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Abstract In this note we propose several characterizations of the Sibuya
distribution. A related distribution we call the semi-Sibuya distribution is intro-
duced and studied.
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1 Introduction

Sibuya (1979) introduced the discrete distribution with probability generating
distribution (pgf)

P(z) = 1 − (1 − z)γ , (1)

for some parameter γ ∈ (0, 1]. This distribution is known as the Sibuya
distribution with exponent γ . A random variable (rv) with a Sibuya distri-
bution can be represented as one plus a variable with a special generalized
hypergeometric distribution (see Sibuya 1979). Devroye (1993) offered a simi-
lar distributional representation of the Sibuya distribution by way of a Poisson
mixture. Christoph and Schreiber (2000) introduced and studied a more gen-
eral distribution called the scaled Sibuya distribution with exponent γ ∈ (0, 1]
and scale parameter λ ∈ (0, 1], and referred to as the Sibuya(γ , λ) distribution.
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Its pgf is

P(z) = 1 − λ(1 − z)γ . (2)

The scaled Sibuya(γ , λ) distribution results from a mixture of a Sibuya(γ , 1)
distribution and a distribution concentrated at zero; with weighing factors λ
and 1 − λ.

In this note, we show that the scaled Sibuya distribution arises as the solution
of some functional equations. We also introduce a related discrete distribution
we call the semi-Sibuya distribution. We establish several properties of the
semi-Sibuya distribution, including characterizations in terms of its pgf. Results
that relate the class of Sibuya distributions with the classes of semi-Sibuya
distributions are also given.

We recall the definition of the binomial thinning operation �

α � X =
X∑

i=1

Xi, (3)

where X is a Z+-valued rv, α ∈ (0, 1), and {Xi} is a sequence of independent
identically distributed (iid) Bernoulli(α) rv’s independent of X (see Steutel and
van Harn, 2004).

2 The semi-Sibuya distribution

We show that the scaled Sibuya distribution arises as a solution of some
functional equations. This results in several new characterizations of the
distribution.

Theorem 1 Let X be a Z+-valued rv with pgf P(z) and with P(0) < 1. The
following assertions are equivalent.

(i) For every integer n ≥ 1, there exists cn ∈ (0, 1] (with c1 = 1) such that

P(1 − cn + cnz) = 1 − 1
n

+ 1
n

P(z) (0 ≤ z ≤ 1). (4)

(ii) There exists γ > 0 such that for every real number x ≥ 1,

P(1 − x−1/γ + x−1/γ z) = 1 − 1
x

+ 1
x

P(z) (0 ≤ z ≤ 1). (5)

(iii) There exists γ > 0 such that for every α ∈ (0, 1),

P(1 − α + αz) = 1 − αγ + αγP(z) (0 ≤ z ≤ 1). (6)
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(iv) There exists γ > 0 such that for every n ≥ 1,

n−1/γ � X d= InXn (7)

where In is Bernoulli(1/n), Xn
d= X and In and Xn are independent

(v) X has a scaled Sibuya(γ , λ) distribution for some λ, γ ∈ (0, 1].
Proof (i)⇒(ii): we use an argument due to Steutel and van Harn (2004) in their
proof of a similar result on discrete stability (Theorem V. 5.1, p 263). By (4),
(cn, n ≥ 1) is nonincreasing. Let c(x) = cx for x integer, x ≥ 1. Moreover, again
by (4), we have for all integers x, y ≥ 1,

c(xy) = c(x)c(y). (8)

The function c(x), as well as Eqs (4) and (8), can be shown to extend to all ratio-
nals x ≥ 1 by letting c(x) = cn/ck for x = n/k, n ≥ k. A limiting argument leads
in turn to the extension of c(x), (4), and (8) to all reals x ≥ 1 (see the reference
above for details). By (8) and the fact that c(x) ≤ 1, we have c(x) = x−1/γ for
some γ > 0. Thus (5) holds. (ii)⇒(iii) is immediate by letting x = α−γ in (5).
Assuming (iii) and setting z = 0 and then α = 1 − z for z ∈ (0, 1) in Eq. (6)
yields P(z) = 1 − λ(1 − z)γ for all z ∈ [0, 1], where λ = 1 − P(0). Since P(z)
is a pgf, P′′(0) ≥ 0 implies γ ∈ (0, 1] and hence (v̇) holds. The representation
(7) follows from (2) and (3) for every n ≥ 1, and thus (v̇)⇒(iv). Finally, if (iv)
holds, then (4) results from (7) by letting cn = n−1/γ . ��

It is of interest to study the solution of the functional Eq. (6) if the latter
is restricted to hold for a single value of α ∈ (0, 1) (or, equivalently, when (5)
is restricted to hold for a single value of x > 1). This leads to the following
definition.

