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Abstract Ranked set sampling is applicable whenever ranking of a set of
sampling units can be done easily by a judgement method or based on the
measurement of an auxiliary variable on the units selected. In this work, we
consider ranked set sampling, in which ranking of units are done based on
measurements made on an easily and exactly measurable auxiliary variable X
which is correlated with the study variable Y. We then estimate the mean of the
study variate Y by the BLUE based on the measurements made on the units of
the ranked set sampling regarding the study variable Y, when (X, Y) follows a
Morgenstern type bivariate exponential distribution. We then consider unbal-
anced multistage ranked set sampling and estimate the mean of the study vari-
ate Y by the BLUE based on the observations made on the units of multistage
ranked set sample regarding the study variable Y. Efficiency comparison is also
made on all estimators considered in this work.

Keywords Ranked set sampling · Morgenstern type bivariate exponential
distribution · Best linear unbiased estimator · Multistage ranked set sampling ·
Concomitants of order statistics

1 Introduction

The concept of ranked set sampling (RSS) was first introduced by McIntyre
(1952) as a process of improving the precision of the sample mean as an
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estimator of the population mean. Ranked set sampling as described in
McIntyre (1952) is applicable whenever ranking of a set of sampling units
can be done easily by a judgement method (for a detailed discussion on the
theory and applications of ranked set sampling see, Chen et al., 2004). Ranking
by judgement method is not recommendable if the judgement method is too
crude and is not powerful for ranking by discriminating the units of a moder-
ately large sample. In certain situations, one may prefer exact measurement of
some easily measurable variable associated with the study variable rather than
ranking the units by a crude judgement method. Suppose the variable of inter-
est say Y, is difficult or much expensive to measure, but an auxiliary variable X
correlated with Y is readily measurable and can be ordered exactly. In this case
as an alternative to McIntyre (1952) method of ranked set sampling, Stokes
(1977) used an auxiliary variable for the ranking of the sampling units. The
procedure of ranked set sampling described by Stokes (1977) using auxiliary
variate is as follows: Choose n2 independent units, arrange them randomly into
n sets each with n units and observe the value of the auxiliary variable X on
each of these units. In the first set, that unit for which the measurement on the
auxiliary variable is the smallest is chosen. In the second set, that unit for which
the measurement on the auxiliary variable is the second smallest is chosen. The
procedure is repeated until in the last set, that unit for which the measurement
on the auxiliary variable is the largest is chosen. The resulting new set of n units
chosen by one from each set as described above is called the RSS defined by
Stokes (1977). If X(r)r is the observation measured on the auxiliary variable X
from the unit chosen from the rth set then we write Y[r]r to denote the corre-
sponding measurement made on the study variable Y on this unit, then Y[r]r,
r = 1, 2, . . . , n, form the ranked set sample. Clearly Y[r]r is the concomitant of
the rth order statistic arising from the rth sample.

A striking example for the application of the ranked set sampling as pro-
posed by Stokes (1977) is given in Bain (1978, p. 99), where the study variate Y
represents the oil pollution of sea water and the auxiliary variable X represents
the tar deposit in the nearby sea shore. Clearly collecting sea water sample
and measuring the oil pollution in it is strenuous and expensive. However the
prevalence of pollution in the sea water is much reflected by the tar deposit
in the surrounding terminal sea shore. In this example ranking the pollution
level of sea water based on the tar deposit in the sea shore is more natural and
scientific than ranking it visually or by judgement method.

Stokes (1995) has considered the estimation of parameters of location-scale
family of distributions using RSS. Lam et al. (1994, 1995) have obtained the
BLUEs of location and scale parameters of exponential distribution and logistic
distribution. The Fisher information contained in RSS have been discussed by
Chen (2000) and Chen and Bai (2000). Stokes (1980) has considered the method
of estimation of correlation coefficient of bivariate normal distribution using
RSS. Modarres and Zheng (2004) have considered the problem of estimation
of dependence parameter using RSS. Robust estimate of correlation coefficient
for bivariate normal distribution have been developed by Zheng and Modarres
(2006). Stokes (1977) has suggested the ranked set sample mean as an estimator
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for the mean of the study variate Y, when an auxiliary variable X is used for
ranking the sample units, under the assumption that (X, Y) follows a bivariate
normal distribution. Barnett and Moore (1997) have improved the estimator of
Stokes (1977) by deriving the Best Linear Unbiased Estimator (BLUE) of the
mean of the study variate Y, based on ranked set sample obtained on the study
variate Y.

In this paper we are trying to estimate the mean of the population, under a
situation where in measurement of observations are strenuous and expensive.
Bain (1978, p. 99) has proposed an exponential distribution for the study var-
iate Y, the oil pollution of the sea samples. Thus in this paper we assume a
Morgenstern type bivariate exponential distribution (MTBED) corresponding
to a bivariate random variable (X, Y), where X denote the auxiliary variable
(such as tar deposit in the sea shore) and Y denote the study variable (such as
the oil pollution in the sea water). A random variable (X, Y) follows MTBED
if its probability density function (pdf) is given by (see, Kotz et al. 2000, p. 353)

f (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
θ1θ2

exp
{−x

θ1
+ −y

θ2

} [
1 + α

(
1 − 2 exp

{−x
θ1

}) (
1 − 2 exp

{−y
θ2

})]
,

x > 0, y > 0; −1 ≤ α ≤ 1; θ1 > 0, θ2 > 0
0, otherwise.

