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Abstract We consider the standard one-way ANOVA model; it is well-known
that classical statistical procedures are based on a scalar non-centrality parame-
ter. In this paper we explore both marginal likelihood and integrated likelihood
functions for this parameter and we show that they exactly lead to the same
answer. On the other hand, we prove that a fully Bayesian testing procedure
may provide different conclusions, depending on what is considered to be the
real quantity of interest in the model or, said differently, which are the compet-
ing hypotheses. We illustrate these issues via a real data example.

Keywords Integrated likelihood · Marginal likelihood · Model choice ·
Objective Bayes factor · Reference prior

1 Introduction

Analysis of variance (ANOVA) is an extremely important method in explor-
atory and confirmatory data analysis (Gelman, 2005). Here we focus on the
one-way ANOVA, where we assume that data are observed according to the
(full) model MF

F. Solari
ISTAT, Via Magenta 4, Rome 00184, Italy

B. Liseo (B)
Dip. di studi geoeconomici, linguistici, statistici e storici,
Università di Roma Sapienza, viale del Castro Laurenziano 9, Rome 00161, Italy
e-mail: brunero.liseo@uniromal.it

D. Sun
Department of Statistics, University of Missouri,
146 Middlebush Hall, Columbia, MO 65211-6100, USA



484 F. Solari et al.

Yij = µi + εij, j = 1, . . . , ni, i = 1, . . . , k, (1.1)

where µ = (µ1, . . . ,µk) and σ 2 are unknown parameters and εij are i.i.d.
N(0, σ 2). Classical analysis of variance focuses on the hypotheses test

M0 : µ1 = · · · = µk versus M1 : µi �= µj for at least one pair (i, j) (1.2)

and it is usually based on the statistic

F =
∑k

i=1 ni(Ȳi − Ȳ)2/(k − 1)
∑k

i=1
∑ni

j=1(Yij − Ȳi)2/(n − k)
,

where n = ∑k
i=1 ni, Ȳi = n−1

i
∑ni

j=1 Yij and Ȳ = n−1 ∑k
i=1

∑ni
j=1 Yij.

It is well-known that under the null hypothesis M0, the F statistic follows
a Fk−1,n−k distribution. Under the alternative hypothesis M1, the F statistic
is distributed according to a non-central Fk−1,n−k,λ distribution, whose non-
centrality parameter λ is given by

λ = 1
σ 2

k∑

i=1

ni(µi − µ̄)2,

with µ̄ = n−1 ∑k
i=1 niµi.

The above testing procedure is a clear and classical example of how the
problem of eliminating nuisance parameters is handled in frequentist statistics.
Although the full model MF has k + 1 parameters, a scalar test statistic is con-
structed to compare different values of the scalar non-centrality parameter λ. In
a certain sense, the classical test acts as if we would have observed only the mar-
ginal experiment, which provides the quantity F, discarding all the information
about the single mean treatments, (ȳ1, . . . , ȳk).

It is then apparent that there is a loss of information in this procedure. How-
ever, it is not clear how much information is lost, and this paper is an attempt to
clarify these issues. Bertolino et al. (1990) have shown that the classical test can
be reinterpreted in terms of a marginal likelihood of the parameter τ = λ/n; we
will briefly recall their approach in Sect. 2. In Sect. 3 we perform an integrated
likelihood approach to the problem and show that, using a conditional reference
prior (Berger and Bernardo 1992), the resulting integrated likelihood is exactly
equal to the marginal likelihood of Bertolino et al. (1990). This equivalence
amounts to say, in our opinion, that when τ is the real quantity of interest, the
classical test, or at least its marginal likelihood counterpart, is a correct report
of the information available. In Sect. 4 we derive the class of first-order match-
ing priors for the parameter of interest and perform some comparisons among
different priors in terms of frequentist coverage. In Sect. 5 we also perform
an objective Bayes analysis for comparing different models. We show that the
classical F test (and its likelihood counterpart) correspond to a specific model
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comparison that may be or may be not the appropriate test in one-way ANOVA
problems; we illustrate our findings via a simple real data example.

