a0 + a1 + · · · + ar > 0.

Remark 4 As one of the referees pointed out, the prior [δ0] = 1/δ0 is also the limiting
case when δ0 follows a log normal (µ0, σ

2
0 ) prior as σ0 → ∞. Thus, under a limiting

log normal prior for δ0, the prior for η must be proper for the existence of the posterior.
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