(1)

In Sect. 2 of this paper we have derived an estimator θ∗
2 of the parameter θ2

involved in (1) using the ranked set sample mean. It may be noted that if (X, Y)

has a MTBED as defined in (1) then the marginal distributions of both X and
Y have exponential distributions and the pdf of Y is given by

fY(y) = 1
θ2

e−y/θ2 , y > 0, θ2 > 0. (2)

The Cramer-Rao Lower Bound (CRLB) of any unbiased estimator of θ2 based

on a random sample of size n drawn from (2) is
θ2

2
n . In Sect. 2, we have also shown

that the variance of the proposed estimator θ∗
2 is strictly less than the CRLB θ2

2
n

(associated with the marginal pdf (2)) for all α ∈ A where A = [−1, 1] − {0}.
In this section, we have further made an efficiency comparison between θ∗

2 and
the maximum likelihood estimator (MLE) θ̃2 based on a random sample of size
n arising from (1). In Sect. 3, we have derived the BLUE θ̂2 of θ2 involved in
MTBED based on the ranked set sample and obtained the efficiency of θ̂2 rela-
tive to θ̃2. In Sect. 4, we have considered the situation where we apply censoring
and ranking on each sample and ultimately used a ranked set sample arising
out of this procedure to estimate θ2. In Sect. 5, we have derived the BLUE of
θ2 involved in (1) using unbalanced multistage ranked set sampling method. In
this section, we have further analysed the efficiency of the estimator of θ2 based
on unbalanced MSRSS when compared with the θ̃2 the MLE of θ2.
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2 Ranked set sample mean as an estimator of θ2

Let (X, Y) be a bivariate random variable which follows a MTBED with pdf
defined by (1). Suppose RSS in the sense of Stokes (1977) as explained in Sect. 1
is carried out. Let X(r)r be the observation measured on the auxiliary variate
X in the rth unit of the RSS and let Y[r]r be the measurement made on the
Y variate of the same unit, r = 1, 2, . . . , n. Then clearly Y[r]r is distributed as
the concomitant of rth order statistic of a random sample of n arising from
(1). By using the expressions for means and variances of concomitants of order
statistics arising from MTBED obtained by Scaria and Nair (1999), the mean
and variance of Y[r]r for 1 ≤ r ≤ n are given below:

E[Y[r]r] = θ2

[

1 − α
n − 2r + 1
2(n + 1)

]

, (3)

Var[Y[r]r] = θ2
2

[

1 − α
n − 2r + 1
2(n + 1)

− α2 (n − 2r + 1)2

4(n + 1)2

]

. (4)

Since Y[r]r and Y[s]s for r �= s are measurements on Y made from two units
involved in two independent samples we have

Cov[Y[r]r, Y[s]s] = 0, r �= s. (5)

In the following theorem we propose an estimator θ∗
2 of θ2 involved in (1) and

prove that it is an unbiased estimator of θ2.

Theorem 1 Let Y[r]r, r = 1, 2, . . . , n, be the ranked set sample observations on a
study variate Y obtained out of ranking made on an auxiliary variate X, when
(X, Y) follows MTBED as defined in (1). Then the ranked set sample mean given
by

θ∗
2 = 1

n

n∑

r=1

Y[r]r

is an unbiased estimator of θ2 and its variance is given by

Var[θ∗
2 ] = θ2

2

n

[

1 − α2

4n

n∑

r=1

(
n − 2r + 1

n + 1

)2
]

.

Proof

E[θ∗
2 ] = 1

n

n∑

r=1

E[Y[r]r].
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On using (3) for E[Y[r]r] in the above equation we get

E[θ∗
2 ] = 1

n

n∑

r=1

[

1 − α
n − 2r + 1
2(n + 1)

]

θ2. (6)

It is clear to note that
n∑

r=1

(n − 2r + 1) = 0. (7)

Applying (7) in (6) we get

E[θ∗
2 ] = θ2.

Thus θ∗
2 is an unbiased estimator of θ2. The variance of θ∗

2 is given by

Var[θ∗
2 ] = 1

n2

n∑

r=1

Var(Y[r]r).

Now using (4) and (7) in the above sum we get,

Var[θ∗
2 ] = θ2

2

n

[

1 − α2

4n

n∑

r=1

(
n − 2r + 1

n + 1

)2
]

.

Thus the theorem is proved. ��
Now we compare the variance of θ∗

2 with the CRLB θ2
2 /n of any unbiased

estimator of θ2 involved in (2) which is the marginal distribution of Y in (1). If
we write e1(θ

∗
2 ) to denote the ratio of θ2

2 /n with Var(θ∗
2 ) then we have

e1(θ
∗
2 ) = 1

[

1 − α2

4n

∑n
r=1

(
n−2r+1

n+1

)2
] (8)

It is very trivial to note that

e1(θ
∗
2 ) ≥ 1.

