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Abstract In analyses of bivariate ordered polytomous cataract data from
atomic-bomb survivors, we compared two methods, the univariate worse-eye
method, and the bivariate generalized estimating equations (GEE’s) method
using global odds ratio by Williamson et al. (Journal of the American Statistical
Association, 90, 1432–1437, 1995). When the association was large and only sub-
ject level covariates were used, model selection in the univariate and bivariate
methods resulted in the same mean model and similar risk estimates. We showed
that the mean parameter and the standard error (SE) in the univariate model
are emphasized relative to those in the bivariate model, the biases of which
are negligible when the association between both eyes is large. Large sample
simulation studies indicated that the univariate Wald statistics are slightly con-
servative. The simulations also showed that, in bivariate cases, irrespective of
the degree of association, the independence estimating equations method with
robust SE, and the GEE method with model-based and robust SE are almost
fully efficient in parameter estimation when only subject level covariates are
included in the mean.
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1 Introduction

It is known that atomic-bomb radiation causes cataract (Choshi et al., 1983;
Minamoto et al., 2004). The most recent cataract prevalence study by Minamoto
et al. (2004) used the Lens Opacity Classification System II (LOCS II) (Chylack
et al., 1989) in grading four major lens changes: nuclear color (NC), nuclear
opacity (NO), cortical cataract (CC) and posterior sub-capsular opacity (PS).
The system shows good inter- and intra-observer reproducibility (Chylack et al.,
1989), which suggests that the response measurement error is small. We did not
use LOCS III (Chylack et al., 1993), because the grading of cataract in LOCS
III is so precise that observer bias could be relatively large, i.e., large response
measurement error. The outcome variables for these lens changes in LOCS II
are qualitative, ordered and polytomous. For analysis of this data, Minamoto
et al. (2004) used the univariate worse-eye method—that is, the outcome of a
subject is the outcome of the worst grade among the grades of both eyes—and
found significant radiation dose responses in CC and PS. The worse-eye method
is more conventionally used since bivariate analysis is often difficult. If we want
to have estimates specific to each eye of the subject for lens opacity and to
obtain a smaller standard error for the estimates, however, bivariate analysis
would be most appropriate.

In ophthalmology studies, we often observe bivariate ordered polytomous
data, a pair of polytomous outcomes of interest from the right and left eyes of
a subject. Covariates are obtained from an individual (subject level covariate)
or obtained separately from each eye of a subject (within subject level covari-
ate). We are usually interested in the effects of such covariates on the ordered
polytomous marginal probabilities and the degree of association between right
and left eyes affected by the covariates.

Dale (1986) and Molenberghs and Lesaffre (1994) considered the maximum
likelihood (ML) method for correlated bivariate and multivariate discrete data,
respectively, using a global odds ratio association model (Plackett, 1965; Dale,
1984). Kim (1995) proposed a bivariate ML method that used polychoric cor-
relation as a measure of association and that is an extension of the probit
model for univariate dichotomous data. However, the ML method does not
provide consistent estimates of parameters unless correct specifications of both
the mean and association models are available. The method is also computa-
tionally inconvenient. Conversely, because of its computational convenience
and the fact that it provides consistent estimates with only correct specification
of the mean model, the generalized estimating equations (GEE’s) approach is
appropriate for analysis of multivariate correlated data although the estimation
efficiency is lowered.

Liang and Zeger (1986) developed the GEE method for multivariate corre-
lated binary data using correlation as a measure of association and showed that
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the GEE estimation is highly efficient with a large sample. Sharples and Breslow
(1992) conducted GEE simulations on clustered binary data with a small sam-
ple (≤100) and mild non-negative correlation (≤0.3) and concluded that the
GEE with independence working correlation often works well. Under con-
ditions similar to those employed by Sharples and Breslow (1992), Gunsolley
et al. (1995) showed that Type I error rates in hypothesis testing with GEE were
inappropriate. Miller et al. (1993) extended the GEE method to multivariate
correlated ordered polytomous data. Using the method by Miller et al. (1993),
Gange et al. (1995) considered the GEE method for ophthalmic application and
compared the univariate method and the bivariate GEE method. Lipsitz et al.
(1991) and Liang et al. (1992) developed a GEE method of analysis of clustered
binary data using odds ratio as a measure of association. Using global odds ratio,
an extension of odds ratio, Williamson et al. (1995) extended the method by
Lipsitz et al. (1991) to bivariate ordered polytomous data. The method devel-
oped by Williamson et al. (1995) is a GEE version of the ML method by Dale
(1986). Lumley (1996) and O’Hara Hines (1997) suggested that, in the analysis
of clustered polytomous data, careful modeling of the working association is
unnecessary and that, even if we assume a complicated working association, the
estimation efficiency of the mean parameter is not gained. However, this does
not necessarily indicate that the GEE estimation is fully efficient.

