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Abstract We consider the problem of estimating the covariance of two diffusion-
type processes when they are observed only at discrete times in a nonsynchronous
manner. In our previous work in 2003, we proposed a new estimator which is free of
any ‘synchronization’ processing of the original data and showed that it is consistent
for the true covariance of the processes as the observation interval shrinks to zero;
Hayashi and Yoshida (Bernoulli, 11, 359–379, 2005). This paper is its sequel. Specifi-
cally, it establishes asymptotic normality of the estimator in a general nonsynchronous
sampling scheme.

Keywords Diffusions · Discrete-time observations · High-frequency data ·
Nonsynchronicity · Quadratic variation · Realized volatility

1 Introduction

1.1 Background

Consider the case when two continuous diffusion processes are observed only at
discrete times in a nonsynchronous manner. We are interested in estimating the
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368 T. Hayashi, N. Yoshida

covariance of the two processes accurately in such a situation. This type of problem
arises typically in high-frequency finance. A popular approach for this is to compute

Vπ(m) :=
m∑

i=1

(
P1

ti − P1
ti−1

) (
P2

ti − P2
ti−1

)
, (1)

which is often called the realized covariance (estimator) in the literature; see Andersen
et al. (2001), for instance. Here, P1 and P2 are continuous semimartingales repre-
senting log-prices, 0 = t0 < t1 < · · · < tm = T are grid points for measuring their
respective changes with the mesh size π(m) := max1≤i≤m |ti − ti−1|, where T is a
given time to evaluate the quantity. The popularity of the estimator comes from its
consistency, i.e., as π(m) → 0, one has Vπ(m) → 〈

P1, P2
〉
T in probability, not to

mention from its ease of implementation. 〈, 〉 denotes the quadratic covariation. For
practical convenience it is standard to take equal spacing, i.e., ti − ti−1 = T/m (=: h),
i ≥ 1.

Actual transaction data are recorded at irregular times in a nonsynchronous manner.
This fact requires one who adopts (1) to ‘synchronize’ the original multivariate time
series a priori; choose a common interval length h first, then impute missing obser-
vations by some interpolation scheme such as previous-tick interpolation or linear
interpolation (Dacorogna et al. 2001). Inevitably, the value of Vh depends heavily on
the choice of h as well as an interpolation method adopted. By and large, most of the
existing approaches rely on the ‘synchronization’ of the original data, hence, suffer
‘synchronization’ bias (e.g., Hayashi and Yoshida 2005b ).1

In the preceding work, we proposed a new procedure which is free of ‘synchro-
nization’ hence of any bias due to it. In the case of diffusion-type processes with
independent random observation times, they showed that their estimator is consis-
tent for the underlying (deterministic) covariation as the size of observation intervals
goes to zero (in our 2003 paper, now Hayashi and Yoshida 2005b), which is not in
general possessed by the realized covariance estimator subject to nonsynchronicity of
observations.

This paper extends our previous work. Specifically, it demonstrates asymptotic
normality of the proposed estimator in a general nonsynchronous sampling scheme
of multivariate diffusion-type processes, as the observation interval shrinks to zero.
Central limit theories for the realized volatility/covariance and related estimators have
been discussed in the statistics literature for a long time (e.g., Dacunha-Castelle and
Florens-Zmirou 1986); however, nonsynchronicity has rarely been taken into account.
At the best of our knowledge, this paper is the first one in the literature to show
asymptotic normality in the case of nonsynchronous sampling.

1 In the univariate case, volatility estimation problems in the presence of measurement error, or market
microstructure noise, have been actively studied recently (e.g., Zhang et al. 2005). Recognizing that non-
synchronicity is a fundamental, salient feature for the multivariate case yet has been rarely addressed, we
focus on it in this paper without the existence of additive microstructure noises taken into account. It is
deferred for future research.
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Nonsynchronously observed diffusions 369

1.2 The estimator (review)

Let T ∈ (0,∞) be an arbitrary terminal time for observation. On a stochastic basis
(�,F , {Ft } , P), suppose that Pl follows the one-dimensional continuous Itô process

dPl
t = µl

t dt + σ l
t dW l

t , Pl
0 = pl

0, 0 ≤ t ≤ T, l = 1, 2, (2)

where W l , l = 1, 2, are Wiener processes with d
〈
W 1, W 2

〉
t = ρt dt , ρ· ∈ (−1, 1)

is an unknown, deterministic and measurable function of t , pl
0 is a constant,2 µl· is a

progressively measurable (possibly unknown) function, and σ l· is a deterministic and
bounded (possibly unknown), measurable function of t .

Let �1 := (I i )i=1,2,... and �2 := (J i )i=1,2,... be random intervals reading from
left to right, each of which partitions (0, T ]. Let T 1,i := inf I i+1 represent the i th
observation time of P1, and T 2,i := inf J i+1 that of P2. Let n be the index that
controls the (random) size of �1 and �2; see the Poisson sampling case below. The
length of an interval I is denoted by |I |. We assume (temporarily) that the sampling
intervals � := (�1,�2) satisfy the following:
Condition (C0): (i) (I i ) and (J i ) are independent of P1 and P2; (ii) As n → ∞,
E
[
maxi

∣∣I i
∣∣ ∨ max j |J j |] = o(1).

Remark (ii) is equivalent to either of the conditions: (ii′) maxi
∣∣I i

∣∣∨max j |J j | → 0 in

probability as n → ∞; (iii)
∑

i

∣∣I i
∣∣2+∑

j

∣∣J j
∣∣2 → 0 in probability as n → ∞. More-

over, for (ii) to hold it is sufficient that (iv) P
[
maxi

∣∣I i
∣∣ ∨ max j |J j | > n−q

] = o(1)

for some q > 0.

Remark The independence condition (i), which may be too restrictive in financial
applications, is removed in a subsequent paper (Hayashi and Yoshida 2006).

Example (Synchronous sampling scheme): Notice that there is no assumption for
dependency between (I i ) and (J i ). In particular, any perfectly synchronous sampling
scheme (deterministic or stochastic) with I i = J i , for every i , is covered by the
framework so far as

(
I i
)

satisfies (C0). See Sect. 3.1.

Example (Poisson random sampling scheme): Let N 1 and N 2 be Poisson processes
with intensity λl := npl , pl ∈ (0,∞), n ∈ N, l = 1, 2. If T̃ l,i is the i th ar-
rival time of the lth Poisson process with T̃ l,0 := 0, l = 1, 2, then we construct
�1 := (I i )i=1,2,... and �2 := (J i )i=1,2,..., by setting I i := (T̃ 1,i−1, T̃ 1,i ] ∩ (0, T ]
and J i := (T̃ 2,i−1, T̃ 2,i ] ∩ (0, T ]. In this case, E

[
Nl

T

] = λl T = npl T , i.e., the mean
partition size of �l is proportional to n. This Poisson random sampling scheme is
covered so far as (C0)(i) is satisfied (note: (C0)(ii) is implied). See Sect. 3.2.

The parameter of interest is the (deterministic) covariation of P1 and P2,

〈
P1, P2

〉

T
=
∫ T

0
σ 1

t σ 2
t ρt dt =: θ .

2 In Hayashi and Yoshida (2005b), the authors assumed pl
0 > 0 (note: there they used the symbol pl

instead of pl
0). However, the positivity was simply unnecessary.
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370 T. Hayashi, N. Yoshida

In finance, θ is the integrated covariance (over [0, T ]) of the logarithmic prices P1

and P2 of two securities. It is an essential quantity to be measured for risk management
purposes; T is set to 1 (day), for instance.

Previously, the authors proposed an estimator for θ of the following form, which
is based only on the observations of P1 and P2, and the times they were recorded at.

Definition 1 (Cumulative covariance estimator):

Un :=
∑

i, j

(
P1

T 1,i − P1
T 1,i−1

) (
P2

T 2, j − P2
T 2, j−1

)
1{I i ∩J j �=∅}. (3)

That is, the product of any pair of increments (P1
T 1,i − P1

T 1,i−1) and (P2
T 2, j − P2

T 2, j−1)

will make a contribution to the sum only when the respective observation intervals I i

and J j are overlapping. Observe that Un utilizes the information regarding not only
process changes but also the observation times–through the indicator functions—at
which they were recorded. The fact contrasts with the realized covariance estimator (1),
which discards the observation time information through synchronization. Besides, it
should be noted that the there is no serious increase in computational load; the number
of summation required in (3) is essentially of the same order as that of the realized
covariance regardless of its appearance as a double sum in i and j. Specifically, the
number equals to the number of grids in �1 plus that in �2, minus the number of grids
that are common in both �1 and �2 (i.e., synchronous observation time points).

Theorem 1 (Hayashi and Yoshida 2005b) Suppose (C0) holds.

(1) If sup 0≤t≤T
∣∣µl

t

∣∣ ∈ L4, l = 1, 2, then Un → θ in L2 as n → ∞.
(2) If sup 0≤t≤T

∣∣µl
t

∣∣ < ∞ almost surely, l = 1, 2, then Un is consistent for θ , i.e.,
Un → θ in probability as n → ∞.

(C0) alone is insufficient to derive asymptotic normality of the proposed estimator
Un . Indeed, we will overwrite (C0) with a stronger set of conditions (C1)–(C4) in the
next section.

2 Asymptotic normality

We are going to demonstrate asymptotic normality of our estimator in a general non-
synchronous sampling scheme of multivariate diffusion processes, as the observation
interval shrinks to zero.

We maintain the same set-up as stated in the previous section. For exploring
asymptotic normality of Un we need to elaborate conditions not only on � but also
on the underlying processes. Let rn := max1≤i<∞

∣∣I i
∣∣∨ max1≤ j<∞

∣∣J j
∣∣, the largest

interval size.
Condition (C1): (I i ) and (J i ) are independent of P1 and P2.

We define (signed) measures by, for each I ∈ B[0,T ], where B[0,T ] is the Borel
σ -field on [0, T ],

v (I ) := v0 (I ) :=
∫

I
σ 1

t σ 2
t ρt dt ; vl (I ) :=

∫

I

(
σ l

t

)2
dt, l = 1, 2.
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Nonsynchronously observed diffusions 371

Condition (C2): There exist a sequence of positive numbers (bn) ⊂ (0, 1) and some
constant c ∈ (0,∞) such that, as n → ∞, bn → 0 and

b−1
n

⎧
⎨

⎩
∑

i, j

v1
(

I i
)

v2
(

J j
)

1{I i ∩J j �=∅} +
∑

i

v
(

I i
)2

+
∑

j

v
(

J j
)2 −

∑

i, j

v
(

I i ∩ J j
)2

⎫
⎬

⎭
P→ c. (4)

This condition postulates the (asymptotic) connection between the observation
intervals � and the variance–covariance structure of the given processes, (v1(·), v2(·),
v(·)). The constant c in (4) serves as the asymptotic variance of the (rescaled) proposed
estimator. In fact, when there is no drift in the underlying processes, one can show that

E�
[
U 2

n

]
=
∑

i, j

v1
(

I i
)

v2
(

J j
)

1{I i ∩J j �=∅} +
∑

i

v
(

I i
)2 +

∑

j

v
(

J j
)2

−
∑

i, j

v
(

I i ∩ J j
)2 + θ2 (5)

and E� [Un] = θ (see Appendix); hence, the l.h.s. of (4) is exactly equal to b−1
n V ar�

[Un] so far as µl ≡ 0, l = 1, 2. Here, E� [·] and V ar� [·] denote respectively the
conditional expectation and variance, given the partition �. In case the drift is non-
zero, the condition (C4) below guarantees that, for sufficiently large n, the l.h.s. of
(4) well approximates the (rescaled) conditional variance. The rescaling factor b−1

n
may be interpreted as the ‘average number’ of the observation times (i.e., the size
of the partitions �1 and �2), or equivalently, bn may be the ‘average length’ of the
observation intervals.

The reader may wonder if the condition (C2) is mild enough to cover practical,
meaningful cases. A non-trivial, example that satisfies (C2) will be studied later, i.e.,
the Poisson observation times case in Sect. 3.2, where bn is (set to) n−1 and c is found
concretely.

