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Abstract In recent years, median regression models have been shown to be
useful for analyzing a variety of censored survival data in clinical trials. For infer-
ence on the regression parameter, there have been a variety of semiparametric
procedures. However, the accuracy of such procedures in terms of coverage
probability can be quite low when the censoring rate is heavy. In this paper,
based on weighted empirical hazard functions, we apply an empirical likelihood
(EL) ratio method to the median regression model with censoring data and
derive the limiting distribution of EL ratio. Confidence region for the regres-
sion parameter can then be obtained accordingly. Furthermore, we compared
the proposed method with the standard method through extensive simulation
studies. The proposed method almost always outperformed the existing method.

Keywords Confidence region · Conditional Kaplan–Meier estimator ·
Martingale · Counting process · Right censoring · Weighted empirical
processes

1 Introduction

In the analysis of survival data, the accelerated failure time (AFT) model
is an alternative to the popular Cox proportional hazards model. Its ease of
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interpretation makes the AFT model appealing to the practitioners. Some re-
cent work includes Buckley and James (1979), Koul et al. (1981), Lai and Ying
(1992), Ritov (1990), Tsiatis (1990), Wei et al. (1990), Yang (1997a,b), among
others. When the error has mean zero, the AFT model can be viewed as a mean
model.

The median is a simple and meaningful measure for the center of a long-tailed
survival function. In biomedical setting, it is frequently of interest to estimate
median life length at given covariate levels. Median regression offers an attrac-
tive robust alternative to the AFT model. Information about the median life
length is immediate once the regression parameters are estimated. For uncen-
sored data, robust regression analysis can be obtained by the least absolute
deviations (LADs) method. The work in economic metric research includes
Bassett and Koenker (1978), Koenker and Bassett (1978), Powell (1984, 1986)
among others.

Ying et al. (1995) studied a median regression model where they allow error
to depend on covariate with conditional median zero. When the censoring vari-
ables are i.i.d. and independent of the covariate, they use Kapaln–Meier estima-
tor of the censoring distribution and a Koul et al. (1981) type inverse probability
weighting. When covariate depends on censoring it requires a nonparametric
procedure such as the nearest neighbor method for the censoring distribu-
tion. For uncensored data, Jung (1996) obtained an efficient estimating func-
tion for the median regression parameters based on quasi-likelihood. Recently,
McKeague et al. (2001) applied missing information principle to median regres-
sion model and proposed a new estimating function. When the covariate takes
values in a finite set, the proposed estimating function is equivalent to the esti-
mating function in Ying et al. (1995). However, in general, the two estimating
functions lead to different estimators of the regression parameter.

Yang (1999) proposed certain alternative semiparametric estimators, which
were based on some weighted empirical survival and hazard functions. The pro-
cedures do not require estimation of the censoring distributions. The assump-
tions on the censoring distributions and the covariate are quite general: The
censoring distributions can be different and covariate dependent, and the co-
variate need not be discretized. The proposed estimators perform well in the
simulation examples. See Yang (1999) for the discussion.

Our approach is based on the empirical likelihood (EL) method. EL method
is a powerful nonparametric method. It holds some unique features, such as
range respecting, transformation-preserving, asymmetric confidence interval,
Bartlett correctability, and better coverage probability for small sample (cf.
DiCiccio et al., 1991). Owen (1988, 1990) introduced empirical likelihood con-
fidence regions for the mean of a random vector based on i.i.d. complete data.
Since then, the EL has been widely applied to statistical inference. Some related
work includes simultaneous confidence band under a variety of setting [see
Hollander et al. (1997), Einmahl and McKeague (1999), Li and Van Keilegom
(2002), and McKeague and Zhao (2002, 2005, 2006)], linear regression model
with right censored data [Li and Wang, 2003; Qin and Jing, 2001], regression
analysis of long-term survival rate (Zhao 2005), additive hazard model with
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right censoring (Zhao and Hsu, 2005), mean residual life function [Zhao and
Qin, 2006], weighted EL (Glenn and Zhao, 2006), among others.

