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Abstract This paper is focused on two kernel relative density estimators in
a two-sample problem. An asymptotic expression for the mean integrated
squared error of these estimators is found and, based on it, two solve-
the-equation plug-in bandwidth selectors are proposed. In order to examine
their practical performance a simulation study and a practical application to a
medical dataset are carried out.

Keywords Kernel-type estimates · Smoothing parameter · Solve-the-equation
rules · Survival analysis · Two-sample problem

1 Introduction

The study of differences among groups or changes over time is a goal in fields
such as medical research and social science research. The traditional method
for this purpose is the usual parametric location and scale analysis. However,
this is a very restrictive tool, since a lot of the information available in the data
is unaccessible. In order to make a better use of this information it is convenient
to focus on distributional analysis, i.e., on the general two-sample problem of
comparing the cumulative distribution functions (cdf), F0 and F, of two random
variables, X0 and X. Useful tools for this purpose are the relative distribution
function, R (t), and the relative density function, r (t), of X with respect to (w.r.t.)
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X0:

R (t) = P (F0 (X) ≤ t) = F
(

F−1
0 (t)

)
, 0 < t < 1,

where F−1
0 (t) = inf {x |F0 (x) ≥ t } denotes the quantile function of F0 and

r (t) = R(1) (t) =
f
(

F−1
0 (t)

)

f0

(
F−1

0 (t)
) , 0 < t < 1,

where f and f0 are the densities pertaining to F and F0, respectively. These two
curves, as well as estimators for them, have been studied by Gastwirth (1968),
Ćwik and Mielniczuk (1993), Hsieh (1995), Hsieh and Turnbull (1996), Cao
et al. (2000, 2001) and Handcock and Janssen (2002).

These functions, R and r, are closely related to other statistical methods. The
ROC curve, used in the evaluation of the performance of medical tests for sepa-
rating two groups, is related to R through the relationship ROC (t) = 1−R (1−t)
[see, for instance, Holmgren (1996) and Li et al. (1996) for details] and the den-
sity ratio h (x) = f (x)

f0(x)
, x ∈ R, used by Silverman (1978) is linked to r through

h (x) = r (F0 (x)).
Throughout the paper, we will focus on two kernel-type estimators of r,

similar to the one already proposed by Ćwik and Mielniczuk (1993). In the
following section we will give some notation and obtain an asymptotic repre-
sentation for the MISE of the relative density estimators. This is a difference
with respect to Ćwik and Mielniczuk (1993), where an asymptotic expression
for the MISE of only the dominant part of the estimator was found. Section 3 is
concerned with automatic global bandwidth selection. Two solve-the-equation
plug-in bandwidth selectors based on the ideas by Sheather and Jones (1991)
are proposed. A simulation study is shown in Sect. 4 where the performance of
the data-driven selectors proposed in this paper is compared with the selector
proposed in Ćwik and Mielniczuk (1993). A medical application is presented in
Sect. 5. Finally, the proofs of the results presented in Sects. 2 and 3 are included
in Sect. 6.

2 Kernel relative density estimators

Consider the two-sample problem with completely observed data:

{X01, . . . , X0n}, {X1, . . . , Xm},

where the X0i’s are independent and identically distributed as X0; and the Xj’s
are independent and identically distributed as X. These two sequences are
independent each other.
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Throughout this paper all the asymptotic results are obtained if both sample
sizes m and n tend to infinity in such a way that, for some constant 0 < λ < ∞,

lim
m−→∞

m
n

= λ.

We assume the following conditions on the underlying distributions, the ker-
nels K and M and the bandwidths h and h0 to be used in the estimators (see (1),
(2) and (3) below):

(F1) F0 and F have continuous density functions, f0 and f , respectively.
(F2) f0 is a three times differentiable density function with f (3)

0 bounded.
(R1) r is a twice continuously differentiable density with compact support

contained in
[
0, 1
]
.

(K1) K is a symmetric four times differentiable density function with compact
support

[−1, 1
]

and K(4) bounded.
(K2) M is a symmetric density and continuous function except at a finite set

of points.
(B1) h −→ 0 and mh3 −→ ∞.
(B2) h0 −→ 0 and nh4

0 −→ 0.

Since 1
h

∫ 1
0 K

( t−z
h

)
dR (z) is close to r (t) and for smooth distributions it is

satisfied that:

1
h

∫ 1

0
K
(

t − z
h

)
dR (z) = 1

h

∫ ∞

−∞
K
(

t − F0 (z)

h

)
dF (z) ,

a natural way to define a kernel-type estimator of r (t) is to replace the unknown
functions F0 and F by some appropriate estimators. We consider two proposals:

r̂h(t) =
∫ ∞

−∞
Kh (t − F0n(z)) dFm(z) = 1

m

m∑
j=1

Kh
(
t − F0n(Xj)

)
(1)

and

r̂h,h0(t) =
∫ ∞

−∞
Kh

(
t − F̃0n(z)

)
dFm(z) = 1

m

m∑
j=1

Kh

(
t − F̃0n(Xj)

)
, (2)

where Kh(t) = 1
h K
( t

h

)
, K is a kernel function, h is the bandwidth used to esti-

mate r, F0n and Fm are the empirical distribution functions based on X0i’s and
Xj’s, respectively, and F̃0n is a kernel-type estimate of F0 given by:

F̃0n = n−1
n∑

i=1

M

(
x − X0i

h0

)
(3)
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where M denotes the cdf of the kernel M and h0 is the bandwidth used to
estimate F0.

Using a Taylor expansion, r̂h(t) can be written as follows:

r̂h(t) =
∫ ∞

−∞
Kh (t − F0(z)) dFm(z)

+
∫ ∞

−∞
K(1)

h (t − F0(z)) (F0(z) − F0n(z)) dFm(z)

+
∫ ∞

−∞
(F0(z) − F0n(z))2

×
∫ 1

0
(1 − s)K(2)

h (t − F0(z) − s (F0n(z) − F0(z))) ds dFm(z).

Let us define Ũn = F0n ◦F−1
0 and R̃m = Fm ◦F−1

0 . Then, r̂h(t) can be rewritten
in a useful way for the study of its mean integrated squared error (MISE):

r̂h(t) = r̃h(t) + A1 + A2 + B, (4)

where

r̃h(t) =
∫ ∞

−∞
Kh (t − F0(z)) dFm(z) = 1

m

m∑
j=1

Kh
(
t − F0(Xj)

)

A1 =
∫ 1

0

(
v − Ũn(v)

)
K(1)

h (t − v) d
(

R̃m − R
)

(v)

A2 = 1
n

n∑
i=1

∫ ∞

−∞
(F0(w) − 1 {X0i ≤ w})K(1)

h (t − F0(w)) dF(w)

B =
∫ ∞

−∞
(F0(z) − F0n(z))2 ×

∫ 1

0
(1 − s)K(2)

h (t − F0(z) − s (F0n(z) − F0(z)))

dsdFm(z).