Remark (C2) looks rather complicated to check and apply in practice. An alternative,
slightly more stringent but amiable condition is explored in a subsequent paper by the
authors, Hayashi and Yoshida (2005a), which accordingly draws a stronger result than
Theorem 2.

Next, we allow the random mesh size rn of � to tend to zero slowly relative to the
(deterministic) bn , but not too slowly.
Condition (C3): There exists some α ∈ (0, 1/4) such that

rn = oP

(
b

3
4 +α
n

)
.
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372 T. Hayashi, N. Yoshida

Now, for a continuous stochastic process X , we define, for each ω ∈ � and 
 > 0,
the modulus of continuity on [0, T ], by

δ(X (ω);
) := sup {|Xt (ω) − Xs(ω)| ; |t − s| ≤ 
, 0 ≤ s, t ≤ T } .

The following is a condition stating that the (random) drifts of the underlying
processes are sufficiently smooth so that their contribution to Un in (3) would be
asymptotically negligible and that asymptotic normality for the zero drift case would
be generalized to the non-zero drift case.
Condition (C4): For l = 1, 2, µl is continuous and adapted, such that

δ(µl; h) = OP

(
hk
)

as h ↓ 0

for some k ∈ ( 1
6 , 1

2 ).

Remark Clearly, (C4) holds for processes with the same Hölder continuity as Brown-
ian sample paths.

An alternative condition, whose appearance is slightly artificial, is the following.
Condition (C4′): For l = 1, 2, µl is continuous and adapted, such that

δ(µl; rn) = OP

(
r

1
2

n b
−
(

1
4 +α′

)

n

)
(6)

for some α′ ∈ (0, α), where α is given in (C3).

Remark Suppose (C4) holds with some k ∈ ( 1
4 , 1

2 ), which is slightly stronger than
stated. Let Nn := # (�1) ∨ # (�2), where # (A) counts the number of elements in
a given set A. Assume that E [Nn] ↑ ∞ and that bn = κn (E [Nn])−1 for some
positive, bounded sequence (κn), i.e., loosely speaking, b−1

n represents (a multiple of)
the average interval size (cf. the Poisson sampling example of Sect. 4.2). Then, (C4′)
is implied. See Appendix A.2 for details.

Remark The condition

δ(µl; rn) = OP

(
rβ

n b
−
(

1
4 +α

)

n

)
,

for some β ∈ (
1/2, α (3/4 + α)−1 + 1/2

)
, together with (C3), implies (6) of (C4′).

Here is the main result of the paper.

Theorem 2 Under Conditions (C1) through (C3), together with either (C4) or (C4′),
as n → ∞,

b−1/2
n (Un − θ)

L→ N (0, c).
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Nonsynchronously observed diffusions 373

Remark The case of random volatility: When σ l· , l = 1, 2, are independent of W 1

and W 2, then, by conditioning, σ l· become deterministic, hence the argument in this
paper essentially carries over. In particular, asymptotic mixed normality will be ob-
tained. On the other hand, when σ l· , l = 1, 2, are depending on W 1 and W 2, e.g., when
they have feedback from P1 and P2 (cf. Hayashi and Kusuoka 2004), establishing
asymptotic (mixed) normality will be a rather challenging task. Nevertheless, it can
still be shown; we will write on it in a separate paper.

3 Proof for the main theorem

Preceding the proof, we need to prepare some technical Lemmas. For this, we introduce
auxiliary symbols as follows.

Put Ki j := 1{I i ∩J j �=∅}, i, j ≥ 1, for ease of writing. We define a sequence of
positive numbers (an) by

an := b
1
2 +2α
n

for α specified in (C3). That is, (an) goes to zero faster than (b1/2
n ) but slower than

(bn). Note then that

r2
n

anbn
= r2

n

b
3
2 +2α
n

= oP (1) and
rn

an
= rn

b
1
2 +2α
n

= rn

b
3
4 +α
n

b
1
4 −α
n = oP (1).

So, the deterministic (an) is chosen so that it is likely to go to zero slower than the
random (rn). To sum up, (C3) implies the following.
Condition (C3′): As n → ∞, (i) r2

n = oP (anbn), and (ii) rn = oP (an).

Let us define, for each I ∈ B[0,T ],


Pl(I ) :=
∫ T

0
1I (t)σ

l
t dW l

t , l = 1, 2.

Define a (random) set function u : B[0,T ] × B[0,T ] × � → R by

u(A, B)(ω) := 
P1(A)(ω)
P2(B)(ω) − v (A ∩ B) , A, B ∈ B[0,T ], ω ∈ �.
(7)

(Notice that u is ‘bilinear.’) Then, the quantity of interest is expressible as

�n := b−1/2
n (Un − θ) = b−1/2

n

∑

i, j

(

P1(I i )
P2(J j ) − v(I i ∩ J j )

)

Ki j = b−1/2
n

∑

i, j

u
(

I i , J j
)

Ki j ,
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374 T. Hayashi, N. Yoshida

owing to the fact that (I i ∩ J j ) partitions (0, T ] and θ = ∑
i, j v(I i ∩ J j )Ki j . Accord-

ingly, because V ar� [�n] ≡ b−1
n V ar� [Un], in the case of zero drift (C2) may be

restated as:
Condition (C2′): There exist a sequence of positive numbers (bn) and some constant
c ∈ (0,∞) such that, as n → ∞, bn → 0 and

V ar� [�n]
P→ c,

provided that µl ≡ 0, l = 1, 2.
In what follows, the first four Lemmas 1 through 4 are prepared to show asymptotic

normality in the zero drift case. The last two, 5 and 6, are to deal with the non-zero
drift case.

Throughout the paper, for sequences (xn) and (yn), xn � yn means that there exists
a constant C ∈ [0,∞) such that xn ≤ Cyn for large n; xn ∼ yn means that xn � yn

and yn � xn at the same time.

Lemma 1 Suppose µl ≡ 0, l = 1, 2. For A, B ∈ B[0,T ],

E
[
u(A, B)2

]
= v1(A)v2(B) + v (A ∩ B)2 .

Proof Because σ l· and ρ· are deterministic, the random vector

(∫ T

0
f 1(t)σ 1

t dW 1
t ,

∫ T

0
f 2(t)σ 2

t dW 2
t

)

is jointly normal for any deterministic and bounded, measurable functions f 1 and f 2.
Therefore, putting f 1(t) = 1A(t) and f 2(t) = 1B(t), one has

E [u(A, B)] = E
[

P1(A)
P2(B)

]
− v (A ∩ B) = 0

and

E
[
u(A, B)2

]
= E

[

P1(A)2
P2(B)2

]
−v (A ∩ B)2 =v1 (A) v2 (B)+v (A ∩ B)2 .

We have used the fact that, for any jointly normal random variables X1 and X2 with
the respective mean and variance, 0 and vk , k = 1, 2, and with covariance v1,2,
E
[
X2

1 X2
2

] = 2v1,2
2 + v1v2. ��

Fix n ∈ N. Define the intervals of size an by Ak
n := ((k − 1)an, kan], k ∈ N.

Put K (n) := min {k ∈ N; kan ≥ T }, the smallest number of intervals (Ak
n) needed

to cover the whole observation period (0, T ]. For convenience, we re-interpret the
setup on the two-dimensional plane. We furnish the (x, y)-coordinate system in an
obvious manner. Once � is fixed, any pair

(
I i , J j

)
of intervals is representable as

a rectangle I i × J j , the overall aggregation of which amounts to the square S :=
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Nonsynchronously observed diffusions 375

Fig. 1 Active rectangles (associated with a realization �) on the total square S := (0, T ] × (0, T ]

(0, T ] × (0, T ]. A pair
(
I i , J j

)
that intersects each other (Ki j = 1) and hence con-

tributes to the sum Un in (3) forms a rectangle I i × J j that intersects the 45◦ line
connecting (0, 0) and (T, T ). We call active rectangles the rectangles with Ki j = 1
(Fig. 1). Besides, we refer to points {(kan, kan) , k = 1, . . . , K (n) − 1} as markers,
which are vertices of any of the squares Ak

n × Ak
n situated in a row on the 45◦ line.

We will refer to such squares A := ∪K (n)
k=1

{
Ak

n × Ak
n

} ∩ S diagonal squares, which
will serve collectively as a ‘filter,’ being utilized on constructing an approximation
to �n as explained in the following paragraph (Fig. 2). Notice that equipping A on
the two-dimensional plane corresponds to setting the regular intervals with size an

on the one-dimensional time axis. The remaining area, S \ A, will be referred to as
the residual region.

For the proof of the theorem, we propose to approximate �n by

�n :=
K (n)∑

k=1

ηk
n,

where
ηk

n := b−1/2
n

∑

i, j

u
(

I i ∩ Ak
n, J j ∩ Ak

n

)
Ki j , k = 1, . . . , K (n). (8)

The usefulness of this approximation for proving the asymptotic normality stems from
the fact that

{
ηk

n, k = 1, . . . , K (n)
}

are independent conditionally on �. Notice that
�n collects contributions only from I i ∩ J j s in the diagonal squares.
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376 T. Hayashi, N. Yoshida

Fig. 2 The diagonal squares A := ∪K (n)
k=1

{
Ak

n × Ak
n

}
∩ S

Let us define the approximation error of �n relative to �n by

Rn := �n − �n .

According to (C3′)(ii), rn , the maximum length of any edge of rectangles, is asymp-
totically negligible compared to an , the length of each edge of the diagonal squares,
hence, the (conditional) variance of the approximation error Rn , namely, the ‘energy’
on the residual region, should vanish eventually. This conjecture indeed leads to the
following claim:

Lemma 2 Suppose µl ≡ 0, l = 1, 2. As n → ∞,

E�
[
(Rn)2

]
P→ 0.

Proof Beforehand, observe that, if rn < an
2 , then one can see easily that no active

rectangle except for the ones covering any of the markers crosses more than one edge
of the diagonal squares, because the length of each edge is an while the maximum edge
length among all the rectangle I i × J j is rn . In this case, we divide all the elements
of Rn into four groups in light of the direction (relative to the corresponding markers)
in which each element is positioned. Inevitably any active rectangle that contributes
to Rn must intersect with at least one edge of the diagonal squares; however, when
rn < an

2 , those rectangles (except for the ones covering the markers) intersect exactly
once. (Recall that Rn is the aggregate contribution from the residual region, S \ A.)
Let Gn := {

rn < an
2

}
.
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Nonsynchronously observed diffusions 377

Fig. 3 Active rectangles intersecting with the kth diagonal square Ak
n × Ak

n in the “North-South” direction
of the kth marker (kan , kan)

Define index sets, for k = 1, . . . K (n) − 1,

Ok :=
{
(i, j) ∈ N

2; Ki j = 1, kan ∈ I i , kan ∈ J j
}

,

Vk :=
{
(i, j) ∈ N

2; Ki j = 1, kan ∈ I i , kan /∈ J j
}

,

Hk :=
{
(i, j) ∈ N

2; Ki j = 1, kan /∈ I i , kan ∈ J j
}

.

Ok corresponds to the unique active rectangle that contains the kth marker, Vk to
those (except the one in Ok) crossing the line x = kan (stacked in the ‘North-South’
direction), while Hk corresponds to those (except the one in Ok) crossing y = kan

(‘East-West’ direction); see Fig. 3.
By construction,

{
Ok, Vk, Hk, k = 1, . . . K (n) − 1

}
are mutually disjoint.

Moreover, for rn < an
2 ,

{
Vk, Hk, k = 1, . . . K (n) − 1

}
represent all the active rectan-

gles in S that intersect with any edge of the diagonal squares exactly once. Thus, for
rn < an

2 , one can decompose Rn ≡ Rn,S + Rn,N + Rn,E + Rn,W , where

Rn,S :=
K (n)−1∑

k=1

b−1/2
n

∑

(i, j)∈Vk∪Ok

u
(

I i ∩ Ak+1
n , J j ∩ Ak

n

)
(‘South’ region rel. to Ok),

Rn,N :=
K (n)−1∑

k=1

b−1/2
n

∑

(i, j)∈Vk∪Ok

u
(
I i ∩ Ak

n, J j ∩ Ak+1
n

)
(‘North’ region rel. to Ok),
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378 T. Hayashi, N. Yoshida

Rn,E :=
K (n)−1∑

k=1

b−1/2
n

∑

(i, j)∈Hk

u
(

I i ∩ Ak+1
n , J j ∩ Ak

n

)
(‘East’ region rel. to Ok),

Rn,W :=
K (n)−1∑

k=1

b−1/2
n

∑

(i, j)∈Hk

u
(

I i ∩ Ak
n, J j ∩ Ak+1

n

)
(‘West’ region rel. to Ok).