More recently, Qin and Tsao (2003) developed EL based confidence region
based on estimating equation of Ying et al. (1995). One advantage is that the
EL based confidence region is determined by the data set. The theoretical result
holds only when censoring is independent of the covariate, or when the covari-
ate is discrete. These constraints limit the application of the proposed method in
practice. Moreover, their simulation results show that the methods of Ying et al.
(1995) and Qin and Tsao (2003) had some undercoverage problems, sometimes
severely for small sample and heavy censoring.

In order to overcome the limitation of their methods, we use the EL approach
based on the estimating equation from Yang (1999). Specifically, we consider
the following median regression model for censored data. Let Ti (i = 1, . . . , n)

be the response of interest. Let Zi = (1, X ′
i )

′, where Xi is a p × 1 vector, be the
corresponding p + 1 dimensional covariate vector. Then the median regression
model is given by

Ti = β ′Zi + εi, (1)

where β is a (p + 1) × 1 vector of unknown regression parameter. The median
of εi is zero. We observe (Yi, �i), where Yi = min(Ti, Ci) and �i = I(Ti ≤ Ci).
The censoring variable Ci is assumed to be conditionally independent of Ti
given the covariate Zi for 1 ≤ i ≤ n. We find EL and adjusted EL confidence
regions for the unknown regression parameter. The simulation results demon-
strate the proposed EL method is more accurate than existing methods in terms
of coverage probability for small sample size.

The rest of the article is organized as follows. The proposed unadjusted EL
and adjusted EL confidence regions and main asymptotic result are presented
in Sect. 2. In Sect. 3, we conduct an extensive simulation study using fixed design
and random design. Proofs are contained in the Appendix.

2 Main results

2.1 Preliminaries

We consider the median regression model (1) with nonrandom covariate and
homogeneous errors. Suppose εis are i.i.d. with common cdf F whose median
is 0. We assume the censoring variables Cis are identically distributed with cdf
G. Let Z = (Z1, . . . , Zn)′ be the n × (p + 1) covariate matrix, with (i, j) element
Zij, i = 1, . . . , n, j = 1, . . . , p + 1, where Zi1 = 1. For −∞ < t < ∞ and any fixed
k × 1 vector b, let ei(b) = Yi − b′Zi and

Kj(t; b) =
n∑

i=1

ZijI(ei(b) ≥ t), j = 1, . . . , p + 1. (2)
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Yang (1999) defined the weighted empirical hazard functions,

�̂j(t; b) =
∑

ei(b)≤t

Zij�i

Kj(ei(b); b)
, j = 1, . . . , p + 1, (3)

and proposed the following estimating equation

�̂j(0; b) = log 2, j = 1, . . . , p + 1. (4)

Under mild conditions the estimating equation has a unique solution β̂.
Define

�nj(t; b) = 1
n

n∑

i=1

ZijḠ−(t + Z′
ib),

�njl(t; b) = 1
n

n∑

i=1

ZijZilḠ−(t + Z′
ib),

where D̄ = 1 − D for any distribution function D, A−(t) denotes the left limit
version of the function A(t). Let β be the true value of regression parameter in
model (1). As in Yang (1999), to derive the asymptotic normality of β̂, we need
the following conditions:

1. T1, . . . , Tn and C1, . . . , Cn are independent and Zij are nonrandom constants.
2. The covariate vector Z is nonnegative and bounded, i.e., ||Z|| ≤ M for some

positive constant M, where || · || is the Euclidean norm.
3. The limits �j(t) = limn �nj(t; β), j = 1, . . . , k, and �jl(t) = limn �njl(t; β), j, l =

1, . . . , k, exist, and inf j �j(c0) > 0 for some c0 > 0.
4. inf j lim infn �nj(0; b) > 0 for b in a compact neighborhood N of β. G has

Lebesgue density g. supt |g(t)| ≤ B for some B > 0 and E|T1 ∧ C1|r < ∞
for some r > 0. F has Lebesgue density f . f ′ is uniformly continuous and
integrable.

