The semi-Sibuya distribution

Nadjib Bouzar

Received: 20 July 2004 / Revised: 23 October 2006 / Published online: 23 February 2007 © The Institute of Statistical Mathematics, Tokyo 2007

Abstract In this note we propose several characterizations of the Sibuya distribution. A related distribution we call the semi-Sibuya distribution is introduced and studied.

Keywords The Sibuya distribution · Probability generating functions · Discrete semistability

1 Introduction

Sibuya (1979) introduced the discrete distribution with probability generating distribution (pgf)

$$P(z) = 1 - (1 - z)^{\gamma}, \tag{1}$$

for some parameter $\gamma \in (0, 1]$. This distribution is known as the Sibuya distribution with exponent γ . A random variable (rv) with a Sibuya distribution can be represented as one plus a variable with a special generalized hypergeometric distribution (see Sibuya 1979). Devroye (1993) offered a similar distributional representation of the Sibuya distribution by way of a Poisson mixture. Christoph and Schreiber (2000) introduced and studied a more general distribution called the scaled Sibuya distribution with exponent $\gamma \in (0, 1]$ and scale parameter $\lambda \in (0, 1]$, and referred to as the Sibuya(γ, λ) distribution.

N. Bouzar (⊠)

Department of Mathematics and Computer Science,

University of Indianapolis, Indianapolis, IN 46227, USA e-mail: nbouzar@uindy.edu

Its pgf is

$$P(z) = 1 - \lambda (1 - z)^{\gamma}.$$
 (2)

The scaled Sibuya(γ , λ) distribution results from a mixture of a Sibuya(γ , 1) distribution and a distribution concentrated at zero; with weighing factors λ and $1 - \lambda$.

In this note, we show that the scaled Sibuya distribution arises as the solution of some functional equations. We also introduce a related discrete distribution we call the semi-Sibuya distribution. We establish several properties of the semi-Sibuya distribution, including characterizations in terms of its pgf. Results that relate the class of Sibuya distributions with the classes of semi-Sibuya distributions are also given.

We recall the definition of the binomial thinning operation \odot

$$\alpha \odot X = \sum_{i=1}^{X} X_i, \tag{3}$$

where X is a \mathbb{Z}_+ -valued rv, $\alpha \in (0, 1)$, and $\{X_i\}$ is a sequence of independent identically distributed (iid) Bernoulli(α) rv's independent of X (see Steutel and van Harn, 2004).

2 The semi-Sibuya distribution

We show that the scaled Sibuya distribution arises as a solution of some functional equations. This results in several new characterizations of the distribution.

Theorem 1 Let X be a \mathbb{Z}_+ -valued rv with pgf P(z) and with P(0) < 1. The following assertions are equivalent.

(i) For every integer $n \ge 1$, there exists $c_n \in (0, 1]$ (with $c_1 = 1$) such that

$$P(1 - c_n + c_n z) = 1 - \frac{1}{n} + \frac{1}{n}P(z) \quad (0 \le z \le 1).$$
(4)

(ii) There exists $\gamma > 0$ such that for every real number $x \ge 1$,

$$P(1 - x^{-1/\gamma} + x^{-1/\gamma}z) = 1 - \frac{1}{x} + \frac{1}{x}P(z) \quad (0 \le z \le 1).$$
(5)

(iii) There exists $\gamma > 0$ such that for every $\alpha \in (0, 1)$,

$$P(1 - \alpha + \alpha z) = 1 - \alpha^{\gamma} + \alpha^{\gamma} P(z) \quad (0 \le z \le 1).$$
(6)

(iv) There exists $\gamma > 0$ such that for every $n \ge 1$,

$$n^{-1/\gamma} \odot X \stackrel{d}{=} I_n X_n \tag{7}$$

where I_n is Bernoulli(1/n), $X_n \stackrel{d}{=} X$ and I_n and X_n are independent (v) X has a scaled Sibuya (γ, λ) distribution for some $\lambda, \gamma \in (0, 1]$.