Proceeding in a similar way, we can rewrite r̂h,h0 as follows:

r̂h,h0(t) = r̃h(t) + A1 + A2 + Â + B̂, (5)

where

Â =
∫ (

F0n(w) − F̃0n(w)
)

K(1)

h (t − F0(w)) dFm(w)

B̂ =
∫ ∞

−∞
(F0(z) − F̃0n(z))

2
∫ 1

0
(1 − s)K(2)

h ×
(

t − F0(z) − s
(

F̃0n(z) − F0(z)
))

× ds dFm(z).
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Our main result is an asymptotic representation for the MISE of r̂h(t) and
r̂h,h0(t). With the purpose of simplifying the exposition of the results obtained,
from here on we will denote C (g) = ∫∞

−∞ g2 (x) dx, for any square integrable
function g.

Theorem 1 (AMISE) Assume conditions (F1), (R1), (K1) and (B1). Then

MISE(r̂h) = AMISE(h) + o
(

1
mh

+ h4
)

+ o
(

1
nh

)
,

AMISE(h) = 1
mh

C(K) + 1
4

h4d2
KC(r(2)) + 1

nh
C(r)C(K),

where dK = ∫ 1
−1 x2K (x) dx.

If the conditions (F2), (K2), and (B2) are assumed as well, then the same result
is satisfied for the MISE(r̂h,h0).

Remark 1 From Theorem 1 it follows that the optimal bandwidth, minimizing
the asymptotic mean integrated squared error of any of the estimators consid-
ered for r, is given by

hAMISE =
(

C(K)(λC(r) + 1)

d2
KC(r(2))m

) 1
5

. (6)

Remark 2 Note that AMISE(h) derived from Theorem 1 does not depend on
the bandwidth h0. A more higher-order analysis should be considered to address
simultaneously the bandwidth selection problem of h and h0.

3 Bandwidth selectors

3.1 Estimation of density functionals

It is very simple to show that, under sufficiently smooth conditions on r (r ∈
C(2�)(R)), the functionals

C
(

r(�)
)

=
∫ 1

0

(
r(�) (x)

)2
dx (7)

appearing in (6), are related to other general functionals of r, denoted by �2�:

C
(

r(�)
)

= (−1)�
∫ 1

0
r(2�) (x) r (x) dx = (−1)� �2�, (8)

where

�� =
∫ 1

0
r(�) (x) r (x) dx = E

[
r(�) (F0 (X))

]
.
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The equation above suggests a natural kernel-type estimator for �� as follows

�̂�(g) = 1
m

m∑
j=1

[
m∑

k=1

1
m

L(�)
g
(
F0n

(
Xj
)− F0n (Xk)

)]
, (9)

where L is a kernel function and g is a smoothing parameter called pilot band-
width. Likewise in the previous section, this is not the unique possibility and we
could consider another estimator of ��,

�̃�(g) = 1
m

m∑
j=1

[
m∑

k=1

1
m

L(�)
g

(
F̃0n

(
Xj
)− F̃0n (Xk)

)]
, (10)

where F0n in (9) is replaced by F̃0n. Since the difference between both estima-
tors decreases as h0 tends to zero, it is expected to obtain the same theoretical
results for both estimators. Therefore, we will only show theoretical results for
�̂�(g).

We will obtain the asymptotic mean squared error of �̂�(g) under the follow-
ing assumptions.

(R2) The relative density r ∈ C(�+6) (R).
(K3) The kernel L is a symmetric kernel of order 2, L ∈ C(�+7) (R) and sat-

isfies that (−1)
�
2 +2 L(�) (0) dL > 0, L(�)(1) = L(�+1)(1) = 0, with dL =∫∞

−∞ x2L(x)dx.
(B3) g = gm is a positive-valued sequence of bandwidths satisfying

lim
m−→∞ g = 0 and lim

m−→∞ mgmax{α,β} = ∞,

where

α = 2 (� + 7)

5
, β = 1

2
(� + 1) + 2.

Condition (R2) implies a smooth behaviour of r in the boundary of its
support, contained in [0, 1]. If this smoothness fails, the quantity C

(
r(�)
)

could be
still estimated through its definition, using a kernel estimation for r(�) [see Hall
and Marron (1987) for the one-sample problem setting]. Condition (K3) can
only hold for even �. Observe that in condition (B3) for even �, max {α, β} = α

for � = 0, 2 and max {α, β} = β for � = 4, 6, . . .
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Theorem 2 Assume conditions (F1), (R2), (K3) and (B3). Then it follows that

MSE
(
�̂�(g)

)
=
[

1
mg�+1

L(�) (0) (1 + λ�0) + 1
2

dL��+2g2 + O
(

g4
)

+ o
((

ng�+1
)−1
)]2

+ 2
m2g2�+1

�0C
(

L(�)
)

+ o
((

m2g2�+1
)−1
)

+ O
(

n−1
)

. (11)

Remark 3 The first term in the right-hand side of (11) corresponds to the
squared bias term of MSE. Note that, using (K3) and (8), the main bias term
can be made to vanish by choosing g as g�

g� =
(

2L(�) (0) (λ�0 + 1)

−dL��+2m

) 1
(�+3)

=
(

2L(�)(0)d2
K�4

−dL��+2C(K)

) 1
�+3

h
5

�+3
AMISE.

3.2 STE rules based on Sheather and Jones ideas

As in the context of ordinary density estimation, the practical implementation of
the kernel-type estimators proposed here (see (1) and (2)), requires the choice
of the smoothing parameter h. Our two proposals, hSJ1 and hSJ2 , as well as the
selector b3c recommended by Ćwik and Mielniczuk (1993), are modifications
of Sheather and Jones (1991). Since the Sheather and Jones selector is the solu-
tion of an equation in the bandwidth, it is also known as a solve-the-equation
(STE) rule. Motivated by the formula (6) for the AMISE-optimal bandwidth
and the relation (8), solve-the-equation rules require that h is chosen to satisfy
the relationship

h =
⎛
⎝C (K)

(
λ�̃0 (γ1(h)) + 1

)

d2
K · �̃4 (γ2 (h)) · m

⎞
⎠

1
5

,

where the pilot bandwidths for the estimation of �0 and �4 are functions of h
(γ1(h) and γ2(h), respectively).