∫ c0
−∞ w(t, an) dt = o(1) as an → 0, where

w(t, an) = sup
|s|<an

(|f ′(t + s) − f ′(t)| + |f (t + s) − f (t)|).

5. β is in the interior of the region N. For some α, ε > 0, inf j lim infn infb∈N,||b||>α

n1/2−ε |Snj(0; β + b) − 1/2| > 0, where Snj(0; b) is defined in Yang (1999).
6. The limits

�jl = 1
2

lim
n

∫ 0

−∞

�′
njl(t; β)

�nj(t; β)
dλ(t), j, l = 1, . . . , p + 1, (5)
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exist and the (p+1)×(p+1) matrix � = (�jl) is nonsingular, where λ = f/F̄
is the hazard rate function corresponding to f .

Remark The above regularity conditions are commonly used in survival anal-
ysis, see Ritov (1990) and Ying (1993) for discussion. Condition 1 is the most
basic model assumption. The bounded assumption in condition 2 is standard
for covariate in survival analysis, see Ying et al. (1995) and p. 421 of Qin and
Tsao (2003). Since covariate Z is bounded, the nonnegativity of Z in condition
2 is satisfied by a proper transformation if necessary. Condition 3 guarantees
the limit of Snj(0; β) in condition 5 is well defined and equals 1/2. Condition 4 is
needed to approximate �̂j by their deterministic counterparts (cf. Ying (1993)).
These assumptions are satisfied by the common distributions in survival analysis.
Condition 4 guarantees that β̂ is asymptotically uniquely defined and consis-
tent. It can be verified that condition 5 is satisfied for the k-sample problem if f
is positive in a neighborhood of 0. Condition 6 ensures that asymptotically the
estimators are well defined. This condition is similar to the requirement that
Z′Z be invertible in the ordinary regression with no censoring. See pp. 142–143
of Yang (1999) for the discussion.

When the covariate is random, the above regularity conditions need to be
modified accordingly, and a set of regularity conditions is given in the remark
of Yang (1999).

Under above regularity conditions, Yang (1999) showed that

n1/2(β̂ − β)
D→ N(0, �−1V�−1), (6)

where (j, l) element of V is

vjl =
∫ 0

−∞
�jl

�j�lF̄
d�, j, l = 1, . . . , k, (7)

and �(t) = ∫ t
−∞ λ(s)ds.

The asymptotic covariance matrix of β̂ involves the error density functions
and usually difficult to estimate. Resampling method such as that of Parzen
et al. (1994), can be used to obtain the estimated covariance matrix and then
confidence region for β.

Let An(b) be the (p + 1) × 1 vector with jth component
√

n(�̂j(0; b) − log 2).
In the Appendix of Yang (1999), under some regularity conditions, An(β) has
a limiting normal distribution, with mean zero and covariance matrix V. Let

Kjl(t; b) =
n∑

i=1

ZijZilI(ei(b) ≥ t), j, l = 1, . . . , p + 1. (8)
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The covariance matrix V can be consistently estimated by V̂, whose (j, l) element
is

v̂jl = n
∫ 0

−∞
Kjl(t; β̂)

Kj(t; β̂)Kl(t; β̂)
�̂1(dt; β̂). (9)

Thus, using the test-based approach, an asymptotic 100(1 − α)% confidence
region for β is given by

R1 =
{

b : A′
n(b)V̂−1An(b) ≤ χ2

p+1(α)
}

,

where χ2
p+1(α) is the upper α-quantile of the chi-squared distribution with

degrees of freedom p + 1.

2.2 EL confidence region

Now we introduce the EL approach based on the estimating equations in Yang
(1999). The estimating equation can be written as

n∑

i=1

(
Zij�iI(ei(b) ≤ 0)

Kj(ei(b); b)
− log 2

n

)
= 0, j = 1, . . . , p + 1. (10)

For 1 ≤ i ≤ n, we define the (p + 1) × 1 vector Wni with jth element

Wni(j) = n
(

Zij�iI(ei(β) ≤ 0)

Kj(ei(β); β)
− log 2

n

)
, j = 1, . . . , p + 1.