2 Marginal likelihood approach

The great simplicity of the standard ANOVA model relies on the transforma-
tion of a multiparametric problem into an equivalent scalar one, where the
only parameter involved is the non-centrality parameter λ, i.e. rewriting the
hypotheses test (1.2) as

M0 : λ = 0 versus M1 : λ > 0. (2.1)

Then, frequency-based solutions to the ANOVA problem consist only in the
computation of the sample realization Fobs of the F statistic. On the other hand,
Bayesian solutions are complicated because of the possibly high dimension of
the parameter (µ, σ 2). Bertolino et al. (1990) propose to consider Fobs as the
actual result of a marginal experiment and then to use the sampling distribution
of the F statistic as a marginal likelihood.

They also suggest that it is more convenient to work with the parameter

τ = λ

n

instead of λ. This choice has two advantages. First, τ has a clear interpretation
as the ratio of between and within variances; second, it depends on the sample
size n only through the relative frequencies ni/n. Denoting by d1 = k − 1 and
d2 = n−k the degrees of freedom of the F statistic, Bertolino et al. (1990) write
the marginal likelihood of τ as

L(τ ) ∝
∞∑

j=0

pj

(nτ
2

) �
(

d1+d2
2 + j

)

�
(

d1
2 + j

)

(
d1Fobs

d2 + d1Fobs

)j

, (2.2)

where, for j = 1, 2, . . ., pj(z) = exp{−z}zj/ j!.
It is useful, for reasons that will be clear later, to rewrite L(τ ) as a function of

the Kummer confluent Hypergeometric function M(a, b, z) (Abramowitz and
Stegun 1964); from (2.2) it immediately follows that

L(τ ) ∝
∞∑

j=0

pj

(nτ
2

) (
d1 + d2

2

)

j

(
d2

2

)−1

j

(
d1Fobs

d2 + d1Fobs

)j

∝ exp
{
−nτ

2

}
M

(
d1 + d2

2
,

d2

2
,

nτ
2

d1Fobs

d2 + d1Fobs

)

,

where (a)j = �(a + j)/�(a) is the Pochhammer’s symbol.
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Making use of an asymptotic approximation for L(τ ), Solari (2002) shows
that a noninformative prior for the parameter τ is given by π(τ) ∝ 1/

√
τ .

Bertolino and Racugno (1994) perform a robust Bayesian analysis based on
the marginal likelihood L(τ ). Their results seem to be strongly dependent on
the choice of the function of the parameter (µ, σ 2) used for reformulating the
hypotheses test (1.2) in the form (2.1) (Solari 2002).

3 Integrated likelihood approach

In this section we derive an integrated likelihood function for the parameter τ .
To do so, in Sect. 3.1 we first propose a one-to-one reparameterization of (µ, σ 2),
namely (τ , ξ), where ξ is a vector of suitable nuisance parameters; second, in
Sect. 3.2, we apply the reference prior algorithm. We show that, no matter what
is the order of importance of the parameters, the marginal reference prior for
the nuisance parameter ξ is always the same, while the marginal prior on τ may
change; finally in Sect. 3.3 we obtain the integrated likelihood function

L̃(τ ) ∝
∫

ξ

L(τ , ξ)π(ξ |τ)dξ

in a closed form.

3.1 Reparameterization of (µ, σ 2)

First we re-express model (1.1) in matrix notation. Let 1p and 0p denote, respec-
tively, the p × 1 vectors of 1’s and 0’s. Thus,

y = Aµ+ ε,

where the n × k design matrix A is given by

A =
⎡

⎢
⎣

1n1 0n1 · · · 0n1
...

...
...

...
0nk 0nk · · · 1nk

⎤

⎥
⎦

and ε is N(0, σ 2In). Then, the parameter τ can be re-written as

τ = 1
σ 2 (µ− µ̄1k)

tR(µ− µ̄1k) = 1
σ 2 µ

tDtRDµ,

where R = n−1 diag(n1, n2, . . . , nk) and
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D = 1
n

⎡

⎢
⎢
⎢
⎣

n − n1 −n2 · · · −nk
−n1 n − n2 · · · −nk

...
...