Motivated by Remark 3, we suggest taking

γ1 (h) =
(

2 · L (0) · d2
K · �̃4 (g4)

−dL�̃2 (g2) C(K)

) 1
3

h
5
3
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and

γ2 (h) =
(

2 · L(4) (0) · d2
K · �̃4 (g4)

−dL�̃6 (g6) C(K)

) 1
7

h
5
7 ,

where �̃j (·), (j = 0, 2, 4, 6) are kernel estimates (10). Note that this way of
proceeding leads us to a never ending process in which a bandwidth selection
problem must be solved at every stage. To make this iterative process feasible
in practice one possibility is to propose a stopping stage in which the unknown
quantities are estimated using a parametric scale for r. This strategy is known
in the literature as the stage selection problem (see Wand and Jones, 1995).
While the selector b3c in Ćwik and Mielniczuk (1993) used a Gaussian scale,
now for the implementation of hSJ2 , we will use a mixture of betas based on the
Weierstrass approximation theorem and Bernstein polynomials associated to
any continuous function on [0, 1] (see Kakizawa, 2004, and references therein
for the motivation of this method). Later on we will show the formula for com-
puting the reference scale above-mentioned, together with the selector b3c we
used in Sect. 4.

In the following we denote the Epanechnikov kernel by K, the uniform
density in [−1, 1] by M and we define L as follows

L(x) = �(18)

2�(9)�(9)

(
x + 1

2

)8 (
1 − x + 1

2

)8

1{−1≤x≤1}.

Next, we detail the steps required in the implementation of hSJ2 .

Step 1. Obtain �̂PR
j (j = 0, 4, 6, 8), parametric estimates for �j (j = 0, 4, 6, 8),

with the replacement of r in C
(
r(j/2)

)
(see (7)), by a mixture of betas,

b(x), as it will be explained later on (see (12)).
Step 2. Compute kernel estimates for �j (j = 2, 4, 6), by using �̃j(gPR

j ) (j =
2, 4, 6), with

gPR
j =

⎛
⎝2 · L(j) (0)

(
λ�̂PR

0 + 1
)

−dL · �̂PR
j+2 · m

⎞
⎠

1
j+3

, (j = 2, 4, 6).

Step 3. Estimate �0 and �4, using (10), by means of �̃0(γ̂1(h)) and �̃4(γ̂2(h)),
where

γ̂1 (h) =
(

2 · L (0) · d2
K · �̃4

(
gPR

4

)

−dL�̃2
(
gPR

2

)
C (K)

) 1
3

h
5
3
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and

γ̂2 (h) =
(

2 · L(4) (0) · d2
K · �̃4

(
gPR

4

)

−dL�̃6
(
gPR

6

)
C (K)

) 1
7

h
5
7 .

Step 4. Select the bandwidth hSJ2 as the one that solves the following equation
in h:

h =
⎛
⎝C (K)

(
λ�̃0

(
γ̂1 (h)

)+ 1
)

d2
K · �̃4

(
γ̂2 (h)

) · m

⎞
⎠

1
5

.

In order to solve the equation above, it will be necessary to use a numerical
algorithm. In the simulation study we will use the false-position method. The
main reason is that the false-position algorithm does not require the computa-
tion of the derivatives, what simplifies considerably the implementation of the
proposed bandwidth selectors. At the same time, this algorithm presents some
advantages over others because it tries to combine the speed of methods such
as the secant method with the security afforded by the bisection method.

Unlike the Gaussian parametric reference, used to obtain b3c, the selector
hSJ2 uses in Step 1 a mixture of betas as follows:

b(x) =
N∑

j=1

(
R̃n,m

(
j

N

)
− R̃n,m

(
j − 1

N

))
β(x, j, N − j + 1), (12)

where

R̃n,m(x) = m−1∑m
j=1 M

(
x−F̃0n(Xj)

g

)
, (13)

g =
(

2
∫∞
−∞ xM(x)M(x)dx

md2
MC(r(1))

) 1
3

, (14)

β(x, a, b) stands for the beta density

β(x, a, b) = �(a + b)

�(a)�(b)
xa−1(1 − x)b−1, x ∈ [0, 1],

and N is the number of betas in the mixture.
Since we are trying to estimate a density with support in [0, 1] it seems more

suitable to consider a parametric reference with this support. A mixture of betas
is an appropriate option because it is flexible enough to model a large variety
of relative densities, when derivatives of order 1, 3 and 4 are also required.
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Note that, for the sake of simplicity, we are using above the AMISE-optimal
bandwidth (g) for estimating a distribution function in the setting of a one-sam-
ple problem [see Polansky and Baker (2000) for more details in the kernel-type
estimate of a distribution function]. The use of this bandwidth requires the pre-
vious estimation of the unknown functional, C

(
r(1)
)
. We will consider a quick

and dirty method, the rule of thumb, that uses a parametric reference for r to
estimate the above-mentioned unknown quantity. More specifically, our refer-
ence scale will be a beta with parameters (p, q) estimated from the smoothed
relative sample

{
F̃0n(Xj)

}m
j=1, using the method of moments.

Following the same ideas as for (13) and (14), the bandwidth selector used for
the kernel-type estimator F̃0n introduced in (3) is based on the AMISE-optimal
bandwidth in the one-sample problem:

h0 =
⎛
⎝2

∫∞
−∞ xM (x) M (x) dx

nd2
MC

(
f (1)
0

)
⎞
⎠

1
3

.

As it was already mentioned above, in most of the cases this methodology will
be applied to survival analysis, so it is natural to assume that our samples come
from distributions with support on the positive real line. Therefore, a gamma
reference distribution, Gamma(α, β), has been considered, where the parame-
ters (α, β) are estimated from the smoothed relative sample

{
F̃0n(Xj)

}m
j=1, using

the method of moments.
For the implementation of hSJ1 , we proceed analogously to that of hSJ2 above.

The only difference now is that throughout the previous discussion, �̃j(·) and
F̃0n(·) are replaced by, respectively, �̂j(·) and F0n(·).