Then, the EL is given by

L(β) = sup

{
n∏

i=1

pi :
∑

pi = 1,
n∑

i=1

piWni = 0, pi ≥ 0, i = 1, . . . , n

}
.

Let p = (p1, . . . , pn) be a probability vector, i.e.,
∑n

i=1 pi = 1 and pi ≥ 0 for
1 ≤ i ≤ n. Note that

∏n
i=1 pi attains its maximum at pi = 1/n. Thus, the EL ratio

at the true value β is defined by

R(β) = sup

{
n∏

i=1

npi :
∑

pi = 1,
n∑

i=1

piWni = 0, pi ≥ 0, i = 1, . . . , n

}
.

By the method of Lagrange multipliers, we know that R(β) is maximized when

pi = 1
n

{1 + λ′Wni}−1, i = 1, . . . , n,
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where λ = (λ1, . . . , λp+1)
′ satisfies the equation

1
n

n∑

i=1

Wni

1 + λ′Wni
= 0. (11)

The value of λ may be found by numerical search (e.g., Newton–Raphson
method), see the discussion in Hall and La Scala (1990). Thus, combining above
equalities we have the corresponding empirical log-likelihood

l̂(β) = −2 log R(β) = −2 log
n∏

i=1

(npi) = 2
n∑

i=1

log{1 + λ′Wni}, (12)

where λ satisfies Eq. (11).
Let

Uj(t; b) = lim
n→∞ Kj(t; b)/n, j = 1, . . . , p + 1. (13)

For 1 ≤ i ≤ n, we define the (p + 1) × 1 vector Wi with jth element

Wi(j) = Zij�iI(ei(β) ≤ 0)

Uj(ei(β); β)
− log 2, j = 1, . . . , p + 1.

Let

V1 = lim
n→∞ n−1

n∑

i=1

WiW′
i .

In Lemma 1 of the Appendix, we show that V1 = V − (log 2)2. Now we state
our main result and explain how it can be used to construct confidence region
for β.

Theorem 1 Under the above conditions 1–6, the EL statistic −2 log R(β) con-
verges in distribution to r1χ

2
1,1 +· · ·+ rp+1χ

2
p+1,1, where χ2

1,1, . . . , χ2
p+1,1 are inde-

pendent chi-square random variables with 1 degree of freedom and r1, . . . , rp+1

are the eigenvalues of V−1
1 V.

Theorem 1 will be proved in the Appendix. We note that the limiting distri-
bution of the EL ratio is a weighted sum of i.i.d. χ2

1 s instead of the standard
χ2

p+1 distribution. This is due to the fact that the Wni’s are dependent. Similar
phenomenon has occurred in various contexts, such as Qin and Jing (2001),
Wang and Rao (2001), Wang and Wang (2001), and Li and Wang (2003), among
others.

Although the limiting distribution has the nonstandard weighted sum expres-
sion, the weights involved can be readily estimated so that the above theorem
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can be used in parameter inference. For 1 ≤ i ≤ n, let Ŵni be the (p + 1) × 1
vector with jth element

Ŵni(j) = n

(
Zij�iI(ei(β̂) ≤ 0)

Kj(ei(β̂); β̂)
− log 2

n

)
, j = 1, . . . , p + 1,

and define

V̂1 = n−1
n∑

i=1

ŴniŴ′
ni.

From Lemma 1 (i), V1 is consistently estimated by V̂1. Hence, the ris can
be estimated by the r̂i’s which are the eigenvalues of V̂−1

1 V̂. An asymptotic
100(1 − α)% confidence region for β is given by

R2 = {b : −2 log R(b) ≤ c(α)},

where c(α) is the upper α-quantile of the distribution of r̂1χ
2
1,1 +· · ·+ r̂p+1χ

2
p+1,1

and can be obtained by simulation method.
Alternatively, the above EL approach can be adjusted to avoid the weighted

sum expression. Let ρ(β) = (p + 1)/tr{V−1
1 (β)V(β)} with tr(·) denoting the

trace vector, i.e., the trace of a matrix. Then, following Rao and Scott (1981),
the distribution of ρ(β)(r1χ

2
1,1 +· · ·+rp+1χ

2
p+1,1) may be approximated by χ2

p+1.
This implies that the asymptotic distribution of the Rao–Scott adjusted empir-
ical likelihood ratio, l̃ad(β) = ρ̂(β)l̂(β), may be approximated by χ2

p+1, where

the adjustment factor ρ̂(β) is ρ(β) with V1(β) and V(β) replaced by V̂1(β) and
V̂(β), respectively.