...
...

−n1 −n2 · · · n − nk

⎤

⎥
⎥
⎥
⎦

.

Note that the parameter of interest can be also expressed as τ = (nσ 2)−1
∑k

i=1 niµi(µi − µ̄) or, using matrix notation,

τ = 1
σ 2 µ

tR(µ− µ̄1k) = 1
σ 2 µ

tRDµ.

Now consider the following steps.
Step 1 Since the k-dimensional vector (µ− µ̄1k) lies in a (k − 1)-dimensional

subspace of Rk, we need to transform (µ − µ̄1k) into a (k − 1)-dimensional
vector θ = (θ1, . . . , θk−1)

t. As rank(RD) = rank(D) = k − 1, there exists a
(k − 1)× k matrix P such that PtP = RD. Setting θ = Pµ, we have

Ptθ = PtPµ = RDµ = R(µ− µ̄1k)

and hence

µ = R−1Ptθ + µ̄1k.

The Jacobian matrix H1 of the transformation from (µ, σ 2) to (θ , σ 2, µ̄) is then

H1 =
[
∂(µ, σ 2)

∂(θ , σ 2, µ̄)

]

=
⎡

⎣
PR−1 0k−1

0t
k 1

1t
k 0

⎤

⎦ .

Step 2 Now, switching to polar coordinates as in Berger et al. (1998), we can
reparameterize θ in the new parameters η = θ tθ = n−1 ∑k

i=1 ni(µi − µ̄)2 and
ψ = (ψ1, . . . ,ψk−2) ∈ � ≡ (0,π)k−3 × (0, 2π), that is,

θ1 = √
η cosψ1,

θ2 = √
η sinψ1 cosψ2,

...

θk−2 = √
η sinψ1 · · · sinψk−3 cosψk−2,

θk−1 = √
η sinψ1 · · · sinψk−3 sinψk−2.
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Then, we have

H2 =
[
∂(θ , σ 2, µ̄)
∂(η, σ 2, µ̄,ψ)

]

=

⎡

⎢
⎢
⎣

η−1/2 bt 0 0
0t

k−1 1 0
0t

k−1 0 1
η1/2 C 0k−2 0k−2

⎤

⎥
⎥
⎦ ,

where the (k − 1)-dimensional vector b and the (k − 2)× (k − 1) matrix C are
given by

b = η1/2 ∂θ

∂η
= 1

2
(cosψ1, . . . , sinψ1 . . . sinψk−2)

t

and

C = η−1/2 ∂θ

∂ψ
=

⎡

⎢
⎣

− sinψ1 · · · cosψ1 sinψ2 × · · · × sinψk−2
...

...
...

0 · · · sinψ1 × · · · × sinψk−3 cosψk−2

⎤

⎥
⎦ .

Step 3 Since τ = η/σ 2, the Jacobian matrix H3 of the transformation from
(η, σ 2, µ̄,ψ) to (τ , σ 2, µ̄,ψ) is given by

H3 =
[
∂(η, σ 2, µ̄,ψ)
∂(τ , σ 2, µ̄,ψ)

]

=

⎡

⎢
⎢
⎣

σ 2 0 0 0t
k−2

τ 1 0 0t
k−2

0 0 1 0t
k−2

0k−2 0k−2 0k−2 Ik−2

⎤

⎥
⎥
⎦ .

We have defined a new set of parameters (τ , σ 2, µ̄,ψ), in which τ is the
parameter of interest and ξ = (σ 2, µ̄,ψ) is the nuisance parameter. It must
be noticed that the ordering in ξ is just one among the possible ordering we
could have chosen. However, since µ̄ andψ contain information about location
and direction of µ respectively, they do not seem to give direct information
about the parameter of interest τ . On the other hand, there is a strong relation
between τ and σ 2. Consequently, it seems reasonable to consider the parameter
ordering {τ , σ 2, µ̄,ψ}, as we actually did, or, alternatively, {τ , σ 2,ψ , µ̄}. In any
case, it will be shown that the reference priors do not depend on the ordering
of the components of the nuisance parameter ξ .