In multivariate analysis, in addition to the mean modeling, we need to con-
sider associations among responses. For bivariate cases, the correlation, global
odds ratio (Dale, 1984) and dependence ratio (Ekholm et al., 1995) can be
considered measures of association between the responses. The correlation is
the most general measure of association for any bivariate response, including
continuous response and ordered or nominal discrete response. However, the
correlation is most appropriate for quantitative responses. The global odds ratio
provides simple interpretation and is appropriate when both responses are dis-
crete, qualitative, and ordered (Dale, 1986, 1984). In fact, the global odds ratio
does not change but the correlation changes when, for example, the three cate-
gory response is scored as {1, 2, 3} or as {1, 2, 4}. If the response category number
is two, however, the correlation is also an invariant of the scoring system. The
dependence ratio has a simple interpretation and a natural generalization to
higher order association (Ekholm et al., 1995, 2003). Thus, since the outcome of
the lens opacity is qualitative, ordered, and polytomous, the use of global odds
ratio in bivariate analysis would be appropriate.

In Sect. 2, we provide the atomic-bomb posterior sub-capsular lens opacity
data used in the analysis. In Sect. 3, we describe four methods of analysis: bivar-
iate GEE by Williamson et al. (1995), the independence estimating equations
(IEE’s), the ML method using the global odds ratio by Dale (1986), and the
(conventional) univariate worse-eye method. In Sect. 4, we apply the methods
to the atomic-bomb lens opacity data. In Sect. 5, we show the difference of the
parameters between the univariate and bivariate methods. A bias calculation of
univariate dose response parameter relative to bivariate dose response param-
eter was made in a binary case. In Sect. 6, the efficiency consideration will be
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given by simulation. In Sect. 7, the discussion section, some concluding remarks
are made.

2 Data

An ophthalmologic prevalence study (Minamoto et al., 2004) was performed
from June 2000 to September 2002 in both Hiroshima and Nagasaki at the Radi-
ation Effects Research Foundation (RERF). The study cohort of this research
comprised two groups: young subjects with age at exposure 13 years or younger
and subjects who were participants of a previous ophthalmologic study (1978–
1980) by Choshi et al. (1983) in the RERF Adult Health Study (AHS) cohort
(Yokoro, 1991). Examinees were given explanation of the procedures and pos-
sible adverse effects of the topical mydriatic (0.5% tropicamide and 0.5% phen-
ylephrine hydrochloride) that would be administered. The ocular lenses of the
participants were examined and photographed by a physician. Original diag-
noses were made by three ophthalmologists from Hiroshima University and
two from Nagasaki University in their respective cities (Minamoto et al., 2004).
The digital photographs were stored in a database, and a single ophthalmolo-
gist (A.M.) reviewed all the cataract diagnoses using LOCS II (Chylack et al.
1989) by scrutinizing the photographs. Each subject had a dosimetry system
2002 (DS02)-based (Young and Bennett, 2006) ocular radiation dose (Sv) with
relative biological effectiveness (RBE) of 10, that is, the DS02 ocular gamma
radiation dose (Gy) plus ten times the DS02 ocular neutron radiation dose (Gy)
truncated at 4 Gy.

Total number of subjects who participated in this study was 877. We excluded
4 dose unknown subjects and 143 in utero exposed subjects. The number of
subjects valid for analysis was 730. Since the review was made using only pho-
tographs, there were several indeterminate cases. Twenty-eight subjects were
reviewed in only one eye, and 39 subjects were not reviewed in both eyes.
Reviews of PS in both eyes were successfully made for 663 subjects. Table 1
shows the distribution of bivariate PS complete outcomes according to LOCS
II grade. Grade PS = I expresses normal eye or no opacity, and the higher

Table 1 Distribution of PS complete outcomes in LOCSII grade

Right eye

Left eye I II III IV V Total

I 459 21 3 1 0 484
II 37 98 10 1 0 146
III 6 9 12 0 0 27
IV 0 1 2 0 0 3
V 0 1 1 0 1 3
Total 502 130 28 2 1 663

Signed-rank test for right = left: two-sided p = 0.021; correlation r = 0.70
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the grade the more severe the opacity. Target outcome PS has five grades in
LOCSII and the outcomes from the right and left eyes are positively correlated
(Spearman rank correlation = 0.74).

3 Statistical methods

Assume that there are N people in an ophthalmology study with data for both
eyes. Let Xit be a covariate vector, and PSit denote the K = 5 level ordered
response of PS in LOCS II for eye t(t = 1 for left and t = 2 for right) of subject
i, i.e., PSit ∈ {1, . . . , 5}. We define random variables Yitj = I(PSit = j), where
I(.) is indicator variable, j = 1, . . . , K. Note that PSit = ∑K

j=1 jYitj.