As a variant of the selector that Ćwik and Mielniczuk (1993) proposed, b3c
is obtained as the soluction to the following equation:

b3c =
⎛
⎝C(K)

(
1 + λ�̂0(a)

)

d2
K�̂4 (α2 (b3c)) m

⎞
⎠

1
5

,

where a = 1.781σ̂m− 1
3 , σ̂ = min

{
sm, ÎQR/1.349

}
, sm and ÎQR denote, respec-

tively, the empirical standard deviation and the sample interquartile range of
the relative data,

{
F0n(Xj)

}m
j=1,

α2 (b3c) = 0.7694

(
�̂4
(
gGS

4

)

−�̂6
(
gGS

6

)
) 1

7

b
5
7
3c,

where GS stands for standard Gaussian scale,

g4
GS =1.2407σ̂m− 1

7 , g6
GS =1.2304σ̂m− 1

9
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and the estimates �̂j (with j = 0, 4, 6) were obtained using (9), with L replaced
by the standard Gaussian kernel and with data driven bandwidth selectors
derived from reducing the two-sample problem to a one-sample problem.

It is interesting to note that all the kernel-type estimators presented previ-
ously (r̂h(t), r̂h,h0(t), R̃n,m(x) and F̃0n (x)) were not corrected to take into account,
respectively, the fact that r and R have support on [0, 1] instead of on the whole
real line, and the fact that f0 is supported only on the positive real line. There-
fore, in order to correct the boundary effect in practical applications we will use
the well known reflecting method to modify r̂h(t), r̂h,h0(t), R̃n,m(x) and F̃0n (x),
where needed.

4 Simulations

We compare, through a simulation study, the performance of the bandwidth
selectors hSJ1 and hSJ2 , proposed in Sect. 3, with the standard competitor b3c

recommended by Ćwik and Mielniczuk (1993). Although we are aware that the
smoothing parameter N introduced in (12) should be selected by some optimal
way based on the data, this issue goes beyond the scope of this article. Conse-
quently, from here on, we will consider N = 14 components in the beta mixture
reference scale model given by (12).

We will consider the first sample coming from the random variate X0 =
W−1 (U) and the second sample coming from the random variate X = W−1 (S),
where U denotes a uniform distribution in the compact interval

[
0, 1
]
, W is the

distribution function of a Weibull distribution with parameters (2, 3) and S is a
random variate from one of the following five different populations (see Fig. 1):

(a) A beta distribution with parameters 14 and 17 (β (14, 17)).
(b) A mixture consisting of V1 with probability 4

5 and V2 with probability 1
5 ,

where V1 = β (14, 37) and V2 = β (14, 20).
(c) A mixture consisting of V1 with probability 1

3 and V2 with probability 2
3 ,

where V1 = β (34, 15) and V2 = β (15, 30).

Choosing different values for the pair of sample sizes m and n and under each
of the models presented above, we start drawing 500 pair of random samples
and, according to every method, we select the bandwidths ĥ. Then, in order to
check their performance we approximate by Monte Carlo the mean integrated
squared error, EM, between the true relative density and the kernel-type esti-
mate for r, given by (1) when ĥ = b3c, hSJ1 or by (2) when ĥ = hSJ2 .

The computation of the kernel-type estimations can be very time consuming
by using a direct algorithm. Therefore, we will use linear binned approxima-
tions that, thanks to their discrete convolution structures, can be fast computed
by using the fast Fourier transform (FFT) (see Wand and Jones 1995 for more
details).

For all the models, the values of this criterion for the three bandwidth selec-
tors, hSJ1 , hSJ2 and b3c, can be found in Table 1.
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0 1
0

6

(a)

(c)

(b)

Fig. 1 Plots of the relative densities (a)–(c)

Table 1 Values of EM for hSJ1
, hSJ2 and b3c for models (a)–(c)

EM Model (a) Model (b) Model (c)

(n, m) hSJ1
hSJ2 b3c hSJ1

hSJ2 b3c hSJ1
hSJ2 b3c

(50, 50) 0.8437 0.5523 1.2082 1.1278 0.7702 1.5144 0.7663 0.5742 0.7718
(100, 100) 0.5321 0.3717 0.6654 0.6636 0.4542 0.7862 0.4849 0.3509 0.4771
(200, 200) 0.2789 0.2000 0.3311 0.4086 0.2977 0.4534 0.2877 0.2246 0.2830
(100, 50) 0.5487 0.3804 0.7162 0.6917 0.4833 0.8796 0.4981 0.3864 0.4982
(200, 100) 0.3260 0.2443 0.3949 0.4227 0.3275 0.4808 0.3298 0.2601 0.3252
(400, 200) 0.1739 0.1346 0.1958 0.2530 0.1924 0.2731 0.1830 0.1490 0.1811
(50, 100) 0.8237 0.5329 1.1189 1.1126 0.7356 1.4112 0.7360 0.5288 0.7135
(100, 200) 0.5280 0.3627 0.6340 0.6462 0.4288 0.7459 0.4568 0.3241 0.4449
(200, 400) 0.2738 0.1923 0.3192 0.3926 0.2810 0.4299 0.2782 0.2099 0.2710

A careful look at the table points out that the new selector hSJ2 presents a
much better behaviour than the selector b3c, especially when the sample sizes
are equal or when m is larger than n. The improvement is even larger for uni-
modal relative densities (model (a) and (b)). On the other hand, it is observed
that the other proposal, hSJ1 , presents only a moderate improvement over b3c
for unimodal relative densities (model (a) and (b)) and performs only slightly
better or even worse than b3c for bimodal relative densities (model (c)). The
ratio m

n produces an important effect on the behaviour of any of the three selec-
tors considered. For instance, it is clearly seen an asymmetric behaviour of the
selectors in terms of the sample sizes.

Other proposals for selecting h have been investigated. For instance, ver-
sions of hSJ2 were considered in which either the unknown functionals � are
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estimated from the viewpoint of a one-sample problem or the STE rule is mod-
ified in such a way that only the function γ̂2 is considered in the equation to
be solved (see Step 4 in Sect. 3). After a simulation study similar to the one
detailed here, but now carried out for these versions of hSJ2 , it was observed
a similar practical performance to that observed for hSJ2 . However, a worse
behaviour was observed when, in the implementation of these versions of hSJ2 ,
the smooth estimate of F0 is replaced by the empirical distribution function F0n.
Therefore, although hSJ2 requires the selection of two bandwidth parameters,
a clear better practical behaviour is observed when considering the smoothed
relative data instead of the non-smoothed ones.

5 A medical application

In this section we apply the plug-in STE selector hSJ2 detailed above, to estimate
the relative density for a real data set concerned with prostate cancer (PC).

The data consist of 599 patients suffering from PC (+) and 835 patients PC-
free (−). For each patient the illness status has been determined through a
prostate biopsy carried out for first time in Hospital Juan Canalejo (Galicia,
Spain) between January of 2002 and September of 2005.