Thus we conclude that there is some gain in efficiency on the estimator θ∗
2 due

to ranked set sampling. The reason for the above conclusion is that a ranked set
sample always provides more information than simple random sample even if
ranking is imperfect (see, Chen et al., 2004, p. 58). It is to be noted that Var(θ∗

2 )

is a decreasing function of α2 and hence the gain in efficiency of the estimator
θ∗

2 increases as |α| increases. Again on simplifying (8) we get
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e1(θ
∗
2 ) = 1

1 − α2

4 [ 2
3 (

2+1/n
1+1/n ) − 1]

.

Then

lim
n→∞ e1(θ

∗
2 ) = lim

n→∞
1

1 − α2

4 [ 2
3 (

2+1/n
1+1/n ) − 1]

= 1

1 − α2

12

.

From the above relation it is clear that the maximum value for e1(θ
∗
2 ) is attained

when |α| = 1 and in this case e1(θ
∗
2 ) tends to 12/11.

Next we obtain the efficiency of θ∗
2 by comparing the variance of θ∗

2 with
the asymptotic variance of MLE of θ2 involved in MTBED. If (X, Y) follows a
MTBED with pdf defined by (1), then

∂ log f (x, y)

∂θ1
= 1

θ1

⎧
⎨

⎩
−1 + x

θ1
+ 2αx

θ1

e
− x

θ1 (2e− y
θ2 − 1)

1 + α(2e
− x

θ1 − 1)(2e− y
θ2 − 1)

⎫
⎬

⎭

and

∂ log f (x, y)

∂θ2
= 1

θ2

⎧
⎨

⎩
−1 + y

θ2
+ 2αy

θ2

e− y
θ2 (2e

− x
θ1 − 1)

1 + α(2e
− x

θ1 − 1)(2e− y
θ2 − 1)

⎫
⎬

⎭
.

Then we have

Iθ1(α) = E
(

∂ log f (x, y)

∂θ1

)2

,

= 1

θ2
1

⎧
⎨

⎩
1 + 4α2

∞∫

0

∞∫

0

u2e−3u(2e−v − 1)e−v

{1 + α(2e−u − 1)(2e−v − 1)}dvdu

⎫
⎬

⎭
,

Iθ2(α) = E
(

∂ log f (x, y)

∂θ2

)2

= 1

θ2
2

⎧
⎨

⎩
1 + 4α2

∞∫

0

∞∫

0

v2e−3v(2e−u − 1)e−u

{1 + α(2e−u − 1)(2e−v − 1)}dvdu

⎫
⎬

⎭
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and

Iθ1θ2(α) = E
(

∂2 log f (x, y)

∂θ1∂θ2

)

= 1
θ1θ2

⎧
⎨

⎩
4α

∞∫

0

∞∫

0

uve−2ue−2v

{1 + α(2e−u − 1)(2e−v − 1)}dvdu

⎫
⎬

⎭
.

Thus the Fisher information matrix associated with the random variable (X, Y)

is given by

I(α) =
(

Iθ1(α) −Iθ1θ2(α)

−Iθ1θ2(α) Iθ2(α)

)

. (9)

We have evaluated the values of θ−2
1 Iθ1(α) and θ−1

1 θ−1
2 Iθ1θ2(α) numerically for

α = ±0.25, ±0.50, ±0.75, ±1 (clearly θ−2
1 Iθ1(α) = θ−2

2 Iθ2(α)) and are given
below:

α θ−2
1 Iθ1(α) θ−1

1 θ−1
2 Iθ1θ2(α) α θ−2

1 Iθ1(α) θ−1
1 θ−1

2 Iθ1θ2(α)

0.25 1.0062 0.0625 −0.25 1.0062 −0.0628
0.50 1.0254 0.1258 −0.50 1.0254 −0.1274
0.75 1.0596 0.1914 −0.75 1.0596 −0.1955
1.00 1.1148 0.2624 −1.00 1.1148 −0.2712

Thus from (9) the asymptotic variance of the MLE θ̃2 of θ2 involved in
MTBED based on a bivariate sample of size n is obtained as

Var(θ̃2) = 1
n

I(−1)
θ2

(α), (10)

where I(−1)
θ2

(α) is the (2, 2)th element of the inverse of I(α) given by (9).

We have obtained the efficiency e(θ∗
2 |θ̃2) = Var(θ̃2)

Var(θ∗
2 )

of θ∗
2 relative to θ̃2 for

n = 2(2)10(5)20; α = ±0.25, ±0.50, ±0.75, ±1 and are presented in table 1.
From the table, one can easily see that θ∗

2 is more efficient than θ̃2 and efficiency
increases with n and |α| for n ≥ 4.