The adjusted EL approach was proposed by Wang and Rao (2001, 2002)
and Li and Wang (2003), among others. We define an adjusted EL ratio, by
modifying ρ(β) in l̃ad(β), whose asymptotic distribution is exactly a standard
chi-square distribution with p + 1 degrees of freedom, i.e., χ2

p+1. Noting that

ρ̂(β) = tr
{
V̂−1(β)V̂(β)

}

tr
{
V̂−1

1 (β)V̂(β)
} ,

we define r̂(β) to be ρ̂(β) with V̂(β) replaced by Ŝ(β) = {∑n
i=1 Wni(β)/n} ×

{∑n
i=1 Wni(β)/n}′. That is,

r̂(β) = tr{V̂−1(β)Ŝ(β)}
tr{V̂−1

1 (β)Ŝ(β)} .
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We define an adjusted EL ratio by

l̂ad(β) = r̂(β)l̂(β).

Theorem 2 Under the above conditions 1–6, the EL statistic l̂ad(β) converges in
distribution to χ2

p+1.

Based on Theorem 2, an asymptotic 100(1 − α)% confidence region for β is
given by

R3 = {b : l̂ad(b) ≤ χ2
p+1(α)},

where χ2
p+1(α) is define as before.

3 Simulation study

Various simulation studies have been conducted to assess the behavior of the
EL approach for the median regression model (1). We compared the perfor-
mance of the proposed EL confidence region with normal approximation (NA)
confidence region in terms of coverage probability.

We generate data (Yi, �i, Zi), i = 1, . . . , n, where Zi = (1, Xi)
′, n is sample

size, and obtain model (1). Let Ui, i = 1, . . . , n be i.i.d. Uniform (0, 1), let
Ni, Mi, i = 1, . . . , n be the i.i.d. standard normal. Also let ui, i = 1, . . . , n be a
fixed realized sample from Uniform (0, 1). Let c be a constant which controls
the censoring rate (CR). In one such study, the following models are considered,
which represent fixed design and random design.
Model 1: Xi = ui, Ti = Xi + 0.5Ni, and Ci = ci + 0.5Mi
Model 2: Xi = i/n, Ti = Xi + 0.5Ni, and Ci = c + i/n + 0.5Mi
Model 3: Xi = Ui, Ti = Xi + 0.5Ni, and Ci = c + 0.5Mi
Model 4: Xi = Ui, Ti = Xi + 0.5Ni, and Ci = c + Xi + 0.5Mi

The true parameter β is (0, 1)′. We take 0.90, 0.95, and 0.99 as the nominal
confidence level 1 − α, respectively. We obtain 20, 40, and 60% censoring rates,
respectively, which represent light censoring, medium censoring, and heavy
censoring. The sample size n is chosen to be 40, 60, 80, and 100, respectively.
The coverage probabilities of the normal approximation based method and the
empirical likelihood method are estimated from 2,000 simulated data sets. The
simulation results for models are reported in Tables 1–4 respectively.

From the tables, we make the following observations.
1. At each nominal level, the coverage accuracies for EL and NA methods in

all models including fixed design and random design decrease as CRs increase,
and increase when sample size increases.