3.1 Mean and global odds ratio association models

Let γitj = Pr(PSit ≤ j) be the marginal cumulative probability and define πitj =
Pr(PSit = j). We then have E

(
Yitj

) = πitj = γitj − γitj−1 for j = 1, . . . , K with
γit0 = 0.0 and γitK = 1.0. To model the marginal γitj = Pr(PSit ≤ j |Xit ), we use
proportional odds model (McCullagh and Nelder, 1989),

logit
(
γitj

) = log
(

γitj

1 − γitj

)

= θj − XT
it β1, (1)

where θj, j = 1, . . . , K − 1 are the cutoff point parameters, Xit is a covariate
vector including subject level and/or within subject level covariates, and β1 is
a regression parameter vector. The link of the model (1) is a logistic link, and
we can consider the other links to be probit or complementary log–log links.
However, the proportional odds model, or logistic link for cumulative probabil-
ity, is very commonly used in risk estimation for ordinal categorical data, since
evaluation of odds ratio for risk variables is possible. In model (1), we assume
common cutoff points for left and right eye responses. If there is a difference in
cutoff points between the left and right responses, we can include “side” within
subject level variable in the covariates, which is defined as the common differ-
ence between cutoff points of left and right eye responses. When only subject
level covariates are used in the mean, the marginal response probabilities of
left and right eyes are symmetric.

Let Fijj′ = Pr(PSi1 ≤ j, PSi2 ≤ j′) be the joint cumulative probability for
j, j′ = 1, . . . , K of subject i. Note that FijK = γi1j and FiKj′ = γi2j′ . We define the
global odds ratio association, GOR, (Dale, 1984) as,

ψijj′ = Pr
(
PSi1 ≤ j, PSi2 ≤ j′

) · Pr
(
PSi1 > j, PSi2 > j′

)

Pr (PSi1 > j, PSi2 ≤ j′) · Pr (PSi1 ≤ j, PSi2 > j′)

= Fijj′
(
1 − γi1j − γi2j′ + Fijj′

)

(
γi2j′ − Fijj′

)(
γi1j − Fijj′

) , (2)
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where, for binary case, the global odds ratio amounts to an odds ratio for
binary outcomes between left and right eyes. To describe the dependence of
the association on covariates, one can model the global odds ratio in log linear
form (Dale, 1986, Williamson et al., 1995) defined on (−∞, +∞) as log(ψijj′) =
�0 +�j +�j′ +�jj′ + ZT

i α1, where�0 is intercept,�j is jth level intercept with
boundary conditions, i.e., �1 = 0,�jj′ is the symmetric interaction (�jj′ = �j′j)
at (j, j′) levels of the pair with boundary condition, i.e., �1j = �j1 = 0, Zi is a
vector of subject level covariates, and α1 is the regression parameter vector for
the covariate Zi.

From Plackett (1965), Fijj′ can be solved by the quadratic Eq. (2) in terms of
ψijj′ , γi1j and γi2j′ as,

Fijj′ =

⎧
⎪⎨

⎪⎩

{
1+

(
γi1j+γi2j′

)(
ψijj′−1

)
−√

Qijj′
}

2
(
ψijj′−1

) if ψijj′ �= 1

γi1jγi2j′ if ψijj′ = 1

, (3)

where Qijj′ = {
1 + (

γi1j + γi2j′
)(
ψijj′ − 1

)}2 + 4ψijj′
(
1 − ψijj′

)
γi1jγi2j′ , for i =

1, . . . , N and j, j′ = 1, . . . , K. The joint cell probability ωijj′ = Pr(Yi1j = 1, Yi2j′ =
1) can now be calculated by the bivariate cumulative probabilities Fijj′ ’s as
ωijj′ = Fijj′ − Fij−1j′ − Fijj′−1 + Fij−1j′−1, for i = 1, . . . , N and j, j′ = 1, . . . , K,
with usual boundary conditions for Fijj′ , when j = 0, K or j′ = 0, K. This implies
that we can write the joint cell probability, ωijj′ , as a function of the marginal
cumulative probabilities and the global odds ratios.

3.2 Generalized estimating equations method

Here, we briefly describe the GEE method by Williamson et al. (1995). Letβ and
α be the mean and association parameters, respectively. Let Yi = (

YT
i1, YT

i2

)T
and

πi = (
πT

i1 ,πT
i2

)T
where Yit = (

Yit1, . . . , YitK−1
)T and πit = (

πit1, . . . ,πitK−1
)T for

t = 1, 2. The mean model is the model of (1). For the mean parameter estima-
tion, we solve the first set of estimating equations,

S1(β,α) =
N∑

i=1

DT
i V−1

i (Yi − πi) = 0, (4)

where Di = ∂πi(β)
/
∂βT , and Vi is the working covariance matrix of Yi, which

is a function of the parameter β and α, and approximates Var(Yi). The matrix
Vi is a block matrix,

Vi =
(

Vi11 Vi12
Vi21 Vi22

)