Definition 1 A nondegenerate distribution on Z+ is said to be semi-Sibuya if
its pgf P(z) satisfies the functional Eq. (6) for some γ > 0 and α ∈ (0, 1). We
will refer to γ (respectively α) as the exponent (respectively, the order) of the
distribution.

It follows easily from the definition above that a semi-Sibuya distribution
with exponent γ = 1 is necessarily a Bernoulli distribution.

A few additional properties are listed below without proof.

Proposition 1 (i) If there exists a semi-Sibuya distribution with exponent γ >
0 and order α ∈ (0, 1), then, necessarily, 0 < γ ≤ 1. In addition, if this
distribution has finite mean, then γ = 1.

(ii) If (pn, n ≥ 0) is a semi-Sibuya distribution with exponent γ ∈ (0, 1) and
order α ∈ (0, 1), then pn > 0 for every n ≥ 1.

(iii) A Z+-valued rv X has a semi-Sibuya distribution with exponent γ ∈ (0, 1)

and order α ∈ (0, 1) if and only if it satisfies the equation α � X d= IX,
where I is a Bernoulli(αγ ) rv independent of X.
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An example of a semi-Sibuya distribution is presented next.
Let α, γ ∈ (0, 1) and β ∈ (0, 1]. We define

P(z) = 1 − βc
∫ ∞

0
(1 − e−(1−z)x)x−1−γ

∣∣∣sin
2π ln x
− ln α

∣∣∣ dx (z ∈ [0, 1]), (9)

where c =
(∫ ∞

0 (1 − e−x)x−1−γ
∣∣∣sin 2π ln x

− ln α

∣∣∣ dx
)−1

. P(z) is the pgf of (pn, n ≥ 0)

given by

p0 = 1 − β and pn = βc
n!

∫ ∞

0
xn−1−γ e−x

∣∣∣sin
2π ln x
− ln α

∣∣∣ dx (n ≥ 1).

A simple change of variable argument leads to

P(1 − α + αz) = 1 − αγ βc
∫ ∞

0
(1 − e−(1−z)x)x−1−γ ∣∣∣sin

2π ln x
− ln α

∣∣∣ dx = 1 − αγ + αγP(z).

Therefore, (pn, n ≥ 0) is semi-Sibuya with exponent γ and order α.

Note that example (9) can be extended by replacing
∣∣∣sin 2π ln x

− ln α

∣∣∣ with ψ(ln x)

where ψ(x) is a continuous bounded nonnegative and periodic function (with
period − ln α).

Semi-Sibuya distributions can be characterized via their pgf’s, as the next
result shows.

Theorem 2 A distribution on Z+ is semi-Sibuya with exponent γ ∈ (0, 1] and
order α ∈ (0, 1) if and only if its pgf P(z) admits the representation

P(z) = 1 − (1 − z)γ h(z) (0 ≤ z < 1), (10)

where h(·) satisfies h(1 − α + αz) = h(z) for any z ∈ [0, 1), or, equivalently,

P(z) = 1 − (1 − z)γ g(| ln(1 − z)|) (0 ≤ z < 1), (11)

where g(·), defined over [0, ∞), is a periodic function with period − ln α.

Proof Clearly, if (10) holds for some γ ∈ (0, 1] and α ∈ (0, 1), then P(z) satisfies
(6) for all z ∈ [0, 1), and hence, the distribution is semi-Sibuya. Conversely, if (6)
holds for P(z) for some γ ∈ (0, 1] and α ∈ (0, 1), then h(z) = (1−z)−γ (1−P(z))
satisfies

h(1 − α + αz) = (α(1 − z))−γ (1 − P(1 − α + αz))

= α−γ (1 − z)−γ αγ (1 − P(z)) = h(z)

for all for z ∈ [0, 1), which implies (10). We conclude by showing that (10) and
(11) are equivalent. If (10) holds, define g(τ ) = h(1 − e−τ ) for τ ≥ 0. Then
g(| ln(1 − z)|) = h(z) for any z ∈ [0, 1). Moreover, g(τ − ln α) = h(1 − αe−τ ) =
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h(1−α+α(1−e−τ )) = h(1−e−τ ) = g(τ ), which implies that g(·) is periodic with
period − ln α and thus (11) is proven. If (11) holds, define h(z) = g(| ln(1 − z)|)
for z ∈ [0, 1). Then h(1−α+αz) = g(− ln α+| ln(1−z)|) = g(| ln(1−z)|) = h(z),
implying (10). ��

Simple calculations show that the example of a semi-Sibuya distribution with
pgf (9) admits the representation (10) with

h(z) = βc
∫ ∞

0
(1 − e−x)x−1−γ

∣∣∣sin
2π ln(x/(1 − z))

− ln α

∣∣∣ dx (z ∈ [0, 1)),

and the representation (11) with

g(τ ) = βc
∫ ∞

0
(1 − e−x)x−1−γ

∣∣∣sin
2π(τ + ln x)

− ln α

∣∣∣ dx (τ ≥ 0).