Proof (i) \Rightarrow (ii): we use an argument due to Steutel and van Harn (2004) in their proof of a similar result on discrete stability (Theorem V. 5.1, p 263). By (4), $(c_n, n \ge 1)$ is nonincreasing. Let $c(x) = c_x$ for x integer, $x \ge 1$. Moreover, again by (4), we have for all integers $x, y \ge 1$,

$$c(xy) = c(x)c(y).$$
(8)

The function c(x), as well as Eqs (4) and (8), can be shown to extend to all rationals $x \ge 1$ by letting $c(x) = c_n/c_k$ for x = n/k, $n \ge k$. A limiting argument leads in turn to the extension of c(x), (4), and (8) to all reals $x \ge 1$ (see the reference above for details). By (8) and the fact that $c(x) \le 1$, we have $c(x) = x^{-1/\gamma}$ for some $\gamma > 0$. Thus (5) holds. (ii) \Rightarrow (iii) is immediate by letting $x = \alpha^{-\gamma}$ in (5). Assuming (iii) and setting z = 0 and then $\alpha = 1 - z$ for $z \in (0, 1)$ in Eq. (6) yields $P(z) = 1 - \lambda(1 - z)^{\gamma}$ for all $z \in [0, 1]$, where $\lambda = 1 - P(0)$. Since P(z)is a pgf, $P''(0) \ge 0$ implies $\gamma \in (0, 1]$ and hence (\dot{v}) holds. The representation (7) follows from (2) and (3) for every $n \ge 1$, and thus (\dot{v}) \Rightarrow (iv). Finally, if (iv) holds, then (4) results from (7) by letting $c_n = n^{-1/\gamma}$.

It is of interest to study the solution of the functional Eq. (6) if the latter is restricted to hold for a single value of $\alpha \in (0, 1)$ (or, equivalently, when (5) is restricted to hold for a single value of x > 1). This leads to the following definition.

Definition 1 A nondegenerate distribution on \mathbb{Z}_+ is said to be semi-Sibuya if its pgf P(z) satisfies the functional Eq. (6) for some $\gamma > 0$ and $\alpha \in (0, 1)$. We will refer to γ (respectively α) as the exponent (respectively, the order) of the distribution.

It follows easily from the definition above that a semi-Sibuya distribution with exponent $\gamma = 1$ is necessarily a Bernoulli distribution.

A few additional properties are listed below without proof.

- **Proposition 1** (i) If there exists a semi-Sibuya distribution with exponent $\gamma > 0$ and order $\alpha \in (0, 1)$, then, necessarily, $0 < \gamma \leq 1$. In addition, if this distribution has finite mean, then $\gamma = 1$.
- (ii) If $(p_n, n \ge 0)$ is a semi-Sibuya distribution with exponent $\gamma \in (0, 1)$ and order $\alpha \in (0, 1)$, then $p_n > 0$ for every $n \ge 1$.
- (iii) A \mathbb{Z}_+ -valued rv X has a semi-Sibuya distribution with exponent $\gamma \in (0,1)$ and order $\alpha \in (0,1)$ if and only if it satisfies the equation $\alpha \odot X \stackrel{d}{=} IX$, where I is a Bernoulli(α^{γ}) rv independent of X.

An example of a semi-Sibuya distribution is presented next. Let $\alpha, \gamma \in (0, 1)$ and $\beta \in (0, 1]$. We define

$$P(z) = 1 - \beta c \int_0^\infty (1 - e^{-(1-z)x}) x^{-1-\gamma} \left| \sin \frac{2\pi \ln x}{-\ln \alpha} \right| dx \quad (z \in [0,1]),$$
(9)

where $c = \left(\int_0^\infty (1 - e^{-x}) x^{-1-\gamma} \left| \sin \frac{2\pi \ln x}{-\ln \alpha} \right| dx \right)^{-1}$. P(z) is the pgf of $(p_n, n \ge 0)$ given by

$$p_0 = 1 - \beta$$
 and $p_n = \frac{\beta c}{n!} \int_0^\infty x^{n-1-\gamma} e^{-x} \left| \sin \frac{2\pi \ln x}{-\ln \alpha} \right| dx$ $(n \ge 1).$

A simple change of variable argument leads to

$$P(1-\alpha+\alpha z) = 1-\alpha^{\gamma}\beta c \int_0^\infty (1-e^{-(1-z)x})x^{-1-\gamma} \left|\sin\frac{2\pi\ln x}{-\ln\alpha}\right| dx = 1-\alpha^{\gamma}+\alpha^{\gamma}P(z).$$

Therefore, $(p_n, n \ge 0)$ is semi-Sibuya with exponent γ and order α .

Note that example (9) can be extended by replacing $\left|\sin \frac{2\pi \ln x}{-\ln \alpha}\right|$ with $\psi(\ln x)$ where $\psi(x)$ is a continuous bounded nonnegative and periodic function (with period $-\ln \alpha$).

Semi-Sibuya distributions can be characterized via their pgf's, as the next result shows.