In the literature, there exists an increasingly interest in finding a good diag-
nostic test that helps in the early detection of PC and avoids the need of
undergoing a prostate biopsy. There are several studies in which, through ROC
curves, it was investigated the performance of different diagnostic tests based on
some analytic measurements such as the total prostate specific antigen (tPSA),
the free PSA (fPSA) or the complexed PSA (cPSA).

As it was mentioned in Sect. 1, there exists a close relation between the
concepts of ROC curve and relative density. Relative density estimates can
provide more detailed information about the performance of a diagnostic test
which can be useful not only in comparing different tests but also in designing
an improved one. This issue goes beyond the scope of this article and therefore
it will not be investigated here.

In this section we compare from a distributional point of view the above
mentioned measurements (tPSA, fPSA and cPSA) among the two groups in
the data set (PC+ and PC−). To this end we start computing the appropriate
bandwidths using the data-driven bandwidth selector hSJ2 and then the corre-
sponding relative density estimates are computed using (2). These estimates are
shown in Fig. 2.

It is clear from Fig. 2 that the relative density estimate is above one in the
upper interval accounting for a probability of about 30% of the PC− distribu-
tion for the variables tPSA and cPSA. In the case of fPSA the 25% left tail of
the PC– group and an interval in the upper tail that starts approximately at the
quantile 0.7 of the PC– group, show as well that the relative density estimate
is slightly above one. However, this effect is less remarkable that in the case of
the variables tPSA and cPSA.
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Fig. 2 Relative density estimate of the PC+ group w.r.t. the PC− group for the variables tPSA
(solid line, hSJ2 = 0.0645), cPSA (dotted line, hSJ2 = 0.0625) and fPSA (dashed line, hSJ2 = 0.1067)

6 Proofs

The proof of Theorem 1 will be a direct consequence of some previous lemmas
where each one of the terms that result from expanding the expression for
the MISE are studied. Some of them will produce dominant parts in the final
expression for the MISE while others will yield negligible terms.

Lemma 1 Assume the hypothesis above. Then

(i)
∫ 1

0 E[(r̃h(t)−r(t))2]dt = 1
mh C(K)

∫ 1
0 r (t) dt+ 1

4 h4d2
KC(r(2))+o

(
1

mh + h4
)

.

(ii)
∫ 1

0 E[A2
2]dt = 1

nh C(r)C(K) + o
(

1
nh

)
= O

(
1

nh

)
.

(iii)
∫ 1

0 E[A2
1]dt = o

(
1

nh

)
.

(iv)
∫ 1

0 E[B2]dt = o
(

1
nh

)
.

(v)
∫ 1

0 E[2A1(r̃h − r)(t)]dt = 0.

(vi)
∫ 1

0 E[2A2(r̃h − r)(t)]dt = 0.

(vii)
∫ 1

0 E[2B(r̃h − r)(t)]dt = o
(

1
mh + h4

)
.

(viii)
∫ 1

0 E[2A1A2]dt = o
(

1
mh + h4

)
.

(ix)
∫ 1

0 E[2A1B]dt = o
(

1
mh + h4

)
.

(x)
∫ 1

0 E[2A2B]dt = o
(

1
nh + h4

)
.

Lemma 2 Assume the hypothesis above. Then

(i)
∫ 1

0 E[Â2]dt = o
(

1
nh

)
.

(ii)
∫ 1

0 E[B̂2]dt = o
(

1
nh

)
.
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Proof of Lemma 1 The proof of (i) is not included here because it is a classical
result in the setting of ordinary density estimation in a one-sample problem
(see Wand and Jones, 1995 for details).

We next prove (ii). Standard algebra gives

E[A2
2] = 1

n2h4

n∑
i=1

n∑
j=1

∫ ∞

−∞

∫ ∞

−∞
E
[
(F0(w1) − 1{X0i≤w1})(F0(w2) − 1{X0j≤w2})

]

× K(1)

(
t − F0(w1)

h

)
K(1)

(
t − F0(w2)

h

)
dF(w1)dF(w2).

Due to the independence between X0i and X0j for i �= j, and using the fact that

Cov(1{F0(X0i)≤u1}, 1{F0(X0i)≤u2}) = (1 − u1)(1 − u2)g0(u1 ∧ u2),

where g0(t) = t
1−t , the previous expression can be rewritten as follows

E[A2
2] = 2

nh4

∫ 1

0

∫ 1

u2

(1 − u1)(1 − u2)g0(u2)K(1)

(
t − u1

h

)
K(1)

×
(

t − u2

h

)
r(u1)r(u2)du1du2

= − 1
nh4

∫ 1

0
g0(u2)d

[∫ 1

u2

(1 − u1)K
(1)

(
t − u1

h

)
r(u1)du1

]2

.

Now, using integration by parts, it follows that

E[A2
2] = −1

nh4 lim
u2→1− g0(u2)G(u2)

2 + 1
nh4 lim

u2→0+ g0(u2)G(u2)
2

+ 1
nh4

∫ 1

0
G(u2)

2g(1)
0 (u2)du2, (15)

where

G(u2) =
∫ 1

u2

(1 − u1)K
(1)

(
t − u1

h

)
r(u1)du1.

Since G is a bounded function and g0(0) = 0, the second term in the right hand
side of (15) vanishes to zero. On the other hand, due to the boundedness of K(1)

and r, it follows that |G(u2)| ≤ ∥∥K(1)
∥∥∞ ‖r‖∞ (1−u2)

2

2 , which let us conclude that
the first term in (15) is zero as well. Therefore,

E[A2
2] = 1

nh4

∫ 1

0
G(u2)

2g(1)
0 (u2)du2. (16)
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Now, using integration by parts, it follows that

G(u2) =
⌈
−(1 − u1)r(u1)hK

(
t − u1

h

)⌉1

u2

+
∫ 1

u2

hK
(

t − u1

h

)
[−r(u1) + (1 − u1)r

(1)(u1)]du1

= h(1 − u2)r(u2)K
(

t − u2

h

)

+h
∫ 1

u2

K
(

t − u1

h

)
[(1 − u1)r

(1)(u1) − r(u1)]du1,

and plugging this last expression in (16), it is concluded that

E[A2
2] = 1

nh2 (I21 + 2I22 + I23),

where

I21 =
∫ 1

0
r2(u2)K2

(
t − u2

h

)
du2

I22 =
∫ 1

0

1
(1 − u2)

r(u2)K
(

t − u2

h

)

×
∫ 1

u2

K
(

t − u1

h

)
[(1 − u1)r

(1)(u1) − r(u1)]du1du2

I23 =
∫ 1

0

1
(1 − u2)2

∫ 1

u2

∫ 1

u2

K
(

t − u1

h

)
[(1 − u1)r

(1)(u1) − r(u1)]

×K
(

t − u∗
1

h

)
[(1 − u∗

1)r
(1)(u∗

1) − r(u∗
1)]du1 du∗

1du2.