Consider now Rn,S ≡ ∑K (n)−1
k=1 Rk

n,S , where

Rk
n,S := b−1/2

n

∑

(i, j)∈Vk∪Ok

u
(

I i ∩ Ak+1
n , J j ∩ Ak

n

)
, k = 1, . . . , K (n) − 1.

Fix k ∈ {k = 1, . . . , K (n) − 1}. Let i+(k) be the index i ∈ N such that kan ∈ I i and
J+(k) := {

j : (i+(k), j) ∈ Vk ∪ Ok
}
. Then,

b1/2
n Rk

n,S =
∑

j∈J+(k)

u
(

I i+(k) ∩ Ak+1
n , J j ∩ Ak

n

)

= u
(

I i+(k) ∩ Ak+1
n ,

(
∪ j∈J+(k) J j

)
∩ Ak

n

)
,

because u is ‘bilinear’ and {J j , j ∈ J+(k)} are disjoint.
Because by assumption µl ≡ 0, l = 1, 2, by use of Lemma 1, on Gn , one has

bn E�

[(
Rk

n,S

)2
]

= v1
(

I i+(k) ∩ Ak+1
n

)
v2

((
∪ j∈J+(k) J j

)
∩ Ak

n

)

+v
(

I i+(k) ∩ Ak+1
n ∩

(
∪ j∈J+(k) J j

)
∩ Ak

n

)

≤ rnv1
max · 3rnv2

max,

noting that Ak+1
n ∩ Ak

n = ∅. Here we have put vl
max := max0≤t≤T

(
σ l

t

)2
, l = 1, 2.

Now, observe that, conditionally on �,
{
Rk

n,S, k = 1, . . . , K (n) − 1
}

are

independent. Also, 1Gn is deterministic on �. So, for some constant C < ∞,

E�
[(Rn,S

)2 1Gn

]
=

K (n)−1∑

k=1

E�

[(
Rk

n,S

)2
]

1Gn ≤C(K (n) − 1)
r2

n

bn
1Gn ∼ 1

an

r2
n

bn
1Gn ,

whenever n is sufficiently large. However, the r.h.s. goes to zero in probability as
n → ∞ by (C3′)(i).

The same argument can apply to Rn,N , Rn,E , and Rn,W . Therefore,

E�
[
(Rn)2 1Gn

]
P→ 0 as n → ∞
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so that

E�
[
(Rn)2

]
P→ 0 as n → ∞

because 1Gn

P→ 1 as n → ∞ according to (C3′)(ii). ��
Next, observe that, conditionally on �,

{
ηk

n, k = 1, . . . , K (n)
}

are independent,
and that E�

[
ηk

n

] = 0, k = 1, . . . , K (n), hence

K (n)∑

k=1

Var�
[
ηk

n

]
= Var� [�n] .

Moreover, the previous Lemma 2 (the vanishing property of the residual energy) will
imply the asymptotic equivalence of the conditional variances of �n and �n . Specif-
ically,

Lemma 3 Suppose µl ≡ 0, l = 1, 2. As n → ∞,

Var� [�n]
P→ c. (9)

Proof By definition,

Var� [�n] = Var� [�n − Rn] = Var� [�n] + Var� [Rn] − 2Cov� [�n,Rn] ,

where Cov� [·, ·] is the conditional covariance, given �. Note that, for every fixed �,

∣∣Cov� [�n,Rn]
∣∣ ≤ {

Var� [�n]
} 1

2
{
Var� [Rn]

} 1
2 .

Therefore, Lemma 2 and (C2′) implies the assertion. ��
The following Lindeberg-type condition will be used later when invoking the central

limit theorem.

Lemma 4 Suppose µl ≡ 0, l = 1, 2. As n → ∞,

K (n)∑

k=1

E�

[∣∣∣ηk
n

∣∣∣
2

1{|ηk
n|>ε}

]
P→ 0 (10)

for any ε > 0.

Proof Put J(i) := { j ≥ 1, Ki j = 1} for each i ≥ 1. First note that, for any p > 2,

E�

[∣∣∣ηk
n

∣∣∣
2

1{|ηk
n|>ε}

]
≤ 1

ε p−2 E�
[∣∣∣ηk

n

∣∣∣
p]

,
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hence it suffices to show that

K (n)∑

k=1

E�
[∣∣∣ηk

n

∣∣∣
p] P→ 0

for some p > 2.
To this end, observe that, from (8) and ‘bilinearity’ of u, for k = 1, . . . , K (n),

b1/2
n ηk

n =
∑

i, j

u
(

I i ∩ Ak
n, J j ∩ Ak

n

)
Ki j

=
∑

i

u
(

I i ∩ Ak
n,
(
∪ j∈J(i) J j

)
∩ Ak

n

)
=
∑

i

u
(

Bi , Ci
)

,

where Bi := I i ∩Ak
n and Ci := (∪ j∈J(i) J j

)∩Ak
n . It should be noted that ∪∞

i=1 Bi = Ak
n

and ∪∞
i=1Ci = Ak

n .
By definition (7) of u,

∣∣∣∣∣
∑

i

u
(

Bi , Ci
)∣∣∣∣∣ ≤

∣∣∣∣∣
∑

i


P1(Bi )
P2(Ci )

∣∣∣∣∣ +
∣∣∣∣∣
∑

i

v
(

Bi ∩ Ci
)∣∣∣∣∣ . (11)

Because Bi ∩ Ci = I i ∩ Ak
n = Bi , the second term on the r.h.s. of (11) is evaluated

as, by putting v12
max := max0≤t≤T

∣∣σ 1
t σ 2

t ρt
∣∣,

∣∣∣∣∣
∑

i

v
(

Bi ∩ Ci
)∣∣∣∣∣ =

∣∣∣v(Ak
n)

∣∣∣ ≤ v12
max · an .

Now, regarding the first term on the r.h.s. of (11), because

± 2
∑

i


P1(Bi )
P2(Ci ) ≤
∑

i

(

P1(Bi )

)2 +
∑

i

(

P2(Ci )

)2
,

one has, for p > 2,

2E�

[∣∣∣∣∣
∑

i


P1(Bi )
P2(Ci )

∣∣∣∣∣

p]
≤ E�

[{
∑

i

(

P1(Bi )

)2
}p]

+E�

[{
∑

i

(

P2(Ci )

)2
}p]

.
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Recalling that Pl , l = 1, 2, are martingales, the Burkholder and Doob’s maximal
inequalities imply that

E�

[{
∑

i

(

Pl(Bi )

)2
}p]

≤ K2p E�

[
sup
t∈Ak

n

∣∣∣Pl
t − Pl

(k−1)an

∣∣∣
2p
]

≤ K2p

(
2p

2p − 1

)2p

E�

[∣∣∣Pl
kan

−Pl
(k−1)an

∣∣∣
2p
]

, l =1, 2,

where K2p is the Burkholder constant. Because Pl
kan

− Pl
(k−1)an

∼ N (0, vl(an)),

l = 1, 2, one has

E�

[{
∑

i

(

Pl(Bi )

)2
}p]

≤ K2p

(
2p

2p − 1

)2p

C p

(
vl(an)

)p
,

where C p = 1·3 · · ··(2p−1) (Note: in case of l = 2, ‘Bi ’ should be read as ‘Ci ’ in the
left-most hand side of the preceding two inequalities.) Noting that vl(an) ≤ vl

max · an ,
one has

E�

[∣∣∣∣∣
∑

i


P1(Bi )
P2(Ci )

∣∣∣∣∣

p]
≤ Ca p

n

for some C > 0.
Because K (n) ∼ a−1

n , one can conclude that

K (n)∑

k=1

E�
[∣∣∣ηk

n

∣∣∣
p] =

K (n)∑

k=1

1

bp/2
n

E�

[∣∣∣∣∣
∑

i

u
(

Bi , Ci
)∣∣∣∣∣

p]
≤C

a p−1
n

bp/2
n

∼ b2αp−2α−1/2
n →0

provided that p > 1 + 1
4α

. In fact, because α > 0 under Condition (C3), one can
always choose such p > 2 at his / her disposal. ��

The lemmas established so far are valid only in the zero drift case. Now, we need
to derive additional results that will deal with the non-zero drift case. For an interval
I i , let J (I i ) := ∪ j∈J(i) J j , the minimal, combined interval of (J j ) that covers I i . Let
Al· := ∫ ·

0 µl
t dt , Ml· := ∫ ·

0 σ l
t dW l

t , l = 1, 2, and

B0 :=
∑

i, j


M1(I i )
M2(J j )Ki j , B1 :=
∑

i, j


M1(I i )
A2(J j )Ki j ,

B2 :=
∑

i, j


A1(I i )
M2(J j )Ki j , B3 :=
∑

i, j


A1(I i )
A2(J j )Ki j ,
(12)

where 
Al(·) and 
Ml(·) are defined similarly to 
Pl(·).
For every realized �, we construct the reduced design with respect to �1 ≡ (

I i
)

i≥1

in the following manner. For each j = 1, 2, . . ., collect all I i s such that I i ⊂ J j and
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combine them into a new interval; if such I i does not exist, do nothing. Collecting
all such intervals and re-labeling them from left to right yield the most ‘economical’

partition of (0, T ], denoted

(
I

i
)

i≥1
. Let Ki j and J(i) be defined as before with the

obvious amendment. Analogously, we denote by J

(
I

i
)

the minimal covering of a

given I
i

with
(
J j
)

j≥1.
The following observations are useful: due to ‘bilinearity’ Un is invariant under

the ‘�1-reduction’; i.e.,

Un ≡
∑

i, j


P1(I i )
P2(J j )Ki j =
∑

i, j


P1(I
i
)
P2(J j )Ki j ,

moreover, the resulting Bk , k = 0, . . . , 4, are invariant as well. By construction, rn

also remains intact, that is, rn = max1≤i<∞

∣∣∣∣I
i
∣∣∣∣ ∨ max1≤ j<∞

∣∣J j
∣∣. Besides,

Lemma 5 For every fixed �, the corresponding �1-reduced design

((
I

i
)

i≥1
,

(
J j
)

j≥1

)
satisfies

∞∑

i=1

∣∣∣∣J
(

I
i
)∣∣∣∣ ≤ 3T .

Proof It should be noted that under the �1-reduced design

((
I

i
)

i≥1
,
(
J j
)

j≥1

)
, for

each fixed j , J j intersects with at most three I
i
s. Therefore,

∑∞
i=1 Ki j ≤ 3 for each

fixed j .

By definition of J

(
I

i
)

,

∞∑

i=1

∣∣∣∣J
(

I
i
)∣∣∣∣ =

∞∑

i=1

∣∣∣∪ j∈J(i) J j
∣∣∣ =

∞∑

i=1

⎛

⎝
∞∑

j=1

∣∣∣J j
∣∣∣ Ki j

⎞

⎠ =
∞∑

j=1

∣∣∣J j
∣∣∣

⎛

⎝
∞∑

i=1

Ki j

⎞

⎠≤3T .

��
Then, we claim:

Lemma 6 As n → ∞,

b−1/2
n Bk = oP (1), k = 1, 2, 3.
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Proof Consider B1 first. We exploit the invariance property of B1under the �1-reduc-
tion. In particular, without loss of generality, we may assume that �1-reduction will
be made immediately after � is fixed (note: this assumption will be used when B1,2
defined below will be evaluated). However, for notational simplicity we write as

(
I i
)

i

for

(
I

i
)

i
throughout the proof.