For the new parameter (τ , σ 2, µ̄,ψ), the information matrix I(τ , σ 2, µ̄,ψ) is
given by

I(τ , σ 2, µ̄,ψ) = H3H2H1I(µ, σ 2)H t
1H t

2H t
3,
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where

I(µ, σ 2) =
[

1
σ 2 AtA 0k

0t
k

n
2(σ 2)2

]

= n

[
1
σ 2 R 0k

0t
k

1
2(σ 2)2

]

.

Some algebra yields

I(τ , σ 2, µ̄,ψ) = n diag

([
btb
τ

btb
σ 2

btb
σ 2

τbtb+1/2
(σ 2)2

]

,
1
σ 2 , τCCt

)

,

where CCt = diag(1, sin2 ψ1, . . . , sin2 ψ1 · · · sin2 ψk−3). Noting that btb = 1/4,
we get

I(τ , σ 2, µ̄,ψ) = n diag

([
1

4τ
1

4σ 2
1

4σ 2
τ+2

4(σ 2)2

]

,
1
σ 2 , τCCt

)

(3.1)

≡ n diag
( [

i11 i12
i21 i22

]

, i33, I44

)

.

where, the first element of the diagonal in the last formula refers to (τ , σ 2), the
second element refers to µ̄ and I44 refers to ψ .

3.2 Reference priors

3.2.1 Direct approach

Here we derive the one-at-a-time reference prior for (τ , σ 2, µ̄,ψ) in the order-
ing {τ , σ 2, µ̄,ψ}, in the sense that τ is the parameter of interest and (σ 2, µ̄,ψ)
are the nuisance parameters in descending order of interest. Following the ref-
erence prior algorithm (Berger and Bernardo, 1992), the conditional reference
priors for (τ , σ 2, µ̄,ψ) are given by

πd(ψ |τ , σ 2, µ̄) ∝ ∣
∣I44

∣
∣

1
2 ∝

k−3∏

i=1

(sinψi)
k−i−2 ,

πd(µ̄|τ , σ 2) ∝ ∣
∣i33

∣
∣

1
2 ∝ 1,

πd(σ
2|τ) ∝ ∣

∣i22
∣
∣

1
2 ∝ 1

σ 2 ,

πd(τ ) ∝ ∣
∣i22

∣
∣− 1

2
∣
∣i11i22 − i12i21

∣
∣

1
2 ∝ 1√

τ(τ + 2)

and it is easy to check that they do not change whatever is the ordering of the
nuisance parameters (σ 2, µ̄,ψ).
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In all the above computations, we have considered the vector parameterψ as
a single block. If we split it into its k − 2 distinct components, the new reference
prior for each ψi, i = 1, . . . , k − 2, has the following interesting form:

πd(ψi | τ , σ 2, µ̄,ψ1, . . . ,ψi−1) ∝
i−1∏

j=1

sinψj ∝ 1.

3.2.2 Reverse approach

Now, we will construct the reverse reference prior, where the reverse ordering
of the parameter, namely {ψ , µ̄, σ 2, τ } is considered in the derivation of the
prior distributions. This way, the prior distribution of the parameter of interest
τ conditionally on the nuisance parameter (ψ , µ̄, σ 2) will be computed first. In
this case, we have

I(ψ , µ̄, σ 2, τ) = n diag
(

I44, i33,
[

i11 i12
i21 i22

])

= n diag

(

τCCt,
1
σ 2 ,

[
τ+2

4(σ 2)2
1

4σ 2

1
4σ 2

1
4τ

])

.

It follows that the conditional reference priors are

πr(τ | ψ , µ̄, σ 2) ∝ ∣
∣i11

∣
∣

1
2 ∝ 1√

τ
,

πr(σ
2 | ψ , µ̄) ∝ ∣

∣i22
∣
∣

1
2 ∝ 1

σ 2 ,

πr(µ̄ | ψ) ∝ ∣
∣i33

∣
∣

1
2 ∝ 1,

πr(ψ) ∝ ∣
∣I44

∣
∣

1
2 ∝

k−3∏

i=1

(sinψi)
k−i−2 .