,
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where Vitt = diag(πit) − πitπ
T
it for t = 1, 2 are (K − 1) × (K − 1) multinomial

covariance matrices of the left and right eye responses, respectively, for individ-
ual i. The off-diagonal block matrix VT

i12 = Vi21 = Vi21(β,α) is a (K−1)×(K−1)
covariance matrix of the responses between two eyes of an individual, with (j, j′)
element Cov

(
Yi1j, Yi2j′

) = E
(
Yi1jYi2j′

) − E
(
Yi1j

)
E

(
Yi2j′

) = ωijj′ − πi1jπi2j′ .
Let UT

i =(
Ui11, . . . , Ui1K, Ui21, . . . , UiKK−1

)
andωT

i =(ωi11, . . . ,ωi1K,ωi21, . . . ,
ωiKK−1

)
, where Uijj′ = Yi1jYi2j′ has the expectation E(Uijj′) = Pr(Uijj′ = 1) =

ωijj′ and Ui and ωi are K2 − 1 dimensional vectors. To estimate the parameters
of the global odds ratio model, we solve the second set of estimating equations,

S2(β,α) =
N∑

i=1

CT
i G−1

i (Ui − ωi) = 0, (5)

where Ci = ∂ωi
/
∂αT and Gi = Var(Ui) = diag(ωi) − ωiω

T
i . A Fisher-scoring

type algorithm will be employed to solve the two sets of estimating equations
through back-and-forth iteration, S1(β,α) = 0 and S2(β,α) = 0, for estimat-
ing β and α. The robust and model-based variance estimates of β̂ and α̂ are
calculated (Lipsitz et al., 1991; Williamson et al., 1995). If true mean model is
assumed, the two variance estimates are close when the association model is
close to the true model. Note that GEE method gives consistent estimates for
the mean parameters, only if the mean model is correct, irrespective of correct
specifications of the association model, i.e., robust to the assumption of higher
order moments, though the GEE method would lose efficiency since it only uses
marginal information in the mean parameter estimation and is not likelihood
based.

3.3 Bivariate maximum likelihood method

In the bivariate ML method (Dale 1986), the log-likelihood is a multinomial
likelihood and can be written l(β,α)=∑N

i=1
∑K

j=1
∑K

j′=1Uijj′ logωijj′
(
γi1j, γi2j′ ,ψijj′

)
,

where ω’s are the functions of ξT = (βT ,αT) through γ ’s and ψ ’s. We call this
fixed effect ML model a classical ML model since the models for both mean
and association are fully specified. The score equation can be expressed as
(McCullagh and Nelder, 1989),

S(ξ) = ∂l
∂ξ

=
N∑

i=1

ET
i G−1

i (Ui − ωi) = 0, (6)

where Ei = ∂ωi
/
∂ξT . The estimate of ξcan be obtained by solving the score

equation with Fisher-scoring algorithm. When all ψijj′ = 1, the GEE method,
Eq. (4), and the ML score Eq. (6) coincide and are called the independence esti-
mating equations (IEE’s). Note that the classical ML method gives consistent
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and fully efficient estimates only when true models for both mean and asso-
ciation are assumed but correct specifications for both mean and association
models are usually difficult.

3.4 Univariate worse-eye method

Let Mi = max(PSi1, PSi2) be the worse-eye outcome of a subject i. Assume
proportional odds model for �ij = Pr(Mi ≤ j |Xi ) = Fijj:

logit
(
�ij

) = log
(

�ij

1 − �ij

)

= δj − XT
i β2, (7)

where δj, j = 1, . . . , K−1 is cutoff point parameter, Xi is a subject level covariate
vector, and β2 is a regression parameter vector. Since cataract is an irreversible
lens disease, the outcome of the worst eye can be seen as the response of the
subject or the subject level response. The parameter vector β2 can be thought
of as the subject level regression parameter vector. This is a multinomial gen-
eralized linear model (McCullagh and Nelder, 1989) and can be fit by common
software like STATA and SAS.

3.5 Model selection

In the mean model selection, two model selection criteria, AIC (Akaike, 1973)
for the likelihood method and QIC (Pan, 2001) for the GEE method, are used,

AIC = −2 × log likelihood + 2 × p, (8)

where p is the total number of parameters in the model and

QIC(R) = −2 × QL
(
β̂
)

+ 2 × trace
(
̂IV̂R

)
, (9)

where β̂ is the GEE mean parameter estimate, QL
(
β̂
)

is log-likelihood for inde-

pendence model, i.e., multinomial likelihood, evaluated at β̂, ̂I is the inverse
of the model-based variance of β̂ in the independence model evaluated at β̂,
and V̂R is the robust variance estimate of β̂ in the GEE.