Once � is fixed, then, because, for every fixed i ,

∞∑

j=1


A2(J j )Ki j = 
A2
(
∪ j∈J(i) J j

)
=
∫

J (I i )

µ2
t dt = µ2

T 1,i−1

∣∣∣J (I i )

∣∣∣ + Ri ,

with

Ri :=
∫

J (I i )

(
µ2

t − µ2
T 1,i−1

)
dt,

one may decompose

B1 =
∞∑

i=1

⎛

⎝
∞∑

j=1


A2(J j )Ki j

⎞

⎠
M1(I i ) =: B1,1 + B1,2, (13)

where

B1,1 :=
∑

i

µ2
T 1,i−1

∣∣∣J (I i )

∣∣∣
M1(I i ); B1,2 :=
∑

i

Ri
M1(I i ).

We are going to show that

b−1/2
n B1,1 = oP (1). (14)

To this end, suppose for now that sup 0≤t≤T
∣∣µ2

t

∣∣ ∈ L2. Observing that, for fixed �,
B1,1 is a sum of (L2-)martingale differences, one has

E�
[(

B1,1
)2
]

= E�

[
∑

i

(
µ2

T 1,i−1

∣∣∣J (I i )

∣∣∣
)2

v1(I i )

]

≤ 9r2
n E�

[
∑

i

(
µ2

T 1,i−1

)2
v1(I i )

] (∣∣∣J (I i )

∣∣∣ ≤ 3rn

)
. (15)

Now, because

∑

i

(
µ2

T 1,i−1

)2
v1(I i ) =

∑

i

(
µ2

T 1,i−1

)2
∫

I i

(
σ 1

t

)2
dt ≤sup 0≤t≤T

∣∣∣µ2
t

∣∣∣
2 · v1 ((0, T ]) ,
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the r.h.s. of which is independent of �, the r.h.s. of (15) is dominated by

9r2
n E

[
sup 0≤t≤T

∣∣∣µ2
t

∣∣∣
2
]

v1 ((0, T ]) ,

so that

b−1
n E�

[(
B1,1

)2
]

≤ Cb−1
n r2

n
P→ 0

for some C . Therefore,

P�
[
b−1

n

(
B1,1

)2 ≥ ε
]

≤ 1

ε
E�

[
b−1

n

(
B1,1

)2
]

P→ 0,

which implies that

P
[
b−1

n

(
B1,1

)2 ≥ ε
]

= E E�

[
1{

b−1
n (B1,1)

2≥ε
}
]

→ 0.

Relax the L2 assumption for µ2; because µ2 is continuous, the usual stopping-time
argument can apply. Specifically, for ε > 0 and K > 0,

P
[
b−1

n

(
B1,1

)2 ≥ ε
]

≤ P [TK ≤ T ] + P
[
b−1

n

(
B1,1

)2 ≥ ε, TK > T
]

≤ P [TK ≤ T ] + P

[
b−1

n

(
B(K )

1,1

)2 ≥ ε

]
,

where TK is the first time of
∣∣µ2

∣∣ to hit the given level K and B(K )
1,1 is the corresponding

value of B1,1 based on the stopped process µ2·∧TK
. Letting n → ∞ then K → ∞,

(14) is obtained as desired.
Next we are going to show that

b−1/2
n B1,2 = oP (1). (16)

Recall that �1-reduction has been made prior to obtaining B1,2. One has

∣∣B1,2
∣∣ =

∣∣∣∣∣
∑

i

Ri
M1(I i )

∣∣∣∣∣ ≤
∑

i

|Ri |
∣∣∣
M1(I i )

∣∣∣ ≤ max
i

∣∣∣
M1(I i )

∣∣∣
∑

i

|Ri | .

Obviously, maxi
∣∣
M1(I i )

∣∣ ≤ δ
(
M1; maxi

∣∣I i
∣∣) ≤ δ

(
M1; rn

)
. On the other hand,

because
∣∣J

(
I i
)∣∣ ≤ 3rn ,
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∑

i

|Ri | ≤
∑

i

∫

J (I i )

∣∣∣µ2
t − µ2

T 1,i−1

∣∣∣ dt ≤
∑

i

δ
(
µ2;

∣∣∣J
(

I i
)∣∣∣
) ∣∣∣J

(
I i
)∣∣∣

≤ δ
(
µ2; 3rn

)∑

i

∣∣∣J
(

I i
)∣∣∣ ≤ δ

(
µ2; 3rn

)
· 3T

by Lemma 5, therefore,

∣∣B1,2
∣∣ ≤ 3T δ

(
M1; rn

)
δ
(
µ2; 3rn

)
.

Notice the fact that δ
(
M1; rn

) = OP (r1/2−ξ
n ) for any ξ ∈ (0, 1/2) (this is a direct

consequence of local Hölder continuity of Brownian paths with exponent parameter γ ,
for every γ ∈ (0, 1/2), cf. pp.53–54 of Karatzas and Shreve (1991), along with the
facts that M1 is a time-changed Brownian motion and that σ 1 is bounded).

In case (C4) is assumed, if one puts λ := 1
2 − k ∈ (

0, 1
3

)
,

b−1/2
n

∣∣B1,2
∣∣ = OP

(
b

− 1
2

n · r
1
2 −ξ

n · r
1
2 −λ

n

)
= oP

(
b

− 1
2

n · r1−(ξ+λ)
n

)

= oP

(
b

− 1
2 +(1−(ξ+λ))

(
3
4 +α

)

n

)
,

together with (C3). Notice that the exponent can be made as

1

4
+ α (1 − (ξ + λ)) − 3

4
(ξ + λ) > 0,

because 3
4 (ξ + λ) < 1/4 so far as one chooses ξ sufficiently small.

If instead (C4′) is assumed, then, by the same token, one has

b−1/2
n

∣∣B1,2
∣∣ = OP

(
b

− 1
2

n · r
1
2 −ξ

n · r
1
2

n b
−
(

1
4 +α′

)

n

)
= oP

(
b

−ξ
(

3
4 +α

)
+η

n

)
,

where η := α−α′(> 0) is a fixed constant, determined from (C3) and (C4′). It follows
that, by taking ξ sufficiently small, one can always make the exponent of bn strictly
positive. In either case (16) is shown, as desired.

Secondly, b−1/2
n B2 = oP (1) can be shown by symmetry. Finally, regarding B3, by

a similar argument, it can be shown that

B3 =
∞∑

i=1

⎛

⎝
∞∑

j=1


A2(J j )Ki j

⎞

⎠
A1(I i ) =
∞∑

i=1


A2(J
(

I i
)
)
A1(I i ) = Op (rn) ,

hence, that b−1/2
n B3 = Op(b

−1/2
n rn) = oP (1) due to (C3′). This completes the proof.

��
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Now we are ready to prove the main theorem.

Proof of Theorem 2 Suppose µl ≡ 0, l = 1, 2 for the time being. Recall that b−1/2
n

(Un − θ) ≡ �n ≡ �n + Rn . Because Lemma 2 implies that Rn
P→ 0 as n → ∞, to

get the desired result one only needs to prove that �n
L→ N (0, c) as n → ∞ in light

of the Slutsky theorem. In particular, if one can show that, for every fixed u ∈ R, as
n → ∞

ϕn(u) := E�
[
eiu�n

]
P→ e− c

2 u2
, (17)

then the bounded convergence theorem will imply

E
[
eiu�n

]
→ e− c

2 u2
,

thus asymptotic normality of �n is obtained.
To this end, recall that, conditionally on �,

{
ηk

n, k = 1, . . . , K (n)
}

are independent,
and that E�

[
ηk

n

] = 0 for k = 1, . . . , K (n). According to the standard subsequence
argument, the convergence results (9) (in Lemma 3) and (10) (in Lemma 4),

(asymptotic variance condition) αn := Var� [�n]
P→ c,

(Lindeberg condition) βn :=
K (n)∑

k=1

E�

[∣∣∣ηk
n

∣∣∣
2

1{|ηk
n|>ε}

]
P→ 0,

imply that an arbitrary subsequence {αn′, βn′ , n′ ∈ N
′}, N

′ ⊂ N, contains a further
subsequence {αn′′ , βn′′ , n′′ ∈ N

′′}, N
′′ ⊂ N

′, that converges to the same limit almost
surely.

Then, the Lindeberg-Feller central limit theorem implies that

ϕn′′(u) → e− c
2 u2

, n′′ ∈ N
′′, (18)

almost surely. Because, for every fixed u ∈ R, every subsequence {ϕn′(u), n′ ∈ N
′}

has a further subsequence {ϕn′′(u), n′′ ∈ N
′′} with the almost sure convergence to the

unique constant in (18), (by taking the reverse direction of the subsequence argument)
the original sequence {ϕn(u), n ∈ N} must tend to the same limit in probability, i.e.,
(17) is obtained.

Finally, we relax the restriction of the zero drift, more specifically, assume that
µl , l = 1, 2, satisfy (C4). Then, because �n ≡ b−1/2

n (Un − θ) = b−1/2
n (B0 − θ) +

b−1/2
n (B1 + B2 + B3), where Bk , k = 0, 1, 2, 3, are defined by (12), the Slutsky

theorem and Lemma 6 imply the conclusion. ��

4 Case study

Two important examples are considered in this section. Another example—a deter-
ministic, nonsynchronous case is treated in Hayashi and Yoshida (2005a). To invoke
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Theorem 2, the set of Conditions (C1) through (C3) and either (C4) or (C4′) needs
to be checked. The main difficulty is to check (C2), which is stated in a general way.
In this section, we will impose a supplementary condition as follows, which will be
utilized in identifying the constant c appearing in (4) of (C2). Recall that c serves as
the asymptotic variance of the (rescaled) covariance estimator.
Condition (C5): σ l , l = 1, 2, and ρ are continuous in t .

4.1 Synchronous sampling

Suppose synchronous and equidistant sampling, I i ≡ J i , |I i | ≡ T
n . (C1) is trivially

satisfied. (C3) holds automatically. Then, without difficulty we can show that, if either
(C4) or (C4′), and (C5) hold, then, as n → ∞,

n1/2 (Un − θ)
L→ N

(
0,

∫ T

0

(
σ 1

t σ 2
t

)2
(1 + ρ2

t )dt

)
.

(Recall that θ ≡ ∫ T
0 σ 1

t σ 2
t ρt dt .)

In this synchronous case, the estimator Un reduces to the realized covariance. The
asymptotic distribution has been known in the literature.

4.2 Poisson sampling

Consider the Poisson sampling case (Poisson random sampling scheme), together with
the additional assumption that the Poisson processes N 1 and N 2 are mutually inde-
pendent. For simplicity of notation, throughout the section we denote as T l,i in place
of T̃ l,i , where T̃ l,i is the i th arrival time of the lth Poisson process, l = 1, 2.

We have the following result.

Theorem 3 In the Poisson sampling case with N 1 and N 2 mutually independent, if
(C1), either (C4) or (C4′), and (C5) hold at the same time, then, as n → ∞,

n1/2 (Un − θ)
L→ N (0, c),

where

c :=
(

2

p1 + 2

p2

)∫ T

0

(
σ 1

t σ 2
t

)2
dt +

(
2

p1 + 2

p2 − 2

p1 + p2

)∫ T

0

(
σ 1

t σ 2
t ρt

)2
dt.

(19)

Special case: If Pls are standard Brownian motions with constant correlation, i.e.,
Pl := W l , l = 1, 2, with d

〈
W 1, W 2

〉 = ρdt , we have the asymptotic variance of the
form

c :=
(

2T

p1 + 2T

p2

)
+ ρ2

(
2T

p1 + 2T

p2 − 2T

p1 + p2

)
.
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388 T. Hayashi, N. Yoshida

Remark Notice that even in this simple case—independent Poisson sampling—the
result, as well as the proof provided below, is not straightforward. The reader may be
convinced of the difficult nature of the nonsynchronous sampling problems. At the best
of our knowledge a result of this kind is new in the literature. Continual efforts should
be made to upgrade the conditions and results obtained in this paper; see Hayashi and
Yoshida (2005a, 2006).

4.3 Proof for the Poisson sampling case

Preceding the proof of Theorem 3, we are going to demonstrate the following propo-
sition.