As before, the final answer is independent of the ordering of the nuisance param-
eters. Note that the reverse approach leads to the marginal prior πr(τ ) ∝ 1/

√
τ ,

i.e. the same prior derived in Solari (2002) for the marginal likelihood (2.2).
Again, if one considers k−2 groups of parametersψi, i = 1, . . . , k−2, instead

of the single group ψ , a constant reference prior for the ψi’s is obtained

πr(ψi | ψ1, . . . ,ψi−1) ∝
i−1∏

j=1

sinψj ∝ 1.
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3.3 Integrated likelihood

In this section we will compute the integrated likelihood using the reference
priors obtained in Sects. 3.2.1 and 3.2.2. It must be noticed that both the direct
and the reverse reference prior produce the same prior for the nuisance param-
eter, i.e.

π(σ 2, µ̄,ψ | τ) = π(σ 2, µ̄,ψ) ∝ 1
σ 2

k−3∏

i=1

(sinψi)
k−i−2 ,

resulting in the same integrated likelihood

L̃(τ ) =
∫

L(τ , σ 2, µ̄,ψ) π(σ 2, µ̄,ψ)dσ 2dµ̄ dψ .

Starting from the likelihood function for (µ, σ 2)

L(µ, σ 2) ∝ 1

(σ 2)
n
2

exp

{

− 1
2σ 2 (y − Aµ)t(y − Aµ)

}

and passing through the reparameterization from Step 1 to Step 3, after some
algebra we obtain

L(τ , σ 2, µ̄,ψ) ∝ 1

(σ 2)
n
2

exp

{

−nτ
2

− n(µ̄− ȳ)2

2σ 2 − SST
2σ 2

+2n
( τ

σ 2

) 1
2 ȳtPtb

}

,

where SST = ∑k
i=1

∑ni
j=1 (yij − ȳ)2 is the total sum of squares and ȳ =

(ȳ1, . . . , ȳk)
t represents the sample mean vector.

Using results in Ferrándiz (1982) to integrate out ψ and standard integration
methods for µ̄ and σ 2, we obtain that the integrated likelihood results to be
the same as the marginal likelihood (2.2), showing that no loss of information
derives from considering only the marginal experiment, at least when τ is the
real parameter of interest.

4 Choice among noninformative priors

In the previous section we have shown that no matter what reference prior is
used, the likelihood function for the parameter of interest τ turns out to be
always the same. Now we discuss which reference marginal prior for τ should
be used, that is we want to compare the two priors πd(τ ) = 1/

√
τ(τ + 2) and
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πr(τ ) = 1/
√
τ derived from the two approaches described in the previous sec-

tions. Furthermore, a frequentist probability matching prior for τ can be also
derived; we illustrate this issue in Sect. 4.1.

4.1 The first-order matching prior for τ

In this section we derive all the first-order matching priors for τ in the sense
that one-sided credible intervals and their frequentist coverage probabilities
agree up to O

(
n−1) . For the Fisher information matrix I of (τ , σ 2, µ̄,ψ) given

in (3.1), it is easy to show that

I−1(τ , σ 2, µ̄,ψ) = 2
n

diag
([
τ(τ + 2) −τσ 2

−τσ 2 σ 4

]

, σ 2,
1
τ
(CCt)−1

)

.

Let e1 = (1, 0, 0, 0′
k−2)

′; then e′
1I−1e1 = 2τ(τ + 2)/n and

ν = I−1e1
√

e′
1I−1e1

=
√

2
n

⎡

⎢
⎢
⎢
⎣

√
τ(τ + 2)

−
√

τ
τ+2σ

2

0
0k−2

⎤

⎥
⎥
⎥
⎦

.