Therefore,

∫ 1

0
E[A2

2]dt =
∫ 1

0

1
nh2 I21dt + 2

∫ 1

0

1
nh2 I22dt +

∫ 1

0

1
nh2 I23dt. (17)

Next, we will study each summand in (17) separately. The first term can be
handled by using changes of variable and a Taylor expansion:

∫ 1

0

(
1

nh2 I21

)
dt = 1

nh

∫ 1

0
r2(u2)

⎛
⎝
∫ 1−u2

h

− u2
h

K2(s)ds

⎞
⎠du2.
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Let us define K2 (x) = ∫ x
−∞ K2 (s) ds and rewrite the previous term as follows

∫ 1

0

(
1

nh2 I21

)
dt = 1

nh

∫ 1

0
r2(u2)

(
K2

(
1 − u2

h

)
− K2

(
−u2

h

))
du2.

Now, by splitting the integration interval into three subintervals:
[
0, h
]
,
[
h, 1 − h

]
and

[
1 − h, 1

]
, using changes of variable and the fact that

K2 (x) =
{

C(K) ∀x ≥ 1,
0 ∀x ≤ −1,

it is easy to show that

∫ 1

0

(
1

nh2 I21

)
dt = 1

nh
C(K) · C(r) + O

(
1
n

)
.

Below, we will study the second term in the right hand side of (17). By using
changes of variable, Cauchy–Schwarz inequality and conditions ‖r‖∞ < ∞,∥∥r(1)

∥∥∞< ∞ and C(K) < ∞, straightforward calculations lead to

∫ 1

0

(
1

nh2 I22

)
dt = O

(
1
n

+ 1

nh
1
2

)
= O

(
1

nh
1
2

)
.

Similar arguments give

∫ 1

0

(
1

nh2 I23

)
dt = O

(
1

nh
1
2

)
.

Therefore, it has been shown that

∫ 1

0
E[A2

2]dt = 1
nh

C(r)C(K) + O
(

1
n

)
+ O

(
1

nh
1
2

)
.

Finally the proof of (ii) concludes using condition (B1).
We now prove (iii). Direct calculations lead to

E[A2
1] = 1

h4 E [I1] , (18)

where

I1 = E

[∫ 1

0

∫ 1

0
(v1 − Ũn(v1))(v2 − Ũn(v2))K(1)

(
t − v1

h

)

× K(1)

(
t − v2

h

)
d(R̃m − R)(v1)d(R̃m − R)(v2)/X01, . . . , X0n

]
. (19)
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To tackle with (18) we first study the conditional expectation (19). It is easy to
see that

I1 = Var[V/X01, . . . , X0n],

where

V = 1
m

m∑
j=1

(
Xj − Ũn(Xj)

)
K(1)

(
t − Xj

h

)
.

Thus

I1 = 1
m

⎧
⎨
⎩
∫ 1

0

[
(v − Ũn(v))K(1)

(
t − v

h

)]2

dR(v)

−
[∫ 1

0
(v − Ũn(v))K(1)

(
t − v

h

)
dR(v)

]2
⎫⎬
⎭

and

E[A2
1]=

1
mh4

∫ 1

0
E
{[

(v − Ũn(v))
]2
}[

K(1)

(
t − v

h

)]2

dR(v) − 1
mh4

∫ 1

0

∫ 1

0
E
[
(v1−Ũn(v1))(v2−Ũn(v2))

]
K(1)

(
t − v1

h

)
K(1)

(
t − v2

h

)
dR(v1)dR(v2).

Taking into account that

E
[

sup
v

|(Ũn(v) − v)|2
]

=
∫ ∞

0
P
(

sup
v

|(Ũn(v) − v)|2 > c
)

dc,

we can use the Dvoretzky–Kiefer–Wolfowitz inequality, to conclude that

E
[

sup
v

|(Ũn(v) − v)|2
]

≤
∫ ∞

0
2e−(2nc)dc = 2

n

∫ ∞

0
ye−y2

dy = O
(

1
n

)
. (20)

Consequently, using (20) and the conditions ‖r‖∞ < ∞ and
∥∥K(1)

∥∥∞ < ∞ we

obtain that E[A2
1] = O

(
1

mnh4

)
. The proof of (iii) is concluded using condition

(B1).
The results appearing in items (iv)–(x) can be proved by first conditioning to

some appropriate random variables and then handling the conditional moments
using standard arguments. For this reason their proofs are not included here. �
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Proof of Lemma 2 We start proving (i). Let us define Dn(w) = F̃0n(w)−F0n(w),
then

E[Â2] = E[E[Â2/X1, . . . , Xm]]
= E

[ ∫∫
E[Dn(w1)Dn(w2)]

× K(1)

h (t − F0(w1))K
(1)

h (t − F0(w2))dFm(v1)dFm(v2)

]
.

Based on the results set for Dn(w) in Hjort and Walker (2001), the condi-
tions (F2) and (K2) and since E[Dn(w1)Dn(w2)] = Cov(Dn(w1), Dn(w2)) +
E[Dn(w1)]E[Dn(w2)], it follows that E[Dn(w1)Dn(w2)] = O

(
h4

0
n

)
+ O(h4

0).

Therefore, for any t ∈ [0, 1], we can bound E[Â2], using suitable constants
C2 and C3 as follows

E[Â2] = C2
h4

0

h4

1
m

∫ (
K(1)

(
t − F0(z)

h

))2

f (z)dz

+C3
h4

0

h4

(m − 1)

m

∫∫ ∣∣∣∣K(1)

(
t − F0(z1)

h

)∣∣∣∣

×
∣∣∣∣K(1)

(
t − F0(z2)

h

)∣∣∣∣ f (z1)f (z2)dz1dz2.