Proposition 1 Under the assumption of Theorem 3, as n → ∞,

(a) n
∞∑

i=1

v
(
I i
)2 P→ 2

p1

∫ T

0

(
σ 1

t σ 2
t ρt

)2
dt, (b) n

∞∑

i=1

v
(
J j
)2 P→ 2

p2

∫ T

0

(
σ 1

t σ 2
t ρt

)2
dt ,

(c) n
∞∑

i=1

∞∑

j=1

v
(

I i ∩ J j
)2 P→ 2

p1 + p2

∫ T

0

(
σ 1

t σ 2
t ρt

)2
dt , and

(d) n
∞∑

i=1

∞∑

j=1

v1
(

I i
)

v2
(

J j
)

Ki j
P→
(

2

p1 + 2

p2

)∫ T

0

(
σ 1

t σ 2
t

)2
dt.

Let σ l
t := σ l

t∧T for 0 ≤ t < ∞, l = 1, 2. Accordingly, v (·) and vl (·), l = 1, 2,
are to be defined on the Borel σ -field on [0,∞). Let �̃1 := {

T 1,i ; i ≥ 0
}
. Preceding

the proof we are going to introduce the auxiliary notation as follows. The rationale
behind this is to deal with the fact that

∣∣I i
∣∣ and

∣∣J j
∣∣ are not i.i.d. (exponential) due to

the truncation at time T . (Notice that some were defined previously but are re-defined
here to be the same just for the readers’ convenience.):

I i := (T 1,i−1, T 1,i ] ∩ (0, T ], J i := (T 2,i−1, T 2,i ] ∩ (0, T ];
Ki j := 1{I i ∩J j �=∅}, i, j ≥ 1.

Ĩ i := (T 1,i−1, T 1,i ], J̃ j := (T 2, j−1, T 2, j ]; K̃i j := 1{ Ĩ i ∩ J̃ j �=∅}, i, j ≥ 1.

J (I i ) := ∪ j∈J(i) J j , J̃ ( Ĩ i ) := ∪ j ∈̃J(i) J̃ j ; J(i) := { j ≥ 1; Ki j = 1},
J̃(i) := { j ≥ 1; K̃i j = 1}, i ≥ 1.

i∗ := min
{

i ≥ 1; T 1,i ≥ T
}

, j∗ := min
{

j ≥ 1; T 2, j ≥ T
}

.

j̃+(i) := max J̃(i), j̃−(i) := min J̃(i), i ≥ 1.

rn := max
1≤i<∞

∣∣∣I i
∣∣∣ ∨ max

1≤ j<∞

∣∣∣J j
∣∣∣ , r̃n := max

1≤i≤(λ(n)∨i∗)

∣∣∣ Ĩ i
∣∣∣ ∨ max

1≤ j≤ j̃+(λ(n)∨i∗)

∣∣∣ J̃ j
∣∣∣ .

vl
max := sup

0≤t<∞

(
σ l

t

)2
, l = 1, 2; v12

max := sup
0≤t<∞

∣∣∣σ 1
t σ 2

t ρt

∣∣∣ .
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Nonsynchronously observed diffusions 389

We have put λ(n) := ⌈
np1T

⌉
, where �x� denotes the largest integer that does not

exceed x . Recall that, for sequences (xn) and (yn), xn � yn means that there exists a
constant C ∈ [0,∞) such that xn ≤ Cyn for large n; xn ∼ yn means that xn � yn and
yn � xn at the same time. Besides, for random sequences (Xn) and (Yn), Xn � Yn

means that Xn − Yn
P→ 0 as n → ∞.

The following simple facts will be used later:

1. (a) j̃+(i), the index associated with the first jump time of N 2 after and including
the i th observation time T 1,i of N 1, is a discrete-time stopping time with respect
to the filtration {Gk; k ≥ 0} defined by Gk := σ

〈
S2, j ; 1 ≤ j ≤ k

〉∨σ
〈
�̃1

〉
, where

S2,k := T 2,k − T 2,k−1, i.i.d. exponential random variables. In fact, for every
k ≥ 0,

{
j̃+(i) = k

} =
{

T 2,k−1 < T 1,i , T 2,k ≥ T 1,i
}

∈ Gk .

Similarly, j̃−(i), the index associated with the first jump time of N 2 after the
(i − 1)th observation time T 1,i−1 of N 1, is a (discrete-time) {Gk}-stopping time.

2. (a) (i∗ − 1) is a Poisson random variable with intensity λ1T ≡ np1T .
(b) Since, for every k ≥ 1,

{
j̃+(i) = k

} =
{

N 2 jumps exactly (k − 1) times prior to T 1,i
}

,

(
j̃+(i) − 1

)
is Poisson with intensity λ2T 1,i ≡ np2T 1,i , conditionally on �̃1.

Similarly,
(

j̃−(i) − 1
)

is Poisson with λ2T 1,i−1 ≡ np2T 1,i−1, conditionally on
�̃1.

3. (a)
(

T 1,i∗ − T
)

is an exponential random variable with intensity λ1 ≡ np1. (b)

Conditionally on �̃1, both
(

T 2, j̃+(i)−T 1,i
)

and
(

T 2, j̃−(i) − T 1,i−1
)

are exponen-

tial with intensity λ2 ≡ np2. Similarly, conditionally on �̃1,
(

T 2, j̃+(i∗) − T 1,i∗
)

is exponential with intensity λ2 ≡ np2.
4.

(
T 1,i+l − T 1,i

) ≡ ∑i+l
k=i+1 | Ĩ k | is a gamma random variable with shape parameter

l and scale parameter
(
λ1
)−1 ≡ (

np1
)−1

, which may be denoted as �
(

l,
(
λ1
)−1

)

by convention.

We are going to derive some technical lemmas as follows, which will be used in
the proof for Proposition 1 provided later. Let P�̃1

denote the conditional probability
measure given �̃1.

Lemma 7 For every i ≥ 1,

E�̃1
[∣∣∣ J̃ ( Ĩ i )

∣∣∣
]

=
∣∣∣ Ĩ i

∣∣∣ + 2

np2 − 1

np2 exp
{
−np2T 1,i−1

}
.
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390 T. Hayashi, N. Yoshida

Proof Because
∣∣ J̃ ( Ĩ i )

∣∣ = ∑ j̃+(i)
j= j̃−(i)

∣∣ J̃ j
∣∣ = ∑ j̃+(i)

j=1

∣∣ J̃ j
∣∣ − ∑ j̃−(i)

j=1

∣∣ J̃ j
∣∣ +

∣∣∣ J̃ j̃−(i)
∣∣∣,

Facts 1 and 2 (i.e., j̃+(i) and j̃−(i) are {Gk}-stopping times with finite expectations
under P�̃1

) and the fact that
∣∣ J̃ j

∣∣(≡ S2, j ) are i.i.d. under P�̃1
imply

E�̃1
[∣∣∣ J̃ ( Ĩ i )

∣∣∣
]

= E�̃1 [
j̃+(i) − j̃−(i)

]
E�̃1

[∣∣∣ J̃ j
∣∣∣
]

+ E�̃1
[∣∣∣ J̃ j̃−(i)

∣∣∣
]
,

by means of the Wald identity.
From Fact 2 one can evaluate as

E�̃1 [
j̃+(i)

] = np2T 1,i + 1, E�̃1 [
j̃−(i)

] = np2T 1,i−1 + 1,

while E�̃1 [∣∣ J̃ j
∣∣] = (

np2
)−1

. We now claim that

E�̃1
[∣∣∣ J̃ j̃−(i)

∣∣∣
]

= 2

np2 − 1

np2 exp
{
−np2T 1,i−1

}
,

from which the assertion will be obtained. To this end, notice that

∣∣∣ J̃ j̃−(i)
∣∣∣ =

(
T 2, j̃−(i) − T 1,i−1

)
+
(

T 1,i−1 − T 2, j̃−(i)−1
)

.

The conditional expectation of the first term (elapsed time from T 1,i−1 to the corre-
sponding first observation time of N 2) is found easily from Fact 3 above, while that
of the second term (elapsed time to T 1,i−1 from the corresponding last observation
time of N 2) can be evaluated with, for instance, the Eq. (2.2) of Hayashi and Yoshida
(2005b) (p. 365). ��
Lemma 8 For any q ∈ [1,∞),

E
[
r̃ q

n
] = o(n−α) for any α ∈ (0, q).

Proof Let q ∈ (0,∞) be fixed.
(i) Let k(n) ≥ 1 be an integer-valued, positive function of n, with at most polynomial
order of q. For any δ ∈ (0, 1),

E

[
max

1≤i≤k(n)

∣∣∣ Ĩ i
∣∣∣
q
]

≤ E

[
1{max1≤i≤k(n)| Ĩ i |≥n−(1−δ)} max

1≤i≤k(n)

∣∣∣ Ĩ i
∣∣∣
q
]

+ n−q(1−δ)

≤
k(n)∑

i=1

E
[
1{| Ĩ i |≥n−(1−δ)}

∣∣∣ Ĩ i
∣∣∣
q] + n−q(1−δ)

≤
k(n)∑

i=1

E

[∣∣∣ Ĩ i
∣∣∣

p+q
]

n p(1−δ) + n−q(1−δ)

= Ck(n)n−pδ−q + n−q(1−δ) (20)
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for any p > 0, with C a constant. The last equality holds because
∣∣ Ĩ i

∣∣ are i.i.d.

exponential with intensity np1, hence E
[∣∣ Ĩ i

∣∣p+q
]

= �(p + q + 1)
(
np1

)−(p+q)
.

Note that, for any given q ∈ (0,∞), for any α ∈ (0, q), one can always choose small
enough δα ∈ (0, 1) and large enough pα ∈ (0,∞). In particular, in case K (n) ∼ n
and q = 1, choose δ < 1 − α and p > α/2.

(ii) Now, for the purpose of evaluating E
[
max1≤i≤i∗

∣∣ Ĩ i
∣∣q
]
, a simple application

of (20) together with the law of iterated expectation (with respect to i∗) will not
work (note that {i∗ = k} = {

T 1,k ≥ T, T 1,k−1 < T
}
, which indicates that

∣∣ Ĩ i
∣∣ ≡

T i
1 ,−T i−1

1 , are no more i.i.d. once i∗ is conditioned on). To deal with the situation,
one may alternatively evaluate as, for q ≥ 1,

E

[
max

1≤i≤i∗

∣∣∣ Ĩ i
∣∣∣
q
]
≤ E

[
max

1≤i≤�3np1T�
∣∣∣ Ĩ i

∣∣∣
q
]

+E

[
max�3np1T�+1≤i≤i∗

∣∣∣ Ĩ i
∣∣∣
q; i∗ >

⌈
3np1T

⌉]
.

The first term on the r.h.s. is bounded (up to constant) by n1−pδ−q +n−q(1−δ) from (20)
(put k(n) = ⌈

3np1T
⌉

(∼ n)). For the second term, via the Hölder inequality

E

[
max�3np1T�+1≤i≤i∗

∣∣∣ Ĩ i
∣∣∣
q ; i∗ >

⌈
3np1T

⌉]

≤
{

E

[
max

1≤i≤i∗

∣∣∣ Ĩ i
∣∣∣
2q
]} 1

2 {
P
[
i∗ >

⌈
3np1T

⌉]} 1
2
.

Clearly the first factor on the r.h.s. is bounded (in fact, max1≤i≤i∗
∣∣ Ĩ i

∣∣≤
(
T 1,i∗ −T

)
+

T with
(

T 1,i∗ − T
)

being exponentially distributed with intensity λ1 ≡ np1). The

second term may be evaluated as, according to the argument in the Appendix of
Hayashi and Yoshida (2005b), for constant C ′,

P
[
i∗ >

⌈
3np1T

⌉]
≤ P

[
N 1

T ≥
⌈

3np1T
⌉]

=
∞∑

k=�3np1T�
e−np1T

(
np1T

)k

k!