Following Datta and Ghosh (1995), a first-order matching prior π(τ , σ 2, µ̄,ψ)
for τ must satisfy the differential equation

∂

∂τ

√
τ(τ + 2) π(τ , σ 2, µ̄,ψ)− ∂

∂σ 2

√
τ

τ + 2
σ 2 π(τ , σ 2, µ̄,ψ) = 0 (4.1)

Let π∗ = √
τ(τ + 2)σ 2 π(τ , σ 2, µ̄,ψ). Clearly, (4.1) is then equivalent to

(τ + 2)
∂

∂τ
π∗ − σ 2 ∂

∂σ 2π
∗ = 0,

which has a general solution π∗ = g((τ + 2)σ 2, µ̄,ψ), for some positive and
differentiable function g(·, ·, ·). Then a general solution for (4.1) is

π(τ , σ 2, µ̄,ψ) = 1√
τ(τ + 2)σ 2

g((τ + 2)σ 2, µ̄,ψ).

It is easy to see that the reference prior πd is a matching prior by choosing
g(·) = ∏k−3

i=1 (sinψi)
k−i−2, which is a constant on its first two arguments. On

the other hand, πr will not satisfy (4.1) and is not a matching prior.
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Table 1 Coverage probability for πd(τ | Fobs) and πr(τ | Fobs) for α = 0.05 for values of τ
obtained combining µ = (1, 2, 3); σ 2 = 0.25, 0.5, 1; n1 = n2 = n3 = 2, 5, 10, 30

n = 6, σ 2 = 0.25 n = 6, σ 2 = 0.5 n = 6, σ 2 = 1

πd πr πd πr πd πr
0.969 0.954 0.974 0.964 0.996 0.990

n = 15, σ 2 = 0.25 n = 15, σ 2 = 0.5 n = 15, σ 2 = 1
πd πr πd πr πd πr
0.963 0.953 0.958 0.948 0.957 0.949

n = 30, σ 2 = 0.25 n = 30, σ 2 = 0.5 n = 30, σ 2 = 1
πd πr πd πr πd πr
0.954 0.946 0.951 0.944 0.953 0.949

n = 90, σ 2 = 0.25 n = 90, σ 2 = 0.5 n = 90, σ 2 = 1
πd πr πd πr πd πr
0.953 0.946 0.951 0.948 0.954 0.951

4.2 Small sample comparison between πd(τ ) and πr(τ )

To see the small sample frequentist performance of the one-sided 1−α credible
intervals produced by the use of the two priors, we conduct some simulation
study. The two posterior densities can be written as

πi(τ | Fobs) = πi(τ )L(τ )
mi(Fobs)

, i = d, r,

where

mi(Fobs) =
∫ ∞

0
L(τ )πi(τ )dτ , i = d, r.

While the posterior πr(τ | Fobs) can be obtained in closed form, the marginal
distribution md(Fobs) obtained from the use of πd must be calculated via numer-
ical integration. Resorting to the Gauss hypergeometric series F(a, b, c, z) (see
Abramowitz and Stegun 1964), we have

mr(Fobs) =
(

2π
n

) 1
2

F
(

d1 + d2

2
,

1
2

,
d1

2
,

d1Fobs

d2 + d1Fobs

)

< ∞.

Since πd(τ ) < πr(τ ) then md(Fobs) < ∞ and both πd(τ | Fobs) and πr(τ | Fobs)

result to be proper posterior densities.
We now compare the frequentist coverage of the one-sided 1 − α credible

intervals for τ by Monte Carlo simulation. Tables 1 and 2 illustrate the behavior
of πd(τ | Fobs) and πr(τ | Fobs) when k = 3 and k = 4, respectively. Parame-
ter values in the simulations were choosing in terms of the original parameter
(µ, σ 2).
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Table 2 Coverage probability for πd(τ | Fobs) and πr(τ | Fobs) for α = 0.05 for values of τ
obtained combining µ = (1, 2, 3, 4); σ 2 = 0.25, 0.5, 1; n1 = n2 = n3 = 2, 5, 10, 30

n = 8, σ 2 = 0.25 n = 8, σ 2 = 0.5 n = 8, σ 2 = 1

πd πr πd πr πd πr
0.967 0.951 0.962 0.945 0.969 0.959

n = 20, σ 2 = 0.25 n = 20, σ 2 = 0.5 n = 20, σ 2 = 1
πd πr πd πr πd πr
0.964 0.952 0.958 0.948 0.957 0.950

n = 40, σ 2 = 0.25 n = 40, σ 2 = 0.5 n = 40, σ 2 = 1
πd πr πd πr πd πr
0.958 0.948 0.958 0.950 0.956 0.951

n = 120, σ 2 = 0.25 n = 120, σ 2 = 0.5 n = 120, σ 2 = 1
πd πr πd πr πd πr
0.956 0.952 0.956 0.952 0.954 0.950