QIC(R) is the model selection criterion for GEE based on the non-indepen-
dence association model, whereas later we use QIC(Ind) criterion, which is a
QIC model selection criterion based on IEE. Since IEE is a likelihood-based
method, we can use AIC as well. However, since the IEE model is possibly
the wrong model for our data set and QIC(Ind) takes into consideration the
difference between model-based and robust variances, we need to use QIC(Ind)
instead of AIC, which was suggested by Pan (2001).
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4 Application

We apply the methods described in the Statistical methods section to the com-
plete PS data of atomic-bomb survivors in Hiroshima and Nagasaki, assum-
ing symmetric response probabilities between left and right eyes. The basic
main effect model for the mean is logit

(
Pij

) = κj − τCC − τSS − τBB − τDD,
where Pij = γi1j = γi2j or Pij = �ij, C is city variable (zero for Hiroshima
and one for Nagasaki), S is sex variable (zero for male and one for female),
B = (age at exposure − 10)/10 is birth cohort variable, and D is the DS02 eye
radiation dose (Sv). κj’s are the cutoff points for j = 1, . . . , K − 1 = 4 and
τ ’s are the regression parameters. We will denote the above mean model as
C + S + B + D. In GEE application, we assumed a simple constant global odds
ratio association model, log

(
ψijj′

) = �0 as suggested by Lumley (1996) and
O’Hara Hines (1997).

The full mean model is C+S+B+D+CS+CB+SB+CD+SD+BD, where
CS stands for sex by city interaction, CB for birth cohort by city interaction,
SB for birth cohort by sex interaction, CD for dose by city interaction, SD for
dose by sex interaction, and BD for dose by birth cohort interaction. The above
full model comprised subject level covariates since one can assume risks of lens
opacity to be symmetric between left and right eyes. Model selection was made
among all hierarchical sub-models of the full model, where the model is said to
be hierarchical if an interaction is included in the model, then the main effects
are included in the model as well.

In the mean model selection, since the data distribution is highly skewed in
radiation dose and more than two-thirds of the subjects are in the low dose range
(<0.5 Sv), the background model selection with whole data was made without
radiation dose term. The full background model is C + S + B + CS + CB + SB.
There are 18 hierarchical sub-models. Among them, the nearly best background
models, including the best background model, were selected by AIC or QIC cri-
teria. Next, the best model with dose terms was selected by AIC or QIC model
selection criteria. By this procedure, the best dose response model would be
selected. All significance tests were by two-sided Wald test. STATA and GAUSS
software packages were used for all computations.

The best model for univariate analysis is C + S + B + D + BD, as indicated
in Table 2. The dose effect was highly significant (p < 0.001). The dose by birth
cohort interaction was significant (p = 0.020). The IEE and GEE best model
selected by QIC(Ind) and QIC(R) criteria, respectively, are the same as the
best univariate model. Table 3 shows the IEE best model selected by QIC(Ind)
criterion. Table 4 shows the GEE best model selected by QIC(R) criterion. The
dose effect was again highly significant (p < 0.001) for IEE and GEE analyses
and p-values of dose by birth cohort interaction were 0.017 for IEE analysis
and 0.016 for GEE analysis. The global odds intercept estimate was about 3.64,
which implies a global odds ratio estimate of 38.1. The IEE and GEE robust
standard errors (SE’s) are slightly smaller than the univariate SE’s. The differ-
ence between robust and model-based SE’s is large in IEE but small in GEE.
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Table 2 Parameter estimates of the AIC best model in univariate analysis of PS using worse-eye
method (cutoff point parameters are excluded)

Variable Estimate Std error Odds ratio 2-sided p*

City (Naga/Hiro) 0.479 0.180 1.61 0.008
Sex (fem/male) 0.376 0.183 1.46 0.039
B: (age_at_exp-10)/10 1.089 0.159 2.97 <0.001
Dose 0.375 0.097 1.45 <0.001
B×Dose −0.299 0.129 0.74 0.020

∗Wald test; AIC = 1042.2

Table 3 IEE best model selected by QIC(Ind) for PS data (cutoff point parameters are excluded)

Variable Estimate Std errora Odds ratio 2-sided p*

City (Naga/Hiro) 0.518 0.177 (0.135) 1.68 0.003
Sex (fem/male) 0.330 0.180 (0.138) 1.39 0.067
B: (age_at_exp-10)/10 1.064 0.157 (0.119) 2.90 <0.001
Dose 0.445 0.090 (0.074) 1.56 <0.001
B×Dose −0.294 0.123 (0.096) 0.75 0.017

a Robust standard error (model-based standard error)

* Wald test using robust standard error; QIC(Ind) = 1745.8

Table 4 GEE best model selected by QIC(R) for PS data (cutoff point parameters are excluded)

Variable Estimate Std errora Odds ratio 2-sided p*

City (Naga/Hiro) 0.518 0.177 (0.176) 1.68 0.004
Sex (fem/male) 0.327 0.180 (0.179) 1.39 0.069
B: (age_at_exp-10)/10 1.072 0.157 (0.155) 2.92 <0.001
Dose 0.445 0.090 (0.097) 1.56 <0.001
B×Dose −0.296 0.123 (0.127) 0.74 0.016

a Robust standard error (model-based standard error)

* Wald test using robust standard error; log of association parameter estimate = 3.64 (robust SE =
0.245); QIC(R) = 1502.1

The robust SE’s are exactly the same in both the IEE and GEE analyses. The
risks in the tables show that the three methods provide nearly equal results.