≤
∞∑

k=�3np1T�
e−np1T

(
np1T

)k

kke−k

≤ e−np1T
∞∑

k=�3np1T�

(
np1T⌈

3np1T
⌉e

)k

≤ C ′e−np1T , (21)

which goes to zero exponentially fast as n → ∞. Here, we have used the fact that
k! > kke−k for all k ≥ 1. Therefore,

E

[
max

1≤i≤i∗

∣∣∣ Ĩ i
∣∣∣
q
]

� n1−pδ−q + n−q(1−δ).
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(iii) We will now evaluate E
[
max1≤ j≤ j̃+(i∗)

∣∣ J̃ j
∣∣q
]
. The same argument as (ii) can

apply with slight modification. That is, first note the inequality

E

[
max

1≤ j≤ j̃+(i∗)

∣∣∣ J̃ j
∣∣∣
q
]

≤ E

[
max

1≤ j≤⌈3np2T 1,i∗⌉
∣∣∣ J̃ j

∣∣∣
q
]

(22)

+E

[
max⌈

3np2T 1,i∗⌉+1≤ j≤ j̃+(i∗)

∣∣∣ J̃ j
∣∣∣
q ; j̃+

(
i∗
)
>
⌈

3np2T 1,i∗
⌉]

.

Recall that �̃1 ≡ {
T 1,i ; i ≥ 1

}
. Noting the independence of �̃1 and J̃ j s, one can

apply the same argument as (20) to the first term to obtain

E

[
max

1≤ j≤⌈3np2T 1,i∗⌉
∣∣∣ J̃ j

∣∣∣
q
]

= E E�̃1

[
max

1≤ j≤⌈3np2T 1,i∗⌉
∣∣∣ J̃ j

∣∣∣
q
]

≤ C E
[⌈

3np2T 1,i∗
⌉]

n−pδ−q + n−q(1−δ)

� n1−pδ−q + n−q(1−δ).

To evaluate the second on the r.h.s. of (22), apply the Hölder inequality

E

[
max⌈

3np2T 1,i∗⌉+1≤ j≤ j̃+(i∗)

∣∣∣ J̃ j
∣∣∣
q ; j̃+

(
i∗
)

>
⌈

3np2T 1,i∗
⌉]

≤
{

E

[
max⌈

3np2T 1,i∗⌉+1≤ j≤ j̃+(i∗)

∣∣∣ J̃ j
∣∣∣
2q
]} 1

2 {
P
[

j̃+
(
i∗
)

>
⌈

3np2T 1,i∗
⌉]} 1

2
.

Following (21),

P�̃1
[

j̃+
(
i∗
)

>
⌈

3np2T 1,i∗
⌉]

≤ P�̃1
[

N 2
T 1,i∗ ≥

⌈
3np2T 1,i∗

⌉]

≤ e−np2T 1,i∗
∞∑

k=⌈
3np2T 1,i∗⌉

(
np2T 1,i∗

⌈
3np2T 1,i∗⌉e

)k

≤ C ′e−np2T 1,i∗ ≤ C ′e−np2T ,

for every fixed �̃1, where C ′ is a constant. Hence, P
[

j̃+ (i∗) >
⌈

3np2T 1,i∗
⌉]

� e−np2T .
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Besides,

E

[
max⌈

3np2T 1,i∗⌉+1≤ j≤ j̃+(i∗)

∣∣∣ J̃ j
∣∣∣
2q
]

≤ E

[(
T j̃+(i∗)

)2q
]

� E

[(
T 2, j̃+(i∗) − T 1,i∗

)2q +
(

T 1,i∗ − T
)2q + T 2q

]
∼ T 2q

because
(

T 2, j̃+(i∗) − T 1,i∗
)

is exponential with intensity λ2 ≡ np2 conditionally on

�̃1 (Fact 3) so that its 2qth moment equals to �(2q + 1)
(
np2

)−2q
.

It follows that the second term on the r.h.s. of (22) tends to zero exponentially fast,
thus the whole r.h.s. is bounded as

E

[
max

1≤ j≤ j̃+(i∗)

∣∣∣ J̃ j
∣∣∣
q
]

� n1−pδ−q + n−q(1−δ).

(iv) The inequality

E

[
max

1≤ j≤ j̃+(λ(n))

∣∣∣ J̃ j
∣∣∣
q ; i∗ ≤ λ(n)

]
� n1−pδ−q + n−q(1−δ).

can be derived analogously to (ii) and (iii). It is left as an exercise to the reader. (Hint:
replace i∗ with λ(n) in the argument in (iii).)

Putting all (i)–(iv) together, one can confirm that, for any q ∈ [1,∞) and α ∈ (0, q),

E
[
nα r̃ q

n
]

� nα+1−pδ−q + nα−q(1−δ).

In particular, one can choose δ and p arbitrarily within the region−(q−α)+qδ < 0 and

−(q −α)− pδ+1 < 0, that is, choose any δ ∈ (0, 1− α
q ) and p ∈

(
1−(q−α)

δ
∨ 0,∞

)
.

The lemma is proved. ��
For a given ε ∈ (1/2, 1), let �n

0 := {|λ(n) − i∗| ≤ nε}. We claim that it will
eventually fill up the whole space. Formally,

Lemma 9 As n → ∞,

P
[
�n

0

] = 1 − o (1) .

Proof Recall that i∗ ≡ min
{
i ≥1; T 1,i ≥T

}
and N 1

t = ∑∞
i=1 1{T 1,i≤t}, t ≥ 0. So, i∗

satisfies the equation

i∗(ω) = N 1
T (ω) + 1{ω;T 1,i∗(ω)�T

}(ω), ω ∈ �.
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Note also that np1T − 1 < λ(n) ≡ ⌈
np1T

⌉ ≤ np1T . Hence, for every ε > 1
2 ,

P
[
i∗ −

⌈
np1T

⌉
> nε

]
≤ P

[
N 1

T + 1{T 1,i∗�T
} − np1T + 1 > nε

]

≤ P
[

N 1
T + 2 − np1T > nε

]

= P

[
N 1

T − np1T
√

np1T
>

nε− 1
2

√
p1T

− 2
n− 1

2
√

p1T

]
= o(1),

as n → ∞, by use of normal approximation to the Poisson distribution. Filling in
details is an easy exercise. Similarly,

P
[
i∗ −

⌈
np1T

⌉
< −nε

]
≤ P

[
N 1

T − np1T
√

np1T
< − nε− 1

2
√

p1T

]
= o(1),

as n → ∞. The assertion follows. ��
It should be noted that we have additionally imposed ε < 1, which will be used in

the proofs for the next Lemma 10 and for Proposition 1.

Lemma 10 It holds that n
∑∞

i=1

∣∣I i
∣∣2 = OP (1), n

∑∞
j=1

∣∣J j
∣∣2 = OP (1),

n
∑∞

i=1
∑∞

j=1

∣∣I i ∩ J j
∣∣2 = OP (1), and that n

∑∞
i=1

∑∞
j=1

∣∣I i
∣∣ ∣∣J j

∣∣ Ki j = OP (1),
as n → ∞.

Proof First we claim that

n
∞∑

i=1

∣∣∣I i
∣∣∣
2 = n

λ(n)∑

i=1

∣∣∣ Ĩ i
∣∣∣
2 + oP (1),

as n → ∞. To this end, we compare

n
∞∑

i=1

∣∣∣I i
∣∣∣
2 = n

i∗∑

i=1

∣∣∣I i
∣∣∣
2 (i)� n

i∗∑

i=1

∣∣∣ Ĩ i
∣∣∣
2 (i i)� n

λ(n)∑

i=1

∣∣∣ Ĩ i
∣∣∣
2
.

(i) To evaluate the absolute difference of the second and third terms, recalling that
Ĩ i ≡ I i for 1 ≤ i ≤ i∗ − 1,

n

(∣∣∣ Ĩ i∗
∣∣∣
2 −

∣∣∣I i∗
∣∣∣
2
)

≤ 2nr̃2
n ,

the r.h.s. of which goes to zero in probability as n → ∞, according to Lemma 8.
(ii) The absolute difference of the last two terms is evaluated as


(i i) := n
λ(n)∨i∗∑

i=(λ(n)∧i∗)+1

∣∣∣ Ĩ i
∣∣∣
2 ≤ n1+ε r̃2

n
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on �n
0, ε ∈ (1/2, 1). Thus, Lemma 8 implies that as n → ∞, 
(i i)1�n

0

P→ 0,

therefore 
(i i) P→ 0 by Lemma 9, as desired.

Now, because
∣∣ Ĩ i

∣∣ are i.i.d. exponential with intensity λ1 = np1, in light of the weak
law of large numbers,

n
λ(n)∑

i=1

∣∣∣ Ĩ i
∣∣∣
2 = λ(n)

n

⎧
⎨

⎩
1

λ(n)

λ(n)∑

i=1

(
n
∣∣∣ Ĩ i

∣∣∣
)2

⎫
⎬

⎭
P→ 2T

p1

as n → ∞. Therefore, the first assertion n
∑∞

i=1

∣∣I i
∣∣2 = OP (1) is obtained. The

second assertion can be shown by the same way.
To show the third, one only needs to recall that ( Ĩ i ) and ( J̃ j ) are, respectively, the

inter-arrival times of the independent Poisson processes N 1 and N 2, and hence that(
Ĩ i ∩ J̃ j

)
form the inter-arrival times of the aggregate Poisson process

(
N 1 + N 2

)
.

Thereafter, a similar argument to the first can apply.
Finally, note that

∞∑

i=1

∞∑

j=1

∣∣∣I i
∣∣∣
∣∣∣J j

∣∣∣Ki j =
∞∑

i=1

∣∣∣I i
∣∣∣

∞∑

j=1

∣∣∣J j
∣∣∣Ki j 1{|I i |≥|J j |}+

∞∑

j=1

∣∣∣J j
∣∣∣

∞∑

i=1

∣∣∣I i
∣∣∣ Ki j 1{|I i |<|J j |}

≤3
∞∑

i=1

∣∣∣I i
∣∣∣
2 + 3

∞∑

j=1

∣∣∣J j
∣∣∣
2
.

Hence, the first two assertions imply the last. ��
Proof of Proposition 1 Consider (d) only. Proving of the other cases is simpler; it is

left to the reader as an exercise. Put θ(c) :=
(

2
p1 + 2

p2

) ∫ T
0

(
σ 1

t σ 2
t

)2
dt . Recall that

vl
max ≡ max0≤t<∞

(
σ l

t

)2
, l = 1, 2. The basic strategy for proof is to approximate as

Vn := n
∞∑

i=1

∞∑

j=1

v1
(

I i
)

v2
(

J j
)

Ki j

(A)� n
∞∑

i=1

∞∑

j=1

(
σ 1

T 1,i−1σ
2
T 1,i−1

)2 ∣∣∣I i
∣∣∣
∣∣∣J j

∣∣∣ Ki j ( =: V (A)
n )

(B)� n
i∗∑

i=1

j∗∑

j=1

(
σ 1

T 1,i−1σ
2
T 1,i−1

)2 ∣∣∣ Ĩ i
∣∣∣
∣∣∣ J̃ j

∣∣∣ K̃i j

≡ n
i∗∑

i=1

(
σ 1

T 1,i−1σ
2
T 1,i−1

)2 ∣∣∣ Ĩ i
∣∣∣
∣∣∣ J̃ ( Ĩ i )

∣∣∣ ( =: V (B)
n )

(C)� n
λ(n)∑

i=1

(
σ 1

T 1,i−1σ
2
T 1,i−1

)2 ∣∣∣ Ĩ i
∣∣∣
∣∣∣ J̃ ( Ĩ i )

∣∣∣ ( =: V (C)
n ),
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where (A), (B) and (C) mean that the difference goes to zero in probability, as defined
earlier. Thereafter, we will show that

(D) : V (C)
n

P→ θ(c)

to obtain the conclusion.
(A): We are going to show


(A) :=
∣∣∣Vn − V (A)

n

∣∣∣ P→ 0.

To this end, note first that, for each i ,

v1
(

I i
)

≡
∫

I i

(
σ 1

t

)2
dt =

(
σ 1

T 1,i−1

)2 ∣∣∣I i
∣∣∣ +

∫

I i

((
σ 1

t

)2 −
(
σ 1

T 1,i−1

)2
)

dt,

where the second term of the r.h.s. is bounded by

δ

((
σ 1

)2 ;
∣∣∣I i

∣∣∣
) ∣∣∣I i

∣∣∣ ≤ δ

((
σ 1

)2 ; rn

) ∣∣∣I i
∣∣∣ .