3 Best linear unbiased estimator of θ2

In this section we provide a better estimator of θ2 than that of θ∗
2 by deriving the

BLUE θ̂2 of θ2 provided the parameter α is known. Let X(r)r be the observation
measured on the auxiliary variate X in the rth unit of the RSS and let Y[r]r be
the measurement made on the Y variate of the same unit, r = 1, 2, . . . , n. Let
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ξr = 1 − α
n − 2r + 1
2(n + 1)

(11)

and

δr = 1 − α
n − 2r + 1
2(n + 1)

− α2 (n − 2r + 1)2

4(n + 1)2 . (12)

Using (11) in (3) and (12) in (4) we get E[Y[r]r] = θ2ξr, 1 ≤ r ≤ n, and
Var[Y[r]r] = θ2

2 δr, 1 ≤ r ≤ n. Clearly from (5), we have Cov[Y[r]r, Y[s]s] =
0, r, s = 1, 2, . . . , n and r �= s. Let Y[n] = (Y[1]1, Y[2]2, · · · , Y[n]n)′ and if the
parameter α involved in ξr and δr is known then proceeding as in David and
Nagaraja (2003, p. 185) the BLUE θ̂2 of θ2 is obtained as

θ̂2 = (ξ ′G−1ξ)−1ξ ′G−1Y[n] (13)

and
Var(θ̂2) = (ξ ′G−1ξ)−1θ2

2 , (14)

where ξ = (ξ1, ξ2, · · · , ξn)′ and G = diag(δ1, δ2, · · · , δn). On substituting the
values of ξ and G in (13) and (14) and simplifying we get

θ̂2 =
∑n

r=1(ξr/δr)Y[r]r
∑n

r=1 ξ2
r /δr

(15)

and

Var(θ̂2) = 1
∑n

r=1 ξ2
r /δr

θ2
2 .

Thus θ̂2 as given in (15) can be explicitly written as θ̂2 = ∑n
r=1 arY[r]r, where

ar = ξr/δr
∑n

r=1 ξ2
r /δr

, r = 1, 2, . . . , n.

Remark 1 As the association parameter α in (1) is involved in the BLUE θ̂2 of
θ2 and its variance, an assumption that α is known may sometimes viewed as
unrealistic. Hence when α is unknown, our recommendation is to compute the
sample correlation coefficient q of the observations (X(r)r, Y[r]r), r = 1, 2, . . . , n
and consider the model (1) for a value of α equal to α0 given by

α0 =

⎧
⎪⎨

⎪⎩

−1 if q < −1
4

4q if −1
4 ≤ q ≤ 1

4
1 if q > 1

4 ,

as we know that the correlation coefficient between X and Y involved in the
Morgenstern type bivariate exponential random vector is equal to α

4 .
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Table 1 Efficiencies of the estimators θ∗
2 , θ̂2, θ̂

n(1)
2 and θ̂

1(1)
2 relative to θ̃2 of θ2 involved in Mor-

genstern type bivariate exponential distribution

n α e(θ∗
2 )|θ̃2) e(θ̂2|θ̃2) e(θ̂n(1)

2 |θ̃2) α e(θ∗
2 |θ̃2) e(θ̂2|θ̃2) e(θ̂1(1)

2 |θ̃2)

0.25 0.9994 0.9994 1.0410 −0.25 0.9994 0.9994 1.0410
2 0.50 0.9970 0.9970 1.0795 −0.50 0.9974 0.9974 1.0800

0.75 0.9911 0.9911 1.1130 −0.75 0.9926 0.9926 1.1147
1.00 0.9767 0.9768 1.1349 −1.00 0.9806 0.9807 1.1394
0.25 1.0008 1.0008 1.0782 −0.25 1.0008 1.0008 1.0782

4 0.50 1.0026 1.0027 1.1613 −0.50 1.0030 1.0031 1.1618
0.75 1.0038 1.0044 1.2466 −0.75 1.0054 1.0060 1.2485
1.00 0.9996 1.0019 1.3263 −1.00 1.0036 1.0059 1.3316
0.25 1.0014 1.0014 1.0948 −0.25 1.0014 1.0014 1.0948

6 0.50 1.0051 1.0052 1.1994 −0.50 1.0055 1.0056 1.1998
0.75 1.0094 1.0105 1.3111 −0.75 1.0109 1.0120 1.3131
1.00 1.0097 1.0140 1.4224 −1.00 1.0137 1.0180 1.4281
0.25 1.0018 1.0018 1.1042 −0.25 1.0018 1.0018 1.1042

8 0.50 1.0064 1.0066 1.2213 −0.50 1.0068 1.0070 1.2218
0.75 1.0125 1.0139 1.3490 −0.75 1.0141 1.0154 1.3511
1.00 1.0154 1.0211 1.4800 −1.00 1.0195 1.0252 1.4860
0.25 1.0020 1.0020 1.1103 −0.25 1.0020 1.0020 1.1103

10 0.50 1.0073 1.0075 1.2355 −0.50 1.0077 1.0079 1.2360
0.75 1.0145 1.0161 1.3739 −0.75 1.0161 1.0176 1.3760
1.00 1.0191 1.0259 1.5184 −1.00 1.0232 1.0300 1.5245
0.25 1.0023 1.0023 1.1189 −0.25 1.0023 1.0023 1.1189

15 0.50 1.0085 1.0088 1.2560 −0.50 1.0089 1.0092 1.2565
0.75 1.0173 1.0192 1.4100 −0.75 1.0189 1.0208 1.4122
1.00 1.0243 1.0328 1.5747 −1.00 1.0284 1.0370 1.5810
0.25 1.0024 1.0024 1.1234 −0.25 1.0024 1.0024 1.1234

20 0.50 1.0091 1.0095 1.2669 −0.50 1.0095 1.0099 1.2674
0.75 1.0188 1.0209 1.4295 −0.75 1.0204 1.0225 1.4317
1.00 1.0270 1.0366 1.6054 −1.00 1.0311 1.0408 1.6118

We have computed the the ratio e(θ̂2|θ̃2)=
Var(θ̃2)

Var(θ̂2)
as the efficiency of θ̂2 rel-

ative to θ̃2 for α = ±0.25, ±0.5, ±0.75, ±1.0 and n = 2(2)10(5)20 and are also
given in Table 1. From the table, one can easily see that θ̂2 is relatively more
efficient than θ̃2. Further we observe from the table that e(θ̂2|θ̃2) increases as n
and |α| increases.