We recall (Bouzar 2004) that a nondegenerate distribution on Z+ is said to be
discrete semistable with exponent γ , γ necessarily in (0, 1], and order α ∈ (0, 1)
if its pgf H(z) satisfies for all |z| ≤ 1, H(z) 
= 0 and

ln H(1 − α + αz) = αγ ln H(z). (12)

Proposition 2 A function P(z) over [0, 1] is the pgf of a semi-Sibuya distribution
with exponent γ ∈ (0, 1] and order α ∈ (0, 1) if and only if

P(z) = 1 + c ln H(z) (0 ≤ z ≤ 1), (13)

where H(z) is the pgf of a discrete semistable distribution with exponent γ and
order α, and 0 < c ≤ −1/ ln H(0).

Proof Assume P(z) is the pgf of a semi-Sibuya distribution with exponent
γ ∈ (0, 1] and order α ∈ (0, 1) and let H(z) = exp(P(z)− 1). H(z) is a pgf (of a
compound Poisson distribution) which satisfies (12). Therefore, (13) holds with
c = 1. Conversely, if H(z) is the pgf of a semistable distribution with exponent
γ and order α, then the infinite divisibility of H(z) (Bouzar 2004) and the con-
dition 0 < c ≤ −1/ ln H(0) imply that P(z) of (13) is a pgf. It follows easily from
(12) that (6) holds for P(z). ��

We denote by Sb the class of scaled Sibuya distributions and by SSb(α),
α ∈ (0, 1), the class of semi-Sibuya distributions of order α. It is easily seen that

Sb =
⋂

0<α<1

SSb(α). (14)
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An additional assumption leads to the following stronger result.

Theorem 3 If α1 and α2 in (0, 1) are such that ln α1/ ln α2 is irrational, then

Sb = SSb(α1)
⋂

SSb(α2). (15)

Proof Let P(z) be the pgf of a semi-Sibuya distribution. Note by (11) that P(z)
is defined for all z ≤ 1. Let AP the set of all α ∈ (0, ∞) for which (6) holds for
some γ > 0. Since P is the pgf of a semi-Sibuya distribution, AP ∩ (0, 1) 
= ∅.
We prove that AP is a closed multiplicative subgroup of (0, ∞). Clearly, 1 ∈ AP.
If α and α′ belong to AP with respective exponents γ > 0 and γ ′ > 0, then
P(1−αα′ +αα′z) = 1−αγ αγ ′ +αγ αγ ′

P(z). Therefore, αα′ ∈ AP with exponent
ln(αγ αγ

′
)/ ln(αα′). Let α ∈ AP with exponent γ > 0. Solving for P(z) in (6)

yields P(z) = 1−α−γ +α−γP(1−α+αz), which implies that P(1−α−1+α−1z) =
1−α−γ +α−γP(z). Therefore, α−1 ∈ AP (with exponent γ ). To show that AP is
closed in (0, ∞), let (αn, n ≥ 1) in AP such that limn→∞ αn = α for some α > 0.
Let γn be the exponent corresponding to αn through (6) and let z0 ∈ [0, 1) be
such that P(z0) < 1. It follows by (6) applied to (αn, γn) that

γ = lim
n→∞ γn = 1

ln α
ln

1 − P(1 − α + αz0)

1 − P(z0)
> 0

and that α ∈ AP with exponent γ . Let a0 = sup AP ∩ (0, 1). Using the same
argument as the one in the proof of Theorem 13.11, p. 73, in Sato (1999), it can
be shown that if a0 = 1, then AP = (0, ∞), and if a0 < 1, then AP = {an

0 : n ∈ Z}.
To establish (15) we only need to show that SSb(α1) ∩ SSb(α2) ⊂ Sb. Let P(z)
be the pgf of a distribution in SSb(α1) ∩ SSb(α2). Since ln α1/ ln α2 is irratio-
nal, α1 and α2 cannot be written as powers with some common base a0 > 0
and integer exponents. It follows by the first part of the proof that AP =
(0, ∞). Therefore, P(z) satisfies (6) for every α ∈ (0, 1). The conclusion follows
by (14). ��
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