Besides, the condition (R1) allows us to conclude that
∫ (

K(1)
(

t−F0(z)
h

))2

f (z)dz=O(h) and
∫∫ ∣∣∣K(1)

(
t−F0(z1)

h

)∣∣∣
∣∣∣K(1)

(
t−F0(z2)

h

)∣∣∣ f (z1)f (z2)dz1dz2 =O(h2)

for all t ∈ [0, 1]. Therefore,
∫ 1

0 E
[
Â2
]

dt = O
(

h4
0

nh3

)
+ O

(
h4

0
h2

)
, which, taking

into account conditions (B1) and (B2), implies (i).
We next prove (ii). The proof is parallel to that of item (iv) in Lemma 1.

The only difference now is that instead of requiring E[sup |F0n(x) − F0(x)|p] =
O(n− p

2 ), where p is an integer larger than 1, it is required that

E
[
sup
∣∣∣F̃0n(x) − F0(x)

∣∣∣
p] = O(n− p

2 ). (21)

To conclude the proof, below we show that (21) is satisfied. Define Hn =
sup |F̃0n(x) − F0(x)|, then, as it is stated in Ahmad (2002), it follows that Hn ≤
En + Wn where En = sup |F0n(x) − F0(x)| and Wn = sup |EF̃0n(x) − F0(x)| =
O(h2

0). Using the binomial formula it is easy to obtain that, for any integer p ≥ 1,

Hp
n ≤ ∑p

j=0 Cp
j Wp−j

n Ej
n, where the constants Cp

j ’s (with j ∈ {0, 1, . . . , p − 1, p})
are the binomial coefficients. Therefore, since E[Ej

n] = O(n− j
2 ) and Wp−j

n =
O(h2(p−j)

0 ), condition (B2) leads to Wp−j
n E[Ej

n] = O(n− p
2 ).
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As a straightforward consequence (21) holds and the proof of (ii) is con-
cluded. �

Proof of theorem 2 Below, we will briefly detail the steps followed to study the
asymptotic behaviour of the mean squared error of �̂�(g) defined in (9). First
of all, let us observe that

�̂�(g) = 1
m

L(�)
g (0) + 1

m2

m∑
j=1

m∑
k=1,j �=k

L(�)
g
(
F0n

(
Xj
)− F0n (Xk)

)
,

which implies:

E
[
�̂�(g)

]
= 1

mg�+1
L(�) (0) +

(
1 − 1

m

)
E
[
L(�)

g (F0n (X1) − F0n (X2))
]

.

Starting from the equation

E
[
L(�)

g (F0n (X1) − F0n (X2))
]

= E
[
E
[
L(�)

g (F0n (X1) − F0n (X2)) /X01, ..., X0n

]]

= E
[∫ ∞

−∞

∫ ∞

−∞
L(�)

g (F0n (x1) − F0n (x2)) f (x1) f (x2) dx1dx2

]

=
∫ ∞

−∞

∫ ∞

−∞
E
[
L(�)

g (F0n (x1) − F0n (x2))
]

f (x1) f (x2) dx1dx2

and using a Taylor expansion, we have

E
[
L(�)

g (F0n (X1) − F0n (X2))
]

=
7∑

i=0

Ii, (22)

where

I0 =
∫ ∞

−∞

∫ ∞

−∞
1

g�+1
L(�)

(
F0 (x1) − F0 (x2)

g

)
f (x1) f (x2) dx1 dx2

Ii =
∫ ∞

−∞

∫ ∞

−∞
1

i!g�+i+1
L(�+i)

(
F0 (x1) − F0 (x2)

g

)

× E
[
(F0n (x1) − F0 (x1) − F0n (x2) + F0 (x2))

i] f (x1) f (x2) dx1 dx2

i = 1, . . . , 6

I7 =
∫ ∞

−∞

∫ ∞

−∞
1

7!g�+7+1
E
[
L(�+7) (ξn) (F0n (x1) − F0 (x1) − F0n (x2) + F0 (x2))

7
]

× f (x1) f (x2) dx1 dx2

and ξn is a value between F0(x1)−F0(x2)
g and F0n(x1)−F0n(x2)

g .
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Now, consider the first term, I0, in (22). It is easy to see that

I0 =
∫ 1

0

∫ 1

0
L(�)

g (z1 − z2)r(z1)r(z2)dz1 dz2

=
∫ 1

0

∫ 1

0
Lg(x)r(z1 − z2)r(�)(z2)dz1 dz2

=
∫ 1

0

∫ (1−z2)/g

0
L(x)r(z2 + gx)r(�)(z2)dx dz2,

hence using a Taylor expansion, we have I0 = �� + (1/2)dL��+2g2 + O
(
g4).

Assume x1 > x2 and define Z = ∑n
i=1 1{x2<X0i≤x1}. Then, the random variable

Z has a Bi(n, p) distribution with p = F0 (x1) − F0 (x2) and mean µ = np. It is
easy to show that, for i = 1, . . . , 6,

Ii = 2
∫ ∞

−∞

∫ ∞

x2

1
i!g�+i+1

L(�+i)
(

F0 (x1) − F0 (x2)

g

)
f (x1) f (x2)

1
ni µi (Z) dx1 dx2,

where

µr (Z) = E
[
(Z − E [Z])r]

=
r∑

j=0

(−1)j
(

r
j

)
mr−jµ

j,

mk = E
[
Zk
]

=
k∑

j=0

S (k, j) n!pj

(n − j)! ,

S (m, n) =
∑n

j=0
(n

j

)
(−1)j (n − j)m

n! .

Noting µ1(Z) = 0 and µ2(Z) = n(F0(x1) − F0(x2))(1 − F0(x1) + F0(x2)), we
have I1 = 0 and

I2 = 1
ng�+1+2

∫ ∞

−∞

∫ ∞

−∞
L(�+2)

(
F0(x1) − F0(x2)

g

)
f (x1)f (x2)

×(F0(x1) − F0(x2))(1 − F0(x1) + F0(x2))dx1 dx2

= 1
ng�+1+2

∫ 1

0

∫ 1

v
L(�+2)

(
u − v

g

)
(u − v)(1 − u − v)r(u)r(v)du dv

= 1
ng�+1

∫ 1

0

∫ (1−v)/g

0
L(�+2)(x)x(1 − gx)r(v + gx)r(v)dx dv. (23)
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Using a Taylor expansion of (1 − gx)r(v + gx) and noting
∫ 1

0 xL(�+2)(x)dx =
L(�)(0) (see condition (K3)), we have from (23)

I2 = 1
ng�+1

�0L(�) (0) + O
(
(ng�)

−1
)

.