4 Estimation of θ2 based on censored ranked set sample

In the case of the example of pollution study on sea samples (see, Bain 1978,
p. 99), sometimes if there is no tar deposit at the seashore then the corre-
spondingly located sea sample will be censored and hence on these units the
observations on Y is not measured. For ranking on X observations in a sample,
the censored units are assumed to have distinct and consecutive lower ranks
and the remaining units are ranked with the next higher ranks in a natural order.
If in this censored scheme of ranked set sampling, k units are censored, then
we may represent the ranked set sample observations on the study variate Y as
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ρ1Y[1]1, ρ2Y[2]2, . . . , ρnY[n]n where

ρi =
{

0 if the ith unit is censored
1 otherwise

and hence
∑n

i=1 ρi = n − k. In this case the usual ranked set sample mean is

equal to
∑n

i=1 ρiY[i]i
n−k . It may be noted that ρi = 0 need not occur in a natural order

for i = 1, 2, . . . , n. Hence if we write mi, i = 1, 2, . . . , n − k, as the integers such
that 1 ≤ m1 < m2 < · · · < mn−k ≤ n and for which ρmi = 1, then

E
[∑n

i=1 ρiY[i]i
n − k

]

= θ2

⎡

⎣1 − α

2(n + 1)(n − k)

n−k∑

i=1

(n − 2mi + 1)

⎤

⎦ .

Thus it is clear that the ranked set sample mean in the censored case is not an
unbiased estimator of the population mean θ2. However we can construct an
unbiased estimator of θ2 based on this mean. In the following theorem we have
given the constructed unbiased estimator θ∗

2 (k) of θ2 based on the ranked set
sample mean under censored situation and its variance.

Theorem 2 Suppose that the random variable (X, Y) has a MTBED as defined
in (1). Let Y[mi]mi , i = 1, 2, . . . , n−k, be the ranked set sample observations on the
study variate Y resulting out of censoring and ranking applied on the auxiliary
variable X. Then an unbiased estimator of θ2 based on the ranked set sample
mean 1

n−k

∑n−k
i=1 Y[mi]mi is given by

θ∗
2 (k) = 2(n + 1)

[
2(n + 1)(n − k) − α

∑n−k
i=1 (n − 2mi + 1)

]

n−k∑

i=1

Y[mi]mi

and its variance is given by

Var[θ∗
2 (k)] = 4(n + 1)2 θ2

2
[
2(n + 1)(n − k) − α

∑n−k
i=1 (n − 2mi + 1)

]2

n−k∑

i=1

δmi ,

where δmi is as defined in (12).
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Proof

E[θ∗
2 (k)]

= 2(n + 1)
[
2(n + 1)(n − k) − α

∑n−k
i=1 (n − 2mi + 1)

]

n−k∑

i=1

E[Y[mi]mi ]

= 2(n + 1)
[
2(n + 1)(n − k) − α

∑n−k
i=1 (n − 2mi + 1)

]

n−k∑

i=1

[

1 − α
n − 2mi + 1

2(n + 1)

]

θ2

= 2(n + 1)
[
2(n + 1)(n − k) − α

∑n−k
i=1 (n − 2mi + 1)

]

×
⎡

⎣n − k − α

2(n + 1)

n−k∑

i=1

(n − 2mi + 1)

⎤

⎦ θ2

= θ2.

Thus θ∗
2 (k) is an unbiased estimator of θ2. The variance of θ∗

2 (k) is given by

Var[θ∗
2 (k)] = 4(n + 1)2

[
(2(n + 1)(n − k) − α

∑n−k
i=1 (n − 2mi + 1)

]2

n−k∑

i=1

Var(Y[mi]mi)

= 4(n + 1)2 θ2
2

[
(2(n + 1)(n − k) − α

∑n−k
i=1 (n − 2mi + 1)

]2

n−k∑

i=1

δmi ,

where δmi is as defined in (12). Hence the theorem.
As a competitor of the estimator θ∗

2 (k), we now propose the BLUE of θ2 based
on the censored ranked set sample, resulting out of ranking of observations
on X.

Let Y[n](k) = (Y[m1]m1 , Y[m2]m2 , . . . , Y[mn−k]mn−k)
′, then the mean vector and

the dispersion matrix of Y[n](k) are given by

E[Y[n](k)] = θ2 ξ(k), (16)

D[Y[n](k)] = θ2
2 G(k), (17)

where ξ(k) = (ξm1 , ξm2 , . . . , ξmn−k)
′, G(k) = diag(δm1 , δm2 , . . . , δmn−k).