2. The coverage probabilities for the NA method and EL method are consis-
tently lower than the nominal level for small sample (n = 40).
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Table 1 Coverage probabilities for the regression parameter in model 1

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99

CR(%) n NA EL NA EL NA EL

40 0.881 0.898 0.936 0.941 0.978 0.976
20 60 0.884 0.890 0.936 0.936 0.978 0.981

80 0.892 0.904 0.946 0.951 0.982 0.985
100 0.906 0.903 0.949 0.950 0.986 0.990

40 0.885 0.891 0.935 0.940 0.975 0.981
40 60 0.890 0.894 0.939 0.946 0.983 0.989

80 0.904 0.905 0.944 0.954 0.982 0.986
100 0.896 0.904 0.947 0.954 0.984 0.988

40 0.876 0.896 0.925 0.945 0.965 0.975
60 60 0.885 0.908 0.929 0.955 0.974 0.988

80 0.883 0.905 0.934 0.956 0.979 0.990
100 0.879 0.898 0.934 0.956 0.983 0.992

Table 2 Coverage probabilities for the regression parameter in model 2

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99

CR(%) n NA EL NA EL NA EL

40 0.887 0.895 0.939 0.936 0.977 0.976
20 60 0.891 0.906 0.942 0.945 0.984 0.984

80 0.889 0.899 0.947 0.954 0.986 0.991
100 0.901 0.898 0.946 0.951 0.987 0.988

40 0.880 0.893 0.924 0.938 0.974 0.984
40 60 0.893 0.903 0.945 0.955 0.985 0.989

80 0.891 0.908 0.940 0.949 0.985 0.990
100 0.891 0.897 0.942 0.952 0.985 0.988

40 0.873 0.896 0.914 0.938 0.961 0.977
60 60 0.874 0.907 0.932 0.956 0.973 0.987

80 0.879 0.891 0.934 0.949 0.978 0.989
100 0.885 0.911 0.932 0.956 0.981 0.988

3. The EL outperforms the NA method in all models. In particular, under
heavy censoring rate (CR = 60%), the EL confidence region has more accurate
coverage probabilities than the NA based confidence region. At other censor-
ing rates, the EL performs better than the NA method in almost all cases. As
sample size increases the advantage of EL disappears gradually as expected.

From Tables 1–4, we find that the normal approximation based method does
not always work well for sample. One reason is that the NA based confidence
region needs to estimate V [cf. (9) of Sect. 2.1]. The variance estimates are not
very stable and may contain values outside their ranges.

We have also conducted a simulation with adjusted EL method. When the
sample size is small (n = 40, 60), the adjusted EL results in lower coverage
probabilities than nominal level. As the sample size increases, the adjusted EL
begins to perform comparably with the unadjusted EL. For sample size n = 500,
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Table 3 Coverage probabilities for the regression parameter in model 3

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99

CR(%) n NA EL NA EL NA EL

40 0.888 0.892 0.939 0.944 0.977 0.980
20 60 0.882 0.890 0.936 0.944 0.983 0.985

80 0.894 0.895 0.939 0.943 0.984 0.985
100 0.890 0.896 0.940 0.946 0.986 0.990

40 0.870 0.879 0.925 0.938 0.982 0.984
40 60 0.880 0.889 0.933 0.941 0.977 0.989

80 0.894 0.907 0.946 0.955 0.986 0.989
100 0.893 0.905 0.944 0.953 0.984 0.989

40 0.865 0.883 0.921 0.938 0.967 0.978
60 60 0.882 0.905 0.926 0.948 0.968 0.984

80 0.878 0.917 0.937 0.963 0.979 0.992
100 0.890 0.910 0.938 0.961 0.985 0.991

Table 4 Coverage probabilities for the regression parameter in model 4

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99

CR(%) n NA EL NA EL NA EL

40 0.883 0.886 0.941 0.940 0.976 0.976
20 60 0.890 0.889 0.935 0.940 0.980 0.983

80 0.892 0.907 0.944 0.952 0.985 0.986
100 0.893 0.896 0.938 0.940 0.982 0.987

40 0.880 0.889 0.928 0.943 0.979 0.982
40 60 0.890 0.905 0.943 0.947 0.980 0.983

80 0.891 0.894 0.941 0.948 0.986 0.988
100 0.889 0.900 0.946 0.947 0.987 0.991

40 0.868 0.890 0.917 0.939 0.965 0.980
60 60 0.871 0.907 0.927 0.951 0.974 0.988

80 0.882 0.913 0.937 0.961 0.979 0.989
100 0.885 0.910 0.934 0.956 0.981 0.993

the unadjusted EL is more conservative and the adjusted EL is more accurate
than the unadjusted EL. We omit the results here. Similar phenomenon has
been noticed elsewhere (Li and Wang 2003).