Theorem 2 A distribution on \mathbb{Z}_+ is semi-Sibuya with exponent $\gamma \in (0,1]$ and order $\alpha \in (0,1)$ if and only if its pgf P(z) admits the representation

$$P(z) = 1 - (1 - z)^{\gamma} h(z) \quad (0 \le z < 1), \tag{10}$$

where $h(\cdot)$ satisfies $h(1 - \alpha + \alpha z) = h(z)$ for any $z \in [0, 1)$, or, equivalently,

$$P(z) = 1 - (1 - z)^{\gamma} g(|\ln(1 - z)|) \quad (0 \le z < 1),$$
(11)

where $g(\cdot)$, defined over $[0, \infty)$, is a periodic function with period $-\ln \alpha$.

Proof Clearly, if (10) holds for some $\gamma \in (0, 1]$ and $\alpha \in (0, 1)$, then P(z) satisfies (6) for all $z \in [0, 1)$, and hence, the distribution is semi-Sibuya. Conversely, if (6) holds for P(z) for some $\gamma \in (0, 1]$ and $\alpha \in (0, 1)$, then $h(z) = (1 - z)^{-\gamma} (1 - P(z))$ satisfies

$$h(1 - \alpha + \alpha z) = (\alpha (1 - z))^{-\gamma} (1 - P(1 - \alpha + \alpha z))$$

= $\alpha^{-\gamma} (1 - z)^{-\gamma} \alpha^{\gamma} (1 - P(z)) = h(z)$

for all for $z \in [0, 1)$, which implies (10). We conclude by showing that (10) and (11) are equivalent. If (10) holds, define $g(\tau) = h(1 - e^{-\tau})$ for $\tau \ge 0$. Then $g(|\ln(1 - z)|) = h(z)$ for any $z \in [0, 1)$. Moreover, $g(\tau - \ln \alpha) = h(1 - \alpha e^{-\tau}) = h(1 - \alpha e^{-\tau})$

 $h(1-\alpha+\alpha(1-e^{-\tau})) = h(1-e^{-\tau}) = g(\tau)$, which implies that $g(\cdot)$ is periodic with period $-\ln \alpha$ and thus (11) is proven. If (11) holds, define $h(z) = g(|\ln(1-z)|)$ for $z \in [0,1)$. Then $h(1-\alpha+\alpha z) = g(-\ln \alpha+|\ln(1-z)|) = g(|\ln(1-z)|) = h(z)$, implying (10).

Simple calculations show that the example of a semi-Sibuya distribution with pgf(9) admits the representation (10) with

$$h(z) = \beta c \int_0^\infty (1 - e^{-x}) x^{-1-\gamma} \left| \sin \frac{2\pi \ln(x/(1-z))}{-\ln \alpha} \right| dx \quad (z \in [0,1)).$$

and the representation (11) with

$$g(\tau) = \beta c \int_0^\infty (1 - e^{-x}) x^{-1-\gamma} \left| \sin \frac{2\pi (\tau + \ln x)}{-\ln \alpha} \right| dx \quad (\tau \ge 0).$$

We recall (Bouzar 2004) that a nondegenerate distribution on \mathbb{Z}_+ is said to be discrete semistable with exponent γ , γ necessarily in (0, 1], and order $\alpha \in (0, 1)$ if its pgf H(z) satisfies for all $|z| \leq 1$, $H(z) \neq 0$ and

$$\ln H(1 - \alpha + \alpha z) = \alpha^{\gamma} \ln H(z).$$
(12)

Proposition 2 A function P(z) over [0,1] is the pgf of a semi-Sibuya distribution with exponent $\gamma \in (0,1]$ and order $\alpha \in (0,1)$ if and only if

$$P(z) = 1 + c \ln H(z) \quad (0 \le z \le 1), \tag{13}$$

where H(z) is the pgf of a discrete semistable distribution with exponent γ and order α , and $0 < c \leq -1/\ln H(0)$.

Proof Assume P(z) is the pgf of a semi-Sibuya distribution with exponent $\gamma \in (0, 1]$ and order $\alpha \in (0, 1)$ and let $H(z) = \exp(P(z) - 1)$. H(z) is a pgf (of a compound Poisson distribution) which satisfies (12). Therefore, (13) holds with c = 1. Conversely, if H(z) is the pgf of a semistable distribution with exponent γ and order α , then the infinite divisibility of H(z) (Bouzar 2004) and the condition $0 < c \le -1/\ln H(0)$ imply that P(z) of (13) is a pgf. It follows easily from (12) that (6) holds for P(z).