If the parameter α involved in ξ(k) and G(k) is known then (16) and (17)
together defines a generalized Guass–Markov set up and hence the BLUE θ̂2(k)

of θ2 is obtained as

θ̂2(k) = [(ξ(k))′(G(k))−1ξ(k)]−1(ξ(k))′(G(k))−1Y[n](k) (18)
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and
Var(θ̂2(k)) = [(ξ(k))′(G(k))−1ξ(k)]−1θ2

2 . (19)

On substituting the values of ξ(k) and G(k) in (18) and (19) and simplifying we
get

θ̂2(k) =
∑n−k

i=1 (ξmi/δmi)Y[mi]mi
∑n−k

i=1 ξ2
mi

/δmi

(20)

and

Var(θ̂2(k)) = 1
∑n−k

i=1 ξ2
mi

/δmi

θ2
2 .

��
Remark 2 In the expression for the BLUE’s θ̂2 given in (15) and θ̂2(k) given in
(20) the quantities ξr and δr for 1 ≤ r ≤ n are all non-negative, and consequently
the coefficients of ranked set sample observations are also non-negative. Thus
the BLUE’s θ̂2 and θ̂2(k) of θ2 are always non-negative. Thus unlike in cer-
tain situation of BLUE’s where one encounters with inadmissible estimators,
the estimators given by θ̂2 and θ̂2(k) using ranked set sample are admissible
estimators.

Remark 3 Since both the BLUE θ̂2(k) and the unbiased estimator θ∗
2 (k) based

on the censored ranked set sample utilize the distributional property of the
parent distribution they lose the usual robustness property. Hence in this case
the BLUE θ̂2(k) shall be considered as a more preferable estimators than θ∗

2 (k).

5 Estimation of θ2 based on unbalanced multistage ranked set sampling

Al-Saleh and Al-Kadiri (2000) have extended first the usual concept of RSS
to double stage ranked set sampling (DSRSS) with an objective of increas-
ing the precision of certain estimators of the population when compared with
those obtained based on usual RSS or using random sampling. Al-Saleh and
Al-Omari (2002) have further extended DSRSS to multistage ranked set sam-
pling (MSRSS) and shown that there is increase in the precision of estimators
obtained based on MSRSS when compared with those based on usual RSS and
DSRSS. The MSRSS (in r stages)procedure is described as follows:

(1) Randomly select nr+1 sample units from the target population, where r is
the number of stages of MSRSS.

(2) Allocate the nr+1 selected units randomly into nr−1sets, each of size n2.
(3) For each set in step (2), apply the procedure of ranked set sampling method

to obtain a (judgment) ranked set, of size n; this step yields nr−1 (judgment)
ranked sets, of size n each.

(4) Arrange nr−1 ranked sets of size n each, into nr−2 sets of n2 units each
and without doing any actual quantification, apply ranked set sampling
method on each set to yield nr−2 second stage ranked sets of size n each.
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(5) This process is continued, without any actual quantification, until we end
up with the rth stage (judgment) ranked set of size n.

(6) Finally, the n identified elements in step (5) are now quantified for the
variable of interest.

Instead of judgment method of ranking at each stage if there exist an auxil-
iary variate on which one can make measurement very easily and exactly and
if the auxiliary variate is highly correlated with the variable of interest, then
we can apply ranking based on these measurements to obtain the ranked set
units at each stage of MSRSS. Then on the finally selected units one can make
measurement on the variable of primary interest. In this section we deal with
the MSRSS by assuming that the random variable (X, Y) has a MTBED as
defined in (1), where Y is the variable of primary interest and X is an auxil-
iary variable. In Sect. 3, we have considered a method for estimating θ2 using
the Y[r]r measured on the study variate Y on the the unit having rth smallest
value observed on the auxiliary variable X, of the rth sample r = 1, 2, . . . , n,
and hence the RSS considered there was balanced. Abo-Eleneen and Nagaraja
(2002) have shown that in a bivariate sample of size n arising from MTBED the
concomitant of largest order statistic possess the maximum Fisher information
on θ2 whenever α > 0 and the concomitant of smallest order statistic possess
the maximum Fisher information on θ2 whenever α < 0. Hence in this section,
first we consider α > 0 and carry out an unbalanced MSRSS with the help
of measurements made on an auxiliary variate to choose the ranked set and
then estimate θ2 involved in MTBED based on the measurement made on the
variable of primary interest. At each stage and from each set we choose an
unit of a sample with the largest value on the auxiliary variable as the units of
ranked sets with an objective of exploiting the maximum Fisher information on
the ultimately chosen ranked set sample.