From the simulation results, we see that the improvement of our method over
Yang (1999) is similar to that of Qin and Tsao (2003) over Ying et al. (1995).
Their simulation results show that the methods of Ying et al. (1995) and Qin
and Tsao (2003) had some undercoverage problems, sometimes severely for
small sample and heavy censoring. In comparison, our proposed EL method
has much improvement regarding the undercoverage issue in the current EL
methods.

In summary, our simulation study shows that the proposed EL method gives
competitive coverage probabilities and suggests that the empirical likelihood
improves the coverage in this case.
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Appendix: Proofs of Theorems 1 and 2

In order to prove Theorem 1, we first prove the following lemma.

Lemma 1 Under the conditions of Theorem 1, we have

(i)
∑n

i=1 WniW′
ni/n

P→ V − (log 2)2, (ii) V̂1
P→ V − (log 2)2.

Proof For 1 ≤ j, l ≤ p + 1, let c0 = log 2 and

An(t; b) = Kj(t; b)

n
Kl(t; b)

n
,

Bn(t; b) =
∑

i ZijZil�iI(ei(b) ≤ t)

n
.

Then the (j, l) entry of V̂1 is

∑

i

nZijZil�iI(ei(β̂) ≤ 0)

Kj(ei(β̂); β̂)Kl(ei(β̂); β̂)

− c0

(
∑

i

Zij�iI(ei(β̂) ≤ 0)

Kj(ei(β̂); β̂)
+

∑

i

Zil�iI(ei(β̂) ≤ 0)

Kl(ei(β̂); β̂)

)
+ c2

0

=
∫ 0

−∞
dBn(t; β̂)

An(t; β̂)
− c0

(
�̂j(0, β̂) + �̂l(0, β̂)

)
+ c2

0

= I + II + c2
0,

say.
Similarly to Theorems 1 and 3 in Lai and Ying (1988) or Theorem 2 of Yang

(1997), we have, for any c, ε > 0, 0 < r < 1, w. p. 1,

sup
‖b |<c,t≤0

|Qn(t; b) − EQn(t; b)| = o(n−1/2+ε),

sup
‖b−b′‖<cn−r, t≤0

|Qn(t; b) − EQn(t; b) − Qn(t; b′) + EQn(t; b′)|

= o(n−1/2−r/2+ε),

where Qnj is either An(t; b) or Bn(t; b).



Confidence regions from censored data 453

From these and the
√

n- boundedness of β̂ in probability as shown in Yang
(1999), we obtain that, uniformly in t ≤ 0, both An(t; β̂) and Bn(t; β̂) converge
in probability to their respective limits A(t), B(t), say. We can also check that
A(t) is continuous and the total variations of Bn(t; β̂) are bounded uniformly
in n. Thus, similarly to Lemma A2 of Yang and Prentice (2005), I converges in
probability to its limit which can be verified to be vjl in (7). For II it is −2c2

0.
Thus the (j, l) entry of V̂1 converges in probability to vjl − c2

0. Thus, (ii) follows.
Similar and simpler arguments show that the average of WniW′

nis converges to
V − c2

0 and (i) follows. 
�

Proof of Theorem 1 By condition 2 and the martingale representation of Wni,
we can prove max1≤i≤n ||Wni −Wi|| = oP(n1/2). Also we have max1≤i≤n ||Wi|| =
oP(n1/2) from E||Wi||2 < ∞ [cf. Owen, 1990]. Thus,

max
1≤i≤n

||Wni|| ≤ max
1≤i≤n

||Wni − Wi|| + max
1≤i≤n

||Wi||
= oP(n1/2). (14)

Let λ = ρθ where ρ ≥ 0 and ||θ || = 1. Recall V̂1n = V1 +o1(1) (cf. Lemma 1).
We have

θ ′V̂1nθ = θ ′V1θ + oP(1).