In the meantime, for j ∈ J(i) ≡ { j ≥ 1; Ki j = 1} with i given,

v2
(

J j
)

≡
∫

J j

(
σ 2

t

)2
dt =

(
σ 2

T 1,i−1

)2 ∣∣∣J j
∣∣∣ +

∫

J j

((
σ 2

t

)2 −
(
σ 2

T 1,i−1

)2
)

dt.

Although it may be possible that T 1,i−1 /∈ J j , it is always true that T 1,i−1 ∈ J (I i )

and J j ⊂ J (I i ) for j ∈ J(i); therefore, the second term of the r.h.s. is bounded by

δ

((
σ 2

)2 ;
∣∣∣J (I i )

∣∣∣
) ∣∣∣J j

∣∣∣ ≤ δ

((
σ 2

)2 ; 3rn

) ∣∣∣J j
∣∣∣ .

Thus,


(A)≤nv1
maxδ

((
σ 2

)2 ; 3rn

)∑

i, j

∣∣∣I i
∣∣∣
∣∣∣J j

∣∣∣ Ki j +nv2
maxδ

((
σ 1

)2 ; rn

)∑

i, j

∣∣∣I i
∣∣∣
∣∣∣J j

∣∣∣Ki j

+nδ

((
σ 1

)2 ; rn

)
δ

((
σ 2

)2 ; 3rn

)∑

i, j

∣∣∣I i
∣∣∣
∣∣∣J j

∣∣∣ Ki j ,

which goes to zero in probability by the continuity of σ l , l = 1, 2 ((C5)), and from
Lemma 10.

(B): We are going to show


(B) :=
∣∣∣V (A)

n − V (B)
n

∣∣∣ P→ 0.
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For economy of space we put s(i) := σ 1
T 1,i−1σ

2
T 1,i−1 throughout the rest of the proof.

Note that

V (A)
n ≡ n

∞∑

i=1

∞∑

j=1

s(i)2
∣∣∣I i

∣∣∣
∣∣∣J j

∣∣∣ Ki j = n
i∗∑

i=1

j∗∑

j=1

s(i)2
∣∣∣I i

∣∣∣
∣∣∣J j

∣∣∣ Ki j .

Also, notice the fact that Ki j ≡ K̃i j for 1 ≤ i ≤ i∗ and 1 ≤ j ≤ j∗; Ĩ i ≡ I i ,
1 ≤ i ≤ i∗ − 1, J̃ j ≡ J j , 1 ≤ j ≤ j∗ − 1; Ĩ i∗ ⊇ I i∗ , J̃ j∗ ⊇ J j∗ . Hence, always
V (A)

n ≤ V (B)
n , and the difference is made up of the terms involving either i∗ or j∗, or

both.
Now we put J̃ (I i ) := ∪ j∈J(i) J̃ j and Ĩ (J j ) := ∪i∈I( j) Ĩ i . Note that J̃ (I i∗) is the

sub-collection of { J̃ j , 1 ≤ j ≤ j∗} that ‘covers’ I i∗ and that its length is bounded

by
∣∣∣ J̃ (I i∗)

∣∣∣ ≤ 2 max1≤ j≤ j∗
∣∣ J̃ j

∣∣ +
∣∣∣I i∗

∣∣∣ ≤ 3̃rn . Similarly,
∣∣∣ Ĩ (J j∗)

∣∣∣ ≤ 3̃rn . Because

s(i)2 ≤ v1
maxv

2
max for all i , one has


(B) = V (B)
n − V (A)

n ≤ nv1
maxv

2
max

∣∣∣ J̃ (I i∗)
∣∣∣
∣∣∣ Ĩ (J j∗)

∣∣∣ ≤ 9v1
maxv

2
maxnr̃2

n .

Therefore, 
(B) P→ 0 by Lemma 8.
(C): We are going to show


(C) :=
∣∣∣V (B)

n − V (C)
n

∣∣∣ P→ 0.

To this end, note that


(C) =n

∣∣∣∣∣∣

i∗∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
∣∣∣ J̃ ( Ĩ i )

∣∣∣−
λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
∣∣∣ J̃ ( Ĩ i )

∣∣∣

∣∣∣∣∣∣
≤n

λ(n)∨i∗∑

i=(λ(n)∧i∗)+1

s(i)2
∣∣∣ Ĩ i

∣∣∣
∣∣∣ J̃ ( Ĩ i )

∣∣∣

≤ nv1
maxv

2
max

λ(n)∨i∗∑

i=(λ(n)∧i∗)+1

∣∣∣ Ĩ i
∣∣∣
∣∣∣ J̃ ( Ĩ i )

∣∣∣ .

Because
∣∣ Ĩ i

∣∣ ≤ r̃n and
∣∣ J̃

(
Ĩ i
)∣∣≤ 3̃rn for i ≤λ(n)∨i∗ and (λ(n)∨i∗−λ(n)∧i∗)≤nε

on �n
0, one has

0 ≤ 
(C)1�n
0

≤ 3v1
maxv

2
maxn1+ε (̃rn)2 P→ 0

in light of Lemma 8. Together with Lemma 9, one has 
(C) P→ 0 as intended.
(D): We are going to prove that

V (C)
n

P→ θ(c) ≡
(

2

p1 + 2

p2

)∫ T 1

0

(
σ 1

t σ 2
t

)2
dt

as n → ∞.
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To this end, first recall that, according to Lemma 7, for 1 ≤ i ≤ λ(n),

E�̃1
[∣∣∣ J̃ ( Ĩ i )

∣∣∣
]

=
∣∣∣ Ĩ i

∣∣∣ + 2

np2 − 1

np2 exp
{
−np2T 1,i−1

}
=
∣∣∣ Ĩ i

∣∣∣ + 2

np2 − Qi ,

where Qi := 1
np2 exp

{−np2T 1,i−1
}

for ease of notation.
(D1) Let

V
(C)

n := n
λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
(

E�̃1
[∣∣∣ J̃ ( Ĩ i )

∣∣∣
]

+ Qi

)

= n
λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
2 +

λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
2

p2 , and

M ′
n := V (C)

n − V
(C)

n

= n
λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
(∣∣∣ J̃ ( Ĩ i )

∣∣∣ − E�̃1
[∣∣∣ J̃ ( Ĩ i )

∣∣∣
]

− Qi

)
= n

λ(n)∑

i=1

h(i),

where

h(i) := s(i)2
∣∣∣ Ĩ i

∣∣∣
(∣∣∣ J̃ ( Ĩ i )

∣∣∣ − E�̃1
[∣∣∣ J̃ ( Ĩ i )

∣∣∣
]

− Qi

)

= s(i)2
∣∣∣ Ĩ i

∣∣∣
(∣∣∣ J̃ ( Ĩ i )

∣∣∣ −
∣∣∣ Ĩ i

∣∣∣ − 2

np2

)
.

We claim that M ′
n

P→ 0 so that V (C)
n � V

(C)

n as n → ∞. For this, for an arbitrary
ε ∈ (0, 1) (which can be different from ε defined for Lemma 9), decompose

E
[(

M ′
n

)2
]

= n2
λ(n)∑

i=1

λ(n)∑

i ′=1:|i−i ′|≤nε

E
[
h(i)h(i ′)

]

+n2
λ(n)∑

i=1

λ(n)∑

i ′=1:|i−i ′|>nε

E
[
h(i)h(i ′)

] =: E1 + E2.

Regarding E1,

n−2 |E1| ≤
λ(n)∑

i=1

(i+�nε�)∧λ(n)∑

i ′=i−�nε�∨1

E
[∣∣h(i)h(i ′)

∣∣] �
λ(n)∑

i=1

(i+�nε�)∧λ(n)∑

i ′=i−�nε�∨1

E
[
r̃4

n

]
.

Recalling that λ(n) = �np1T �, one has

|E1| � n2 · n(2nε + 1) · E
[
r̃4

n

]
→ 0
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as n → ∞, by Lemma 8.

Next consider E2. Let Hii ′ :=
{
τ 2,i < T 1,i ′−1

}
(recall that τ 2,i ≡ T 2, j̃+(i)).

Decompose

1

2
E2 ≡ n2

λ(n)∑

i=1

λ(n)∑

i ′=1:i ′−i>nε

E
[
h(i)h(i ′)1Hii ′

]

+n2
λ(n)∑

i=1

λ(n)∑

i ′=1:i ′−i>nε

E
[
h(i)h(i ′)1Hc

ii ′

]
=: E2−1 + E2−2.

We claim that E2−2 is negligible. By Hölder’s inequality,

∣∣∣E
[
h(i)h(i ′)1Hc

ii ′

]∣∣∣≤
{

E
[(

h(i)h(i ′)
)2
]} 1

2 {
P
[
Hc

ii ′
]} 1

2 �
{

E
[
r̃8

n

]} 1
2 · {P

[
Hc

ii ′
]} 1

2 .

For i and i ′ with i ′ − i > nε, it should be noted that τ 2,i ≥ T 1,i ′−1 ≥ T 1,�nε�+i on
Hc

ii ′ ≡
{
τ 2,i ≥T 1,i ′−1

}
since i ′ ≥�nε�+ i +1, thus, using the Markov property at T 1,i ,

P
[
Hc

ii ′
] = P

[
τ 2,i ≥ T 1,i ′−1

]
≤ P

[
τ 2,i − T 1,i ≥ T 1,�nε�+i − T 1,i

]

= E
[
exp

{
−np2

(
T 1,�nε�+i − T 1,i

)}]
.

Since
(
T 1,�nε�+i − T 1,i

) ∼ �
(
�nε� ,

(
np1

)−1
)

(Fact 4),

E
[
exp

{
−np2

(
T 1,�nε�+i − T 1,i

)}]
= γ �nε�,

where γ := p1

p1+p2 . It follows that

|E2−2| � n2 · λ(n)2 · E
[
r̃8

n

] 1
2 · γ

�nε�
2 → 0

because γ ∈ (0, 1) and by Lemma 8.
We are going to show that E2−1 is also negligible. Recall Fact 1, i.e., j̃+(i) is a

discrete-time stopping time relative to {Gk; k ≥ 0} where Gk ≡ σ
〈
S2, j ; 1 ≤ j ≤ k

〉∨
σ
〈
�̃1

〉
and S2,k ≡ T 2,k −T 2,k−1. Hence, the σ -field G j̃+(i) is well-defined in the usual

manner. Notice that Hii ′ is G j̃+(i)-measurable, so is h(i).

Note at the same time that, whenever i < i ′, τ 2,i ≡ T 2, j̃+(i) ≤ T 2, j̃−(i ′)−1 on
Hii ′ ≡

{
τ 2,i < T 1,i ′−1

}
, i.e., the interval J̃ ( Ĩ i ′) has not ‘started’ yet by time t = τ 2,i .
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Accordingly, for i < i ′,

E
[
h(i)h(i ′)1Hii ′

]

= E
[
h(i)1Hii ′ E

[
h(i ′)

∣∣G j̃+(i)

]]

= E
[
h(i)1Hii ′ s(i

′)2
∣∣∣ Ĩ i ′

∣∣∣ E
[ ∣∣∣ J̃ ( Ĩ i ′)

∣∣∣ − E�̃1
[∣∣∣ J̃ ( Ĩ i ′)

∣∣∣
]

− Qi ′
∣∣∣G j̃+(i)

]]

= −E

[
h(i)1Hii ′ s(i

′)2
∣∣∣ Ĩ i ′

∣∣∣
1

np2 exp
{
−np2

(
T 1,i ′−1 − τ 2,i

)}]
.

The last equality is due to the fact

E
[ ∣∣∣ J̃ ( Ĩ i ′)

∣∣∣
∣∣∣G j̃+(i)

]
1Hii ′ =

(∣∣∣ Ĩ i ′
∣∣∣+ 2

np2 − 1

np2 exp
{
−np2

(
T 1,i ′−1 − τ 2,i

)})
1Hii ′ ,

which can be shown analogously to Lemma 7. Moreover,

∣∣∣E
[
h(i)h(i ′)1Hii ′ ; r̃n > n−1+ ε

2

]∣∣∣ � n−1 E
[
r̃6

n

] 1
2

·E
[
exp

{
−2np2

(
T 1,i ′−1 − τ 2,i

)}
1Hii ′ ; r̃n > n−1+ ε

2

] 1
2
,

as well as

∣∣∣E
[
h(i)h(i ′)1Hii ′ ; r̃n ≤ n−1+ ε

2

]∣∣∣ � n−4+ 3
2 ε

·E
[
exp

{
−np2

(
T 1,i ′−1 − τ 2,i

)}
1Hii ′ ; r̃n ≤ n−1+ ε

2

]
.