Let U(r)
i , i = 1, 2, . . . , n, be the units chosen by the (r stage) MSRSS. Since the

measurement of auxiliary variable on each unit U(r)
i has the largest value, we

may write Y(r)
[n]i to denote the value measured on the variable of primary interest

on U(r)
i , i = 1, 2, . . . , n,. Then it is easy to see that each Y(r)

[n]i is the concomi-
tant of the largest order statistic of nr independently and identically distributed
bivariate random variables with MTBED. Moreover Y(r)

[n]i , i = 1, 2, . . . , n, are
also independently distributed with pdf given by (see, Scaria and Nair 1999)

f (r)
[n]i(y; α) = 1

θ2
e− y

θ2

{

1 + α

(
nr − 1
nr + 1

) (
1 − 2e− y

θ2

)}

. (21)

Thus the mean and variance of Y(r)
[n]i for i = 1, 2, . . . , n, are given below:

E[Y(r)
[n]i] = θ2

[

1 + α

2

(
nr − 1
nr + 1

)]

, (22)
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Var[Y(r)
[n]i] = θ2

2

[

1 + α

2

(
nr − 1
nr + 1

)

− α2

4

(
nr − 1
nr + 1

)2
]

. (23)

If we denote

ξnr = 1 + α

2

(
nr − 1
nr + 1

)

(24)

and

δnr = 1 + α

2

(
nr − 1
nr + 1

)

− α2

4

(
nr − 1
nr + 1

)2

, (25)

then (22) and (23) can be written as

E[Y(r)
[n]i] = θ2ξnr (26)

and
Var[Y(r)

[n]i] = θ2
2 δnr . (27)

Let Y(r)
[n] = (Y(r)

[n]1, Y(r)
[n]2, · · · , Y(r)

[n]n)′, then by using (26) and (27) we get the mean

vector and dispersion matrix of Y(r)
[n] as

E[Y(r)
[n]] = θ2ξnr 1 (28)

and
D[Y(r)

[n]] = θ2
2 δnr I, (29)

where 1 is the column vector of n ones and I is a unit matrix of order n. If
α > 0 involved in ξnr and δnr is known then (28) and (29) together defines a
generalized Gauss–Markov setup and hence the BLUE of θ2 is obtained as

θ̂
n(r)
2 = 1

nξnr

n∑

i=1

Y(r)
[n]i (30)

with variance given by

Var(θ̂n(r)
2 ) = δnr

n(ξnr)2 θ2
2 . (31)

If we take r = 1 in the MSRSS method described above, then we get the usual
single stage unbalanced RSS. Then the BLUE θ̂

n(1)
2 of θ2 is given by

θ̂
n(1)
2 = 1

nξn

n∑

i=1

Y[n]i,

with variance

Var(θ̂n(1)
2 ) = δn

n(ξn)2 θ2
2 ,
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where we write Y[n]i instead of Y(1)
[n]i and it represent the measurement on the

variable of primary interest of the unit selected in the RSS. Also ξn and δn are
obtained by putting r = 1 in (24) and (25), respectively.

We have evaluated the ratio e(θ̂n(1)
2 |θ̃2) = Var(θ̃2)

Var(θ̂n(1)
2 )

for α = 0.25(0.25)1;

n = 2(2)10(5)20 as a measure of efficiency of our estimator θ̂
n(1)
2 relative to

the MLE θ̃2 of θ2 based on n observations and are also provided in Table 1.
From the table, one can see that the efficiency increases with increase in α and
n. Moreover the efficiency of the estimator θ̂

n(1)
2 is larger than the estimator θ∗

2
based on RSS mean and the BLUE θ̂2 based on usual RSS.

Al-Saleh (2004) has considered the steady-state RSS by letting r to +∞. If
we apply the steady-state RSS to the problem considered in this paper then the
asymptotic distribution of Y(r)

[n]i is given by the pdf given by

f (∞)
[n]i (y; α) = 1

θ2
e− y

θ2

{
1 + α

(
1 − 2e− y

θ2

)}
. (32)

From the definition of our unbalanced MSRSS it follows that
Y(∞)

[n]i , i = 1, 2, . . . , n, are independent and identically distributed random vari-

ables each with pdf as defined in (32). Then Y(∞)
[n]i , i = 1, 2, . . . , n, may be

regarded as unbalanced steady-state ranked set sample of size n. Then the
mean and variance of Y(∞)

[n]i for i = 1, 2, . . . , n, are given below:

E[Y(∞)
[n]i ] = θ2

[
1 + α

2

]

and

Var[Y(∞)
[n]i ] = θ2

2

[

1 + α

2
− α2

4

]

.

Let Y(∞)
[n] = (Y(∞)

[n]1 , Y(∞)
[n]2 , · · · , Y(∞)

[n]n)′. Then the BLUE θ̂
n(∞)
2 based on Y(∞)

[n] and

the variance of θ̂
n(∞)
2 is obtained by taking the limit as r → ∞ in (30) and (31),

respectively and are given by

θ̂
n(∞)
2 = 1

n
[
1 + α

2

]

n∑

i=1

Y(∞)
[n]i

and

Var(θ̂n(∞)
2 ) =

[
1 + α

2 − α2

4

]

n
[
1 + α

2

]2 θ2
2 . (33)



316 M. Chacko, P. Y. Thomas

Table 2 Efficiencies of the
estimators θ̂

n(∞)
2 and

θ̂
1(∞)
2 relative to θ̃2

α e(θ̂n(∞)
2 |θ̃2) α e(θ̂1(∞)

2 |θ̃2)

0.25 1.1382 −0.25 1.1382
0.50 1.3028 −0.50 1.3033
0.75 1.4943 −0.75 1.4960
1.00 1.7093 −1.00 1.7161

From (10) and (33) we get the efficiency of θ̂
n(∞)
2 relative to θ̃2 by taking the

ratio of Var(θ̃2) with Var(θ̂n(∞)
2 ) and is given by

e(θ̂n(∞)
2 |θ̃2) = Var(θ̃2)

Var(θ̂n(∞)
2 )

,

= I(−1)
θ2

(α)
[
1 + α

2

]2

[
1 + α

2 − α2

4

] .