We modeled the association of bivariate response in GEE analysis in other
ways, with log

(
ψijj′

) = �0 + αCC + αSS + αBB + αDD, and the symmetric
exchangeable association model log

(
ψijj′

) = �0 +�j +�j′ +�jj′ with 15 param-
eters. With the best mean model, QIC(R) was 1494.3 for the first association
model and 1478.8 for the second symmetric exchangeable association model,
whose QIC(R) values are smaller than the QIC(R) value of 1502.1 given in
Table 4. This is because QIC(R) did not take into account the number of parame-
ters in the association model. However, once again the robust SE’s for the mean
parameter estimates did not differ at all among the two association models and
were almost equal to those presented in Tables 3 and 4. At least in the present



Statistical methods for lens opacity data 475

bivariate polytomous data, the complication of association improved the QIC;
however, the complication did not at all improve the estimation efficiency.

5 Considerations for bias

If we assume the symmetric marginal response probabilities γij = γi1j = γi2j
for j = 1, . . . , K − 1 in the left and right eyes, then, from formula (3), the
probability distribution of univariate response using the worse-eye method,
Mi = max(PSi1, PSi2), is, neglecting suffix i,

Pr (M ≤ j) = �j = γj + 1 − √
Qjj

2(ψjj − 1)
, (10)

where Qjj = {
1 + 2γj(ψjj − 1)

}2 + 4ψjj(1 −ψjj)γ
2
j = 1 + 4(ψjj − 1)γj(1 − γj). The

true response probability is thought to be the bivariate marginal probability
γj, while the univariate probability �j approximates γj. Therefore, a bias of the
dose response parameter in �j compared with the one in γj can be considered.
Figure 1 describes the transformation curve between �j and γj at various values
of the constant global odds ratio association ψjj = ψ . When ψ = 1, i.e., left and
right eyes are independent, then �j = γ 2

j , and when ψ tends toward ∞, then
�j = γj; that is, when ψ is very large, modeling �j = Pr(M ≤ j) is equivalent to
modeling γj = Pr(PS1 ≤ j) = PR(PS2 ≤ j), which results in an identical model
in both univariate and bivariate analyses. In our situation, the estimate of ψ is
about 38.1, resulting in �j ≈ γj, as shown in Fig. 1. Some bias in the parameter
estimate is, however, caused by the curvature between�j and γj whenψ is finite.
When ψ is smaller, however, the bias becomes larger in the univariate analysis.
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Fig. 1 Relationship between univariate response probability �j and bivariate response probability
γj at various values of global odds ratio
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We can calculate bias in the linear predictor of the univariate response prob-
ability � = logit−1(δ + β2D) compared with that of bivariate marginal proba-
bility γ = logit−1(θ + β1D) in the binary case, as indicated in the Appendix.
The left panel in Fig. 2 shows the bias in terms of radiation dose, where the
example model is logit(γ ) = −1.386 − 0.4D, with background prevalence 0.2
and odds ratio per Sv = 1/1.5. There are negative biases in intercept and slope
in all cases; however, when ψ is large, the negative slope bias is small. The right
panel in Fig. 2 shows the bias in terms of radiation dose, where the example
model is logit(γ ) = −1.386 + 0.4D, with background prevalence 0.2 and odds
ratio per Sv = 1.5. There are negative biases in intercept and positive biases in
slope in all cases; however, when ψ is large, the positive slope bias is small. In
both cases above, the logit of � is approximately linear in dose D, though the
univariate dose response parameter β2 is exaggerated compared with bivariate
parameter β1. If the background prevalence is 0.9, these biases are very slight
or non-existent, irrespective of the value of the association and the sign of the
slopes. When γ ≈ 0.5, we can derive the relationship between the dose response
parameters β2 and β1 as (see Appendix),

β2 ≈ β1

(
1 + √

ψ
)2

√
ψ

(
2 + √

ψ
) . (11)

Thus, β2 is exaggerated when compared with β1, since the factor is always
greater than one. The bias is less than 33% if ψ ≥ 1, and when global odds
ratio is greater than 30, the bias is smaller than 3%. Note that in a mean model
with various continuous and indicator independent variables, the biases can
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Fig. 2 Bias in linear predictor in univariate analysis compared with bivariate analysis for binary
cases in various global odds ratio ψ , with background prevalence of 0.2 and the odds ratios per Sv
in dose response 1/1.5 for the left panel and 1.5 for the right panel
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be serious or result in a totally different model in model selection when the
association is small.