We denote by *Sb* the class of scaled Sibuya distributions and by $SSb(\alpha)$, $\alpha \in (0, 1)$, the class of semi-Sibuya distributions of order α . It is easily seen that

$$Sb = \bigcap_{0 < \alpha < 1} SSb(\alpha). \tag{14}$$

An additional assumption leads to the following stronger result.

Theorem 3 If α_1 and α_2 in (0,1) are such that $\ln \alpha_1 / \ln \alpha_2$ is irrational, then

$$Sb = SSb(\alpha_1) \bigcap SSb(\alpha_2). \tag{15}$$

Proof Let P(z) be the pgf of a semi-Sibuya distribution. Note by (11) that P(z) is defined for all $z \leq 1$. Let A_P the set of all $\alpha \in (0, \infty)$ for which (6) holds for some $\gamma > 0$. Since P is the pgf of a semi-Sibuya distribution, $A_P \cap (0, 1) \neq \emptyset$. We prove that A_P is a closed multiplicative subgroup of $(0, \infty)$. Clearly, $1 \in A_P$. If α and α' belong to A_P with respective exponents $\gamma > 0$ and $\gamma' > 0$, then $P(1 - \alpha\alpha' + \alpha\alpha'z) = 1 - \alpha^{\gamma}\alpha^{\gamma'} + \alpha^{\gamma}\alpha^{\gamma'}P(z)$. Therefore, $\alpha\alpha' \in A_P$ with exponent $\ln(\alpha^{\gamma}\alpha^{\gamma'})/\ln(\alpha\alpha')$. Let $\alpha \in A_P$ with exponent $\gamma > 0$. Solving for P(z) in (6) yields $P(z) = 1 - \alpha^{-\gamma} + \alpha^{-\gamma}P(1 - \alpha + \alpha z)$, which implies that $P(1 - \alpha^{-1} + \alpha^{-1}z) = 1 - \alpha^{-\gamma} + \alpha^{-\gamma}P(z)$. Therefore, $\alpha^{-1} \in A_P$ (with exponent γ). To show that A_P is closed in $(0, \infty)$, let $(\alpha_n, n \ge 1)$ in A_P such that $\lim_{n\to\infty} \alpha_n = \alpha$ for some $\alpha > 0$. Let γ_n be the exponent corresponding to α_n through (6) and let $z_0 \in [0, 1)$ be such that $P(z_0) < 1$. It follows by (6) applied to (α_n, γ_n) that

$$\gamma = \lim_{n \to \infty} \gamma_n = \frac{1}{\ln \alpha} \ln \frac{1 - P(1 - \alpha + \alpha z_0)}{1 - P(z_0)} > 0$$

and that $\alpha \in A_P$ with exponent γ . Let $a_0 = \sup A_P \cap (0, 1)$. Using the same argument as the one in the proof of Theorem 13.11, p. 73, in Sato (1999), it can be shown that if $a_0 = 1$, then $A_P = (0, \infty)$, and if $a_0 < 1$, then $A_P = \{a_0^n : n \in \mathbb{Z}\}$. To establish (15) we only need to show that $SSb(\alpha_1) \cap SSb(\alpha_2) \subset Sb$. Let P(z)be the pgf of a distribution in $SSb(\alpha_1) \cap SSb(\alpha_2)$. Since $\ln \alpha_1 / \ln \alpha_2$ is irrational, α_1 and α_2 cannot be written as powers with some common base $a_0 > 0$ and integer exponents. It follows by the first part of the proof that $A_P =$ $(0, \infty)$. Therefore, P(z) satisfies (6) for every $\alpha \in (0, 1)$. The conclusion follows by (14).

Acknowledgments The author wishes to thank a referee for comments that led to a significant improvement of the paper.

References

- Bouzar, N. (2004). Discrete semi-stable distributions. Annals of the Institute of Statistical Mathematics, 56, 497–510.
- Christoph, G., Schreiber, K. (2000). Scaled Sibuya distribution and discrete self-decomposability. *Statistics and Probability Letters*, 48, 181–187.
- Devroye, L. (1993) A triptych of discrete distributions related to the stable law. *Statistics and Probability Letters 18*, 349–351.
- Sato, K. (1999) Lévy Processes and infinitely divisible distributions. Cambridge: Cambridge University Press.
- Sibuya, M. (1979). Generalized hypergeometric digamma and trigamma distributions. *Annals of the Institute of Statistical Mathematics*, *31*, 373–390.
- Steutel, F. W., van Harn, K. (2004). Infinite divisibility of probability distributions on the real line. New York: Marcel Dekker.