The simulation study supports the idea that both πd(τ | Fobs) and πr(τ | Fobs)

have good frequentist properties. It must be observed that, for small sam-
ple sizes, the coverage is in general higher than the nominal value, while for
large values of n, the coverage level is approximately equal to 1 − α for both
πd(τ | Fobs) and πr(τ | Fobs). This is not surprising for the direct reference prior,
since it has been shown to be a matching prior for τ .

5 Bayesian testing

In this section we illustrate the peculiar behavior of the Bayes factor when both
the competing models are “wrong”. More precisely we perform two distinct
testing procedures, one based on the entire likelihood function L(µ, σ 2) and
the other based only on the marginal likelihood L(τ ), and we show that the
two analyses can give, in particular situations, quite different results. In both
cases we perform objective Bayesian model selection; therefore, we cannot use
the usual Bayes factor and we need to adopt some modifications of it, namely
the intrinsic Bayes factor (Berger and Pericchi, 1996a,b) and the fractional
Bayes factor (O’Hagan, 1995). In the marginal likelihood case, the choice of
the training sample sizes must be done with care because the parameter of
interest τ actually depends on the ni/n’s; consequently, denoting by n′ the
subsample size and with n′

i, i = 1, . . . , k, the number of units on each treatment
in the subsample, the training sample sizes should be chosen under the following
condition

1
n′σ 2

k∑

i=1

n′
i(µi − µ̄)2 = 1

nσ 2

k∑

i=1

ni(µi − µ̄)2, (5.1)

which holds if and only if n′
i/n

′ = ni/n, i = 1, . . . , k. The rationale behind this
choice is that, in this way, τ maintains the same intrinsic meaning both in the
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Table 3 Ascorbic acid content expressed in mg

T1 T2 T3 T4 T5 T6 T7 T8 T9

7.12 4.42 6.49 8.07 8.05 5.09 5.87 6.57 4.13
7.16 5.68 8.09 2.86 5.82 4.57 5.36 5.08 7.31
4.57 5.15 8.79 6.84 2.47 6.06 5.85 5.95 4.47
3.79 3.83 8.44 6.85 3.28 4.87 6.27 7.51 2.53
4.20 3.30 6.11 4.12 5.38 4.52 5.96 3.79 3.96
5.84 4.44 5.17 3.32 3.98 5.08 4.95 4.33 5.30
5.56 3.51 8.13 1.74 6.08 4.29 5.85 3.70 2.66
5.02 4.60 7.58 1.74 6.28 6.19 4.70 5.21 4.12
3.69 4.85 6.47 1.57 5.72 3.45 1.53 4.48 3.54
2.99 4.84 5.45 3.02 2.88 5.85 3.88 5.17 2.98
4.99 5.45 6.18 5.08 6.40 2.51 2.88 4.69 5.08
2.16 4.71 4.34 4.96 4.58 4.93 2.07 2.12 5.15
Mean values
4.76 4.58 6.77 3.88 5.07 4.78 4.59 4.88 4.27

training sample and in the complete sample. Consequently, the usual solution
of considering a subsample of size k + 1 (with the n′

i’s all equal to 1 with the
exception of one group taking value 2) is not appropriate here. Things are even
more complicated for unbalanced ANOVA models; in this case, in fact, it is not
always possible to find subsamples satisfying exactly the relation n′

i/n
′ = ni/n

for all i’s.
We illustrate the main point of this section via the following real data

example.

Example 1 (Pompilj and Napolitani, 1954). An experiment is conducted to
analyze the possible influence of some types of manuring on the ascorbic acid
content in tomatoes. The treatments under study are nine manures obtained
as different combinations of calcium nitrate and calcium superphosphate. The
data of the experiment are reported in Table 3. Notice that the mean value
under the third treatment is sensibly larger than the others.