6 Standard errors and wald statistics

Simulation studies were made under the assumption of a bivariate ordered
trinomial setting. The model is logit

(
γtj

) = θj + 2.0X for t = 1, 2 with cutoff
points θ1 = −1.0, θ2 = 0.5 and a slope 2.0 for a subject level covariate X being
uniformly distributed covariate on (0, 1). A constant GOR was assumed. The
sample size was 1,000, which is a large sample. The upper panel in Fig. 3 shows
the ratios of SE’s relative to the ML model-based SE, which is the correct
SE. Below a GOR of 20, the univariate SE is inflated more than about 10%
compared with the ML model-based SE. The IEE model-based SE provides
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Fig. 3 Ratio of standard errors (upper panel) and ratio of Wald test (lower panel) of various meth-
ods relative to ML model standard error and the Wald test, respectively, with bivariate trinomial
data generated under the model logit

(
γtj

) = θj +2.0X; θ1 = −1.0, θ2 = 0.5 for t = 1, 2 with constant
GOR and sample size = 1,000. The model SE indicates the model-based SE
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a smaller SE than the correct SE, which results in Type I error rate becoming
larger than the nominal level. Interestingly, the IEE method with robust SE,
and GEE method with model-based and robust SE were almost fully efficient
in parameter estimation in all ranges of GOR in these simulations.

The lower panel in Fig. 3 gives the ratios of Wald statistics relative to the
statistics based on ML model SE, or the correct Wald test statistics. The uni-
variate Wald test statistic is somewhat conservative in the small range of GOR.
The Wald test statistics based on IEE model-based SE are always liberal with
inflated Type I error rate. The IEE Wald test based on robust SE, and the GEE
Wald test based on model-based and robust SE’s are correct Wald tests. In both
standard errors and Wald statistics shown in Fig. 3, the IEE method with robust
SE is useful, though the IEE is a simpler method.

We considered the case when GOR association between left and right eyes
depends on a covariate. The IEE robust SE, and GEE model-based and robust
SE performed similarly well, as shown in Fig. 3, irrespective of whether the
covariate in GOR was in the mean or not and the level of response, K. The
Wald test statistics also performed similarly well, the same way as shown in
Fig. 3.

Under the non-symmetric model logit
(
γtj

) = θj +2.0X +0.7(t−1) for t = 1, 2
with θ1 = −1.0, θ2 = 0.5 and a constant GOR, we also performed a simulation
to confirm the performance of SE for the estimates of a subject level covariate,
X, and a within subject level covariate, t − 1. The IEE method with robust
SE, and GEE method with model-based and robust SE were highly efficient in
parameter estimation in the smaller GOR range i.e., less than 50. When GOR
became larger, we saw a slight discrepancy between the GEE model-based and
robust SE’s. A slight efficiency loss of the robust SE was observed for both
subject level covariates and within subject level covariates. We made a similar
simulation study of the sample size 500. The performance of the SE’s and Wald
statistics were almost similar to the case of sample size 1,000.

7 Discussion

A number of methods exist for combining outcomes from both eyes into a single
person-level outcome. Gange et al. (1995) used the composite response method
in investigating diabetic retinopathy. The researchers produced a 2K − 1 level
univariate response from K level bivariate responses and applied a proportional
odds model to the univariate response. Thus, the method they developed differs
from ours in that it combines a bivariate response into a univariate response.
However, we think our method is more natural and convenient. Gange et al.
(1995) compared the GEE method for bivariate analysis based on correlation
with the analysis using a composite method, and concluded that when there
are only person level covariates it is appropriate to use the composite response
method. In the present lens opacity data, we came to the same conclusion for
our univariate method.
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Gange et al. (1995) showed the bias of regression parameters of the compos-
ite response method compared with the bivariate GEE method in a binary case.
We can derive the bias in terms of correlation, ρ, of bivariate outcomes since

we have a relationship ψ =
(

1+ρ
1−ρ

)2
at γ ≈ 0.5. We then obtain the relationship,

β1

(
1 + √

ψ
)2

√
ψ

(
2 + √

ψ
) = β1

(
1

1 + ρ
+ 1

3 − ρ

)

, (12)

at γ ≈ 0.5, the right-hand formula of which is given by Gange et al. (1995). In
polytomous cases, i.e., when the number of the response level is greater than or
equal to 3, the regression parameter of the proportional odds model shown in
formula (1) is a common combined parameter of the K − 1 parameters of the
binary logistic model for K − 1 sets of new binary data, which are produced in
giving zero for the response greater than or equal to j and one for the response
less than j for j = 2, 3, . . . , K. Thus, the result of the bias for the binary model
discussed in Sect. 5 is applicable to the polytomous case. That is, the fact that
univariate analysis exaggerates the parameter is also true for the polytomous
case although if GOR is large, e.g., GOR > 30, the bias is small.