Let σ1 > 0 be the smallest eigenvalue of V1. Then, we have

θ ′V̂1θ ≥ σ1/2 + oP(1). (15)

Let ej be the unit vector in the jth coordinate direction. From the Appendix of
Yang (1999),

∣∣∣∣∣∣
1
n

p+1∑

j=1

e′
j

n∑

i=1

Wni

∣∣∣∣∣∣
= OP(n−1/2). (16)

Then, it follows from (11), (14), (15), (16), and the argument used in Owen
(1990) that

||λ|| = OP(n−1/2). (17)

Applying Taylor’s expansion to (12), we have

− 2 log R(β) = 2
n∑

i=1

(
λ′Wni − 1

2
(λ′Wni)

2
)

+ rn, (18)
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where

|rn| ≤ C
n∑

i=1

|λ′Wni|3 in probability.

Hence, by (14), (17)

|rn| ≤ Cn||λ||3
(

max
1≤i≤n

||Wni||
)3

= oP(1). (19)

Note that

0 = 1
n

n∑

i=1

Wni

1 + λ′Wni
= 1

n

n∑

i=1

Wni

(
1 − λ′Wni + (λ′Wni)

2

1 + λ′Wni

)

= 1
n

n∑

i=1

Wni −
(

1
n

n∑

i=1

WniW′
ni

)
λ

+ 1
n

n∑

i=1

Wni(λ
′Wni)

2

1 + λ′Wni
. (20)

By (16), (17), (20), and Lemma 1, it follows that

λ =
(

n∑

i=1

WniW′
ni

)−1 n∑

i=1

Wni + oP(n−1/2). (21)

By (20), we have

0 =
n∑

i=1

λ′Wni

1 + λ′Wni

=
n∑

i=1

(λ′Wni) −
n∑

i=1

(λ′Wni)
2 +

n∑

i=1

(λ′Wni)
3

1 + λ′Wni
. (22)

Similarly as before by (14), (17),

n∑

i=1

(λ′Wni)
3

1 + λ′Wni
= oP(1). (23)
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Combining (22) and (23) we have

n∑

i=1

(λ′Wni)
2 =

n∑

i=1

λ′Wni + oP(1). (24)

By (18), (19), (21), (24) and Lemma 1, we have

−2 log R(β) =
n∑

i=1

λ′Wni + oP(1)

=
⎛

⎝n−1/2
n∑

i=1

Wni

⎞

⎠
′ ⎛
⎝n−1

n∑

i=1

WniW′
ni

⎞

⎠
−1 ⎛

⎝n−1/2
n∑

i=1

Wni

⎞

⎠ + oP(1)

=
⎛

⎝V−1/2n−1/2
n∑

i=1

Wni

⎞

⎠
′
(V1/2V−1

1 V1/2)

⎛

⎝V−1/2n−1/2
n∑

i=1

Wni

⎞

⎠ + oP(1).

By the proof of Theorem 1 in Yang (1999), we have V−1/2(n−1/2 ∑n
i=1 Wni)

D→
N(0, Ip+1). Because V1/2V−1

1 V1/2 and V−1
1 V have the same eigenvalues. Using

Lemma 3 of Qin and Jing (2001) to re-express the limiting distribution of
−2 log R(β) as a weighted sum of independent χ2

1 distribution, we complete the
proof of Theorem 1. 
�
Proof of Theorem 2 Recall the definition of l̂ad(β). It follows that, by (18),

l̂ad(β) =
(

n−1/2
n∑

i=1

Wni

)′
V̂−1

(
n−1/2

n∑

i=1

Wni

)
+ oP(1).

We can show that V̂
P→ V. Using Lemma 3 of Qin and Jing (2001), we complete

the proof of Theorem 2. 
�
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