Therefore,

|E2−1| � E2−1−1 + E2−1−2,

where

E2−1−1 := nE
[
r̃6

n

] 1
2

λ(n)∑

i=1

λ(n)∑

i ′=1:i ′−i>nε

E
[
exp

{
−2np2

(
T 1,i ′−1 − τ 2,i

)}
1Hii ′ ; r̃n > n−1+ ε

2

] 1
2

,

E2−1−2 := n−2+ 3
2 ε

λ(n)∑

i=1

λ(n)∑

i ′=1:i ′−i>nε

E
[
exp

{
−np2

(
T 1,i ′−1 − τ 2,i

)}
1Hii ′ ; r̃n ≤ n−1+ ε

2

]
.

Since −np2
(

T 1,i ′−1 − τ 2,i
)

< 0 on Hii ′ , one has

E
[
exp

{
−2np2

(
T 1,i ′−1−τ 2,i

)}
1Hii ′ ; r̃n >n−1+ ε

2

]
≤ P

[
r̃n >n−1+ ε

2

]
≤ E [ r̃n] n1− ε

2
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by Markov’s inequality. Pick arbitrary α′ ∈ (
0, ε

2

)
. Then, the last inequality implies

that

E2−1−1 � nE
[
r̃6

n

] 1
2 · λ(n)2 ·

{
E [ r̃n] n1− ε

2

} 1
2

∼
(

n6−α′
E
[

r̃6
n

] 1
2
)

·
(

E [ r̃n] n1− ε
2 +α′) 1

2 → 0

as n → ∞ by Lemma 8.
In the meantime, since τ 2,i ≤ T 1,i + r̃n , as well as i ′ −1 ≥ i +�nε� for i ′ − i > nε,

E
[
exp

{
−np2

(
T 1,i ′−1 − τ 2,i

)}
1Hii ′ ; r̃n ≤ n−1+ ε

2

]

≤ E
[
exp

{
−np2

(
T 1,i ′−1 − T 1,i − r̃n

)}
1Hii ′ ; r̃n ≤ n−1+ ε

2

]

≤ exp
(

p2n
ε
2

)
E
[
exp

{
−np2

(
T 1,i ′−1 − T 1,i

)}]

≤ exp
(

p2n
ε
2

)
E
[
exp

{
−np2

(
T 1,�nε�+i − T 1,i

)}]
= exp

(
p2n

ε
2

)
· γ �nε�,

where γ (∈ (0, 1)) has been defined as above. Therefore,

E2−1−2 � n−2+ 3
2 ε · λ(n)2 · exp

(
p2n

ε
2

)
· γ �nε�

� n
3
2 ε · exp

(
p2n

ε
2

)
· γ �nε� → 0,

as n → ∞. Notice that by taking the logarithm of the second factor,

3

2
ε log n + p2n

ε
2 + ⌈

nε
⌉

log γ → −∞

as n → ∞ because log γ < 0.
It follows that E2−1 → 0, as n → ∞, which in turn implies E2 → 0. Therefore,

M ′
n

P→ 0 so that V (C)
n � V

(C)

n , as claimed.
(D2) Let

W
(C)

n :=
λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
2

p1 , W (C)
n := n

λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
2

, and

M ′′
n := W (C)

n − W
(C)

n = n
λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
(∣∣∣ Ĩ i

∣∣∣ − 2

np1

)
.

Then, since
∣∣ Ĩ i

∣∣ are i.i.d. exponential with intensity np1,

E

[
s(i)2

∣∣∣ Ĩ i
∣∣∣
(∣∣∣ Ĩ i

∣∣∣ − 2

np1

)∣∣∣∣G1
i−1

]
= 0

where G1
k := σ

{∣∣ Ĩ i
∣∣ , 1 ≤ i ≤ k

}
, hence,

(
M ′′

n

)
is a

(G1
k

)
-martingale with mean 0.
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Accordingly,

E
[(

M ′′
n

)2
]

= n2
λ(n)∑

i=1

E

[
s(i)4

{∣∣∣ Ĩ i
∣∣∣
(∣∣∣ Ĩ i

∣∣∣ − 2

np1

)}2
]

� n2 · λ(n) · E
[
r̃4

n

]
→ 0,

which implies that W (C)
n � W

(C)

n as n → ∞.
It follows that

V
(C)

n ≡ W (C)
n +

λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
2

p2 � W
(C)

n +
λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
2

p2

=
λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
2

p1 +
λ(n)∑

i=1

s(i)2
∣∣∣ Ĩ i

∣∣∣
2

p2

� 2

p1

∫ T 1,λ(n)

0

(
σ 1

t σ 2
t

)2
dt + 2

p2

∫ T 1,λ(n)

0

(
σ 1

t σ 2
t

)2
dt

→ θ(c) ≡
(

2

p1 + 2

p2

)∫ T 1

0

(
σ 1

t σ 2
t

)2
dt,

as desired.
The whole proof of Lemma 1 is completed. ��
Now we are ready to prove Theorem 3.

Proof of Theorem 3 To invoke Theorem 2, Conditions (C2) and (C3) are to be checked,
whereas (C1) and either (C4) or (C4′) are hypothesized. (C3) holds since bn = n−1

and rn = Op(log n/n).
Showing (C2) demands one to identify the limit c that will serve as the asymptotic

variance of the quantity of interest, �n ≡ √
n(Un − θ). This can be done simply

by recalling the equality (5) and applying Proposition 1 with the additional condi-
tion (C5). ��

5 Concluding remarks

This paper is a sequel to Hayashi and Yoshida (2005b), which proposed the covari-
ance estimator (3) for two diffusion-type processes when the processes are observed
at discrete times in a nonsynchronous manner. Specifically, we have demonstrated
asymptotic normality of the estimator as the observation interval shrinks to zero,
when the variance/covariance structure is deterministic and the observation times are
independent of the processes. As a non-trivial example, we have studied the case when
observation times are independent Poisson arrival times; we have found the explicit
limiting distribution of the estimator.

From practical viewpoints it is important to have joint asymptotic normality of the
proposed estimator with realized volatility estimators, which has been treated in a suc-
cessive paper, Hayashi and Yoshida (2005a). In the same paper, asymptotic normality
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of correlation estimators is discussed. Besides, in order to improve applicability of
asymptotic normality, the paper introduces a more convenient (but more stringent)
condition than (C2), which also leads to a stronger result.

It is also of practical importance to find a way to estimate the asymptotic variance c of
the (rescaled) covariance estimator, which depends on the variance–covariance struc-
ture of the underlying processes and hence is unknown. It can be done, for instance,
with bootstrapping.

Hayashi and Kusuoka (2004) extended Hayashi and Yoshida (2005b) to the gen-
eral case where underlying processes are continuous semimartingales and observation
times are stopping times, which is also of practical importance. They showed that con-
sistency is preserved. Limiting distribution under this general case has been studied
by the current authors (Hayashi and Yoshida 2006).
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A Appendix

A.1 Derivation of (5)

We are going to provide a sketch for the derivation of (5), following the argument
in the proof of Theorem 3.1 in Hayashi and Yoshida (2005b). See the reference for
details.

Suppose µl ≡ 0, l = 1, 2. To verify (5), one may decompose first as

E�
[
U 2

n

]
=

∑

i, j,i ′, j ′
E�

{

P1(I i )
P2(J j )
P1(I i ′)
P2(J j ′)

}
Ki j Ki ′ j ′

=
∑

i, j,i ′, j ′:
i ′=i, j ′= j

+
∑

i, j,i ′, j ′:
i ′=i, j ′ �= j

+
∑

i, j,i ′, j ′:
i ′ �=i, j ′= j

+
∑

i, j,i ′, j ′:
i ′ �=i, j ′ �= j

=: D1 + D2 + D3 + D4.

Using the orthogonality of the increments repeatedly, one finds that

D1 =
∑

i, j

v1
(

I i
)

v2
(

J j
)

Ki j + 2
∑

i, j

v
(

I i ∩ J j
)2

Ki j ,

D2 = 2
∑

i

v
(

I i
)2 − 2

∑

i

∑

j

v
(

I i ∩ J j
)2

Ki j ,
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D3 = 2
∑

i

v
(

J j
)2 − 2

∑

i

∑

j

v
(

I i ∩ J j
)2

Ki j ,

D4 = θ2 +
∑

i, j

v
(

I i ∩ J j
)2

Ki j −
∑

i

v
(

I i
)2 −

∑

j

v
(

J j
)2

.

Putting all together, one obtains

E�
[
U 2

n

]
=
∑

i, j

v1
(

I i
)

v2
(

J j
)

Ki j +
∑

i

v
(

I i
)2 +

∑

i

v
(

J j
)2

−
∑

i, j

v
(

I i ∩ J j
)2

Ki j + θ2

as desired.

A.2 Supplement to page 10

We are going to show that (C4) implies (C4′) if (C4) holds with some k ∈ ( 1
4 , 1

2 ), in
the case where bn = κn (E [Nn])−1 for some positive, bounded sequence (κn) and
E [Nn] ↑ ∞. Recall that Nn ≡ # (�1) ∨ # (�2), where # (A) counts the number of
elements in a given set A.

First note that, for some ζ ∈ (0, 1
4 ), for almost all ω ∈ �,

K̃ (ω) := sup
n

δ(µl(ω); rn(ω))

rn(ω)
1
2 −ζ

< ∞.

Then, since rn ≥ T
Nn

, one has, for almost all ω ∈ �, for all n,

δ(µl(ω); rn(ω)) ≤ rn(ω)
1
2 −ζ K̃ (ω) ≤ rn(ω)

1
2 N ζ

n (ω)K̃ ′(ω),

where K̃ ′(ω) := T −ζ K̃ (ω). Now, if we put Gn :=
{

N ζ
n ≤ b

−
(

1
4 +α′

)

n

}
for arbitrary

α′ ∈ (0, α), then Markov’s inequality implies that

P [Gn] = P

[
N ζ

n ≤ κ
−
(

1
4 +α′

)

n (E [Nn])

(
1
4 +α′

)]

= P

⎡

⎣ Nn

E [Nn]
≤ κ

−
1
4 +α′

ζ
n (E [Nn])

1
4 +α′

ζ
−1

⎤

⎦

≥ 1 − κ

1
4 +α′

ζ
n (E [Nn])−

1
4 +α′

ζ
+1 ↑ 1,

as n → ∞, since 1
4 + α′ > ζ and E [Nn] ↑ ∞.
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Moreover,

P [Gn] = P

[{
δ(µl; rn) ≤ r

1
2

n N ζ
n K̃ ′

}
∩ Gn

]

≤ P

[{
δ(µl; rn) ≤ r

1
2

n b
−
(

1
4 +α′

)

n K̃ ′
}

∩ Gn

]

≤ P

[
δ(µl; rn) ≤ r

1
2

n b
−
(

1
4 +α′

)

n K̃ ′
]

,

which implies that

1 ≤ lim inf
n→∞ P

[
δ(µl; rn) ≤ r

1
2

n b
−
(

1
4 +α′

)

n K̃ ′
]

.

Finally, for arbitrary constant M < ∞,

lim inf
n→∞ P

[
δ(µl; rn) ≤ r

1
2

n b
−
(

1
4 +α′

)

n M

]

≥ lim inf
n→∞ P

[
δ(µl; rn) ≤ r

1
2

n b
−
(

1
4 +α′

)

n K̃ ′, K̃ ′ ≤ M

]

≥ lim inf
n→∞ P

[
δ(µl; rn) ≤ r

1
2

n b
−
(

1
4 +α′

)

n K̃ ′
]

− P
[
K̃ ′ > M

] = 1 − P
[
K̃ ′ > M

]
.

Letting M ↑ ∞ leads to (C4′), as desired.
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