The results of the simulation comparison of SE’s and Wald statistics, Fig. 3,
were similar to results by Gange et al. (1995). However, we made comparisons
with the ML method, the points of which differ from the comparison by Gange
et al. (1995). In addition to the fact that the GEE method is consistent and
robust to the assumption of higher order moment, it is notable that, when only
subject level covariates are included in the mean model, efficiency loss in the
GEE method is little for bivariate qualitative ordered polytomous data analysis.
The bivariate IEE with robust SE and GEE with model-based or robust SE are
recommended instead of univariate analysis when the association is small or
within subject level covariates are included in the mean model. Our bivariate
ML model is a classical fixed effect model and the model is fully specified.
Therefore, model checking is possible, while, with the GEE method, the model
checking is probably impossible or difficult (Lee and Nelder, 2004) because
only the marginal means are specified. The GEE method has a defect in model
checking, but in mean parameter estimation it is superior to the classical ML
method.

Among 730 subjects, 28 were examined in only one eye, and 39 subjects were
not examined in both eyes. Unbalanced data were obtained when the photo-
graph was out of focus, irrespective of the degree of lens opacity, which indicates
that the missing data mechanism is missing completely at random (Diggle et al.
2002). The missing data can be easily handled with the GEE method, since GEE
uses only marginal responses. But our univariate and bivariate ML methods can-
not cope with missing responses since Mi = max (PSi1, PSi2) and Uijj′ = Yi1jYi2j′
are not determined and become missing when one of the lens opacities of both
eyes is missing. The GEE method therefore is superior to our ML method in
treating the unbalanced data. From chap. 13 in Diggle et al. (2002), if the miss-
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ing data mechanism is at random, i.e., missing at random (MAR) or missing
completely at random (MCAR), then the joint density of the observed response
and the missing response indicator can be written without the missing response.
Under MCAR, the observed response Y(o) and the missing response indicator
R are independent, the joint density can be expressed as f

(
y(o), r

) = f1(r)f2
(
y(o)

)

with the marginal densities f1 and f2 for variables R and Y(o), respectively, and
we put E

(
Y(o)

) = µ. Under MAR, a weaker condition than that of MCAR, the
joint density is expressed as f

(
r, y(o)

) = f1|2
(
r
∣
∣y(o)

)
f2

(
y(o)

)
with f1|2 being the

conditional density of R given Y(o), in which the two variables are not inde-
pendent, and in this case E

(
Y(o)

) �= µ. These imply the following two points.
The mean–variance relationship in the first set of GEE (4) indicates that the
missing data mechanism is implicitly assumed to be MCAR. If the missing data
mechanism is MAR, then the mean and the working variance in GEE have to
be adjusted for bias, taking the missing data mechanism into consideration. On
the other hand, with the likelihood method, if the missing data mechanism is
at least MAR, we expect no bias in the parameter and little or no loss of infor-
mation in the estimation (Diggle et al., 2002). The discussion above indicates
that there is a tradeoff between GEE and our likelihood methods in terms of
handling of the missing data and assumption of the missing data mechanism.

In the current GEE analysis, there was a marginally significant positive side
effect (p = 0.041), which is the common difference between cutoff points of left
and right eye responses, with left eye response being baseline. We assumed the
model, except side effect variable, was the same as the present best model, i.e.,
T +C +S+B+D+BD in our notation with QIC(R) = 1498.7, where T stands
for side effect. The data suggest that the right eye PS is a lower opacity grade
than the left eye PS. Everyone has one dominant eye. We suspect that this dom-
inance was the cause of the side effect in our analysis. That is, the dominant eye
is less affected by posterior sub-capsular lens opacity. The GOR associations of
bivariate data for NC, NO and CC were larger than that of PS and were 201,
175, and 42, respectively. The results from univariate and bivariate analyses in
terms of subject level covariates coincided and are shown in Nakashima et al.
(2006).
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Appendix

In the binary case, � can be written as � = γ + h(γ ,ψ), where h(γ ,ψ) = 0 if

ψ = ∞; h(γ ,ψ) =
{

1 − √
1 + 4(ψ − 1)γ (1 − γ )

}
/{2(ψ − 1)} if 1 < ψ < ∞ and
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h(γ ,ψ) = −γ (1 − γ ) if ψ = 1. We then have �
1−� = γ

1−γ
1+h/γ

1−h/(1−γ ) . The bias of

the linear predictor B = logit(�) − logit(γ ) = log
{

1+h/γ
1−h/(1−γ )

}
is a function of

γ and ψ . The bias of the slope parameter can be calculated as ∂B
∂D . The relative

bias of the slope parameter is approximately 1√
ψ(2+√

ψ)
when γ ≈ 0.5.
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