Thus the efficiency e(θ̂n(∞)
2 |θ̃2) is free of the sample size n. That is, for a fixed α,

e(θ̂n(∞)
2 |θ̃2) is a constant for all n. We have evaluated the value e(θ̂n(∞)

2 |θ̃2) for
α = 0.25(0.25)1 and are presented in Table 2. From the table one can see that
the efficiency of θ̂

n(∞)
2 increases as α increases. moreover the estimator θ̂

n(∞)
2

possess the highest efficiency amoung the other estimators of θ2 proposed in
this paper and the value of the efficiencies ranges from 1.1382 to 1.7093.

As mentioned earlier for MTBED the concomitant of smallest order statis-
tic possess the maximum Fisher information on θ2 whenever α < 0. Therefore
when α < 0 we consider an unbalanced MSRSS in which at each stage and from
each set we choose an unit of a sample with the smallest value on the auxiliary
variable as the units of ranked sets with an objective of exploiting the maximum
Fisher information on the ultimately chosen ranked set sample.

Let Y(r)
[1]i, i = 1, 2, . . . , n, be the value measured on the variable of primary

interest on the units selected at the rth stage of the unbalanced MSRSS. Then
it is easily to see that each Y(r)

[1]i is the concomitant of the smallest order statistic
of nr independently and identically distributed bivariate random variables with
MTBED. Moreover Y(r)

[1]i, i = 1, 2, . . . , n, are also independently distributed with
pdf given by

f (r)
[1]i(y; α) = 1

θ2
e− y

θ2

{

1 − α

(
nr − 1
nr + 1

)(
1 − 2e− y

θ2

)}

. (34)

Clearly from (21) and (34) we have

f (r)
[1]i(y; α) = f (r)

[n]i(y; −α), (35)
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and hence E(Y(r)
[n]i) for α > 0 and E(Y(r)

[1]i) for α < 0 are identically equal.

Similarly Var(Y(r)
[n]i) for α > 0 and Var(Y(r)

[1]i) for α < 0 are identically equal.

Consequently if θ̂
1(1)
2 is the BLUE of θ2, involved in MTBED for α < 0, based on

the unbalanced MSRSS observations Y(r)
[1]i, i = 1, 2, . . . , n,, then the coefficients

of Y(r)
[1]i, i = 1, 2, . . . , n, in the BLUE θ̂

1(1)
2 for α < 0 is same as the coeffi-

cients of Y(r)
[n]i, i = 1, 2, . . . , n, in the BLUE θ̂

n(r)
2 for α > 0. Further we have

Var(θ̂1(1)
2 ) = Var(θ̂n(r)

2 ) and hence Var(θ̂1(1)
2 ) = Var(θ̂n(1)

2 ) and Var(θ̂1(∞)
2 ) =

Var(θ̂n(∞)
2 ), where θ̂

1(1)
2 is the BLUE of θ2, for α < 0 based on the usual

unbalanced single stage RSS observations Y[1]i, i = 1, 2, . . . , n, and θ̂
1(∞)
2 is the

BLUE of θ2, for α < 0 based on the unbalanced steady-state RSS observations
Y(∞)

[1]i , i = 1, 2, . . . , n,. We have obtained the efficiency e(θ̂1(1)
2 |θ̃2) of the BLUE

θ̂
1(1)
2 relative to θ̃2, the MLE of θ2 for α=−0.25, −0.5, −0.75, −1; n=2(2)10(5)20

and are incorporated in Table 1. Similarly as in the case of θ̂
n(∞)
2 for a fixed α

the efficiency e(θ̂1(∞)
2 |θ̃2) is same for all n. We have evaluated e(θ̂1(∞)

2 |θ̃2) for
α = −0.25, −0.5, −0.75, −1 and are incorporated in Table 2. From the table,
one can see that efficiency increases as |α| increases and the value of efficiency
ranges from 1.1382 to 1.7161.

Remark 4 If (X, Y) follows an MTBED with pdf defined in (1), then the corre-
lation coefficient between X and Y is given by

Corr(X, Y) = α

4
, −1 ≤ α ≤ 1.

Clearly when |α| goes to 1, correlation coefficient between X and Y is high.
Thus, using the ranks of Y to induce the ranks of X becomes more accurate.
Thus when |α| is large (that is α tends to ±1) we see that the ranked set sample
obtained based on the ranking made on X becomes more informative for mak-
ing inference on θ2 than the case with small values of |α|. From the table we
notice that for a given sample size the efficiencies of all estimators increase as |α|
increase. Consequently we note that more information on θ2 can be extracted
from the ranked set sample when |α| is large subject to |α| ≤ 1. Thus we conclude
that concomitant ranking is more effective in estimating θ2 when the absolute
value of the association parameter α is large (that is when α tends to ±1).
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