We are generally interested in the comparison between the two models M0 :
µ1 = · · · = µk and M1 : µi �= µj for at least a pair (i, j), or, equivalently,

M0 : Yij = µ+ εij, i = 1, . . . , 9, j = 1, . . . , 12

and

M1 = Yij = µi + εij, i = 1, . . . , 9, j = 1, . . . , 12.

We now compare via fractional Bayes factor and via arithmetic, geometric and
median intrinsic Bayes factors the two models using (a) the complete likelihood
and (b) the marginal likelihood.

The results presented in Table 4 are only apparently contradictory. In fact,
the analysis based on the marginal likelihood produces evidence in favor of the
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Table 4 Bayes factors relative to M0 versus M1 for complete and pseudo-likelihood

Complete likelihood
BF

01(y) BAI
01 (y) BGI

01 (y) BMI
01 (y)

2.39905 32.30192 7.67851 8.47163

Marginal likelihood
BF

01(Fobs) BAI
01 (Fobs) BGI

01 (Fobs) BMI
01 (Fobs)

0.03421 0.03814 0.02867 0.03725

In the first case we used the reference prior π0(µ, σ 2) ∝ 1/σ 2 and π1(µ1, . . . ,µ9, σ 2) ∝ 1/σ 2. In
the latter case we used, for the larger model, the reference prior πd(τ )

Table 5 Bayes factors relative to M0 versus M2 for complete and pseudo-likelihood

Complete likelihood
BF

02(y) BAI
02 (y) BGI

02 (y) BMI
02 (y)

0.00023 0.00214 0.00058 0.00068

Marginal likelihood
BF

02(Fobs) BAI
02 (Fobs) BGI

02 (Fobs) BMI
02 (Fobs)

0.00003 0.00004 0.00003 0.00004

The reference priorsπ0(µ, σ 2) ∝ 1/σ 2 andπ1(µ1,µ2, σ 2) ∝ 1/σ 2 andπd(τ )were used for complete
and pseudo-likelihood, respectively

model M1 while the complete likelihood suggests to choose model M0. One
possible explanation of this phenomenon is that the complete likelihood anal-
ysis compares the one-dimensional model M0 against the k-dimensional model
M1 while in the marginal likelihood analysis the comparison is made between
M0 : τ = 0 against the one-dimensional model M1 : τ > 0.

It is well-known that Bayesian (and likelihood) inference can be highly mis-
leading when using an incorrect model. The Bayes factor and its modifications
are known to select the model that is, in a Kullback–Liebler sense, closer to
the true one (Dmochowski, 1996). In the ANOVA set-up when only one out
of many treatments is sensibly different from the others, it might happen that
the Bayes factor based on the complete likelihood selects the null model simply
because it is closer to the true model. On the other hand, this is not the answer
we expect when the goal is to check the equivalence of “all” the treatments. In
such cases the use of the “marginal” experiment must be preferred.

These considerations suggest, instead, to compare the null model M0 against

M2 =
{

Yij = µ1 + εij, i �= 3, j = 1, . . . , 12,
Yij = µ2 + εij, i = 3, j = 1, . . . , 12.

Results are presented in Table 5. Notice that, after eliminating the overparam-
eterization of model M1, the two analysis produce similar results.

A referee correctly pointed out that our testing scenario is more realistic
when the researcher already knows which treatment might be different from
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the others. We agree on that; however we also believe that the above is a quite
common situation and, in any case, when there are no prior suspects on which
treatment might be different, the test can be used repeatedly. The referee also
asked if the same testing scenario can be useful when more than one treatment
might be different. This issue may be certainly considered and reformulated
in terms of model selection and Bayesian methods are generally particularly
useful in this context (George, 2000). This last point reinforces our point of view
that the classical ANOVA test (or its marginal likelihood counterpart) should
be used as a preliminary test for checking if any of the treatment performs
differently. At this stage, in fact, the use of the complete likelihood might be
misleading if the alternative model is not well specified. If the null model is
rejected by the classical test, then a deeper Bayesian model selection procedure
should be performed.
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