Similar arguments can be used to handle Ii = O((n2g�+2)
−1

) for i = 3, 4 and

Ii = O((n3g�+3)
−1

) for i = 5, 6. Coming back to the last term in (22) and using
Dvoretzky–Kiefer–Wolfowitz inequality and condition (K3), it is easy to show

that I7 =O(((n
7
2g�+8)

−1
). Therefore,

E
[
�̂�(g)

]
= �� + 1

2
dL��+2g2 + 1

mg�+1
L(�) (0)

+ 1
ng�+1

L(�) (0) �0 + O
(

g4
)

+ o
(
(ng�+1)

−1)
.

In order to study the variance of �̂�(g), note that

Var
[
�̂�(g)

]
=

3∑
i=1

cn,iV�,i, (24)

where

cn,1 = 2 (m − 1)

m3 ,

cn,2 = 4 (m − 1) (m − 2)

m3 ,

cn,3 = (m − 1) (m − 2) (m − 3)

m3 ,

V�,1 = Var
[
L(�)

g (F0n (X1) − F0n (X2))
]

, (25)

V�,2 = Cov
[
L(�)

g (F0n (X1) − F0n (X2)) , L(�)
g (F0n (X2) − F0n (X3))

]
, (26)

V�,3 = Cov
[
L(�)

g (F0n (X1) − F0n (X2)) , L(�)
g (F0n (X3) − F0n (X4))

]
. (27)

Therefore, in order to get an asymptotic expression for the variance of �̂�(g),
we will start getting asymptotic expressions for the terms (25), (26) and (27) in
(24). To deal with the term (25), we will use

V�,1 = E
[(

L(�)
g (F0n (X1) − F0n (X2))

)2
]

− E2
[
L(�)

g (F0n (X1) − F0n (X2))
]

(28)
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and study separately each term in the right-hand side of (28). Note that the
expectation of L(�)

g (F0n (X1) − F0n (X2)) has been already studied when deal-
ing with the expectation of �̂�(g). Next we study the first term in the right-hand
side of (28). Using a Taylor expansion, the term:

E
[(

L(�)
g (F0n (X1) − F0n (X2))

)2
]

= E
[

E
[(

L(�)
g (F0n (X1) − F0n (X2))

)2
/X01, . . . , X0n

]]

= E
[∫ ∞

−∞

∫ ∞

−∞
L(�)2

g (F0n (x) − F0n (y)) f (x) f (y) dx dy
]

=
∫ ∞

−∞

∫ ∞

−∞
E
[
L(�)2

g (F0n (x) − F0n (y))
]

f (x) f (y) dx dy

can be decomposed in a sum of six terms that can be bounded easily. The first

term in that decomposition can be rewritten as 1
g2�+1 �0C

(
L(�)

)+o
(

1
g2�+1

)
after

applying some changes of variable and a Taylor expansion. The other terms can
be easily bounded using Dvoretzky–Kiefer–Wolfowitz inequality and standard
changes of variable. These bounds and condition (B3) prove that the order of

these terms is o
(

1
g2�+1

)
. Consequently,

V�,1 = 1
g2�+1

�0C
(

L(�)
)

+ o
(

1
g2�+1

)
− (�� + o (1))2

= 1
g2�+1

�0C
(

L(�)
)

− �2
� + o

(
1

g2�+1

)
+ o (1) .

The term (26) can be handled using

V�,2 = E
[
L(�)

g (F0n (X1) − F0n (X2)) L(�)
g (F0n (X2) − F0n (X3))

]

−E2
[
L(�)

g (F0n (X1) − F0n (X2))
]

. (29)

As for (28), it is only needed to study the first term in the righthand side of (29).
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Note that

E
[
L(�)

g (F0n (X1) − F0n (X2)) L(�)
g (F0n (X2) − F0n (X3))

]

= E
[
E
[
L(�)

g (F0n (X1) − F0n (X2)) L(�)
g (F0n (X2) − F0n (X3)) /X01,...,X0n

]]

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E
[
L(�)

g (F0n (y) − F0n (z)) L(�)
g (F0n (z) − F0n (t))

]

× f (y) f (z) f (t) dy dz dt.

Taylor expansions, changes of variable, Cauchy–Schwarz inequality and
Dvoretzky–Kiefer–Wolfowitz inequality, give:

E
[
L(�)

g (F0n (X1) − F0n (X2)) L(�)
g (F0n (X2) − F0n (X3))

]

=
∫ 1

0
r(�)2

(z) r (z) dz + O
(

1
n

)
+ O

(
1
n2

)
+ O

(
1
n3

)
+ O

(
1

n4g2((�+1)+4)

)
.

Consequently, using (B3) and (29), V�,2 = O(1).
To study the term V�,3 in (27), let us define

A� =
∫ ∞

−∞

∫ ∞

−∞

[
L(�)

g (F0n (y) − F0n (z)) − L(�)
g (F0 (y) − F0 (z))

]
f (y) f (z) dy dz.

It is easy to show that:

V�,3 = Var (A�) .

Now a Taylor expansion gives

Var (A�) =
N∑

k=1

Var (Tk) +
N∑

k=1

N∑
�=1
k �=�

Cov (Tk, T�) , (30)
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where

A� =
N∑

k=1

Tk,

Tk =
∫ ∞

−∞

∫ ∞

−∞
1

k!g�+1
L(�+k)

(
F0 (y) − F0 (z)

g

)
f (y) f (z)

×
(

F0n (y) − F0n (z) − (F0 (y) − F0 (z))

g

)k

dy dz, for k = 1, . . . , N − 1,

TN =
∫ ∞

−∞

∫ ∞

−∞
1

N!g�+1
L(�+N) (ξn) f (y) f (z)

×
(

F0n (y) − F0n (z) − (F0 (y) − F0 (z))

g

)N

dy dz,

for some positive integer N. We will only study each one of the first N sum-
mands in (30). The rest of them will be easily bounded using Cauchy–Schwarz
inequality and the bounds obtained for the first N terms.

Now the variance of Tk is studied. First of all, note that

Var(Tk) ≤ E
[
T2

k

]
=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
1

k!g�+k+1

)2

f (y1)f (z1)f (y2)f (z2)

× L(�+k)

(
F0(y1) − F0(z1)

g

)
L(�+k)

(
F0(y2) − F0(z2)

g

)

× hk(y1, z1, y2, z2)dy1 dz1 dy2 dz2,

where

hk(y1, z1, y2, z2) = E
{[

F0n (y1) − F0n (z1) − (F0 (y1) − F0 (z1))
]k

× [
F0n (y2) − F0n (z2) − (F0 (y2) − F0 (z2))

]k} .

Using changes of variable we can rewrite E[T2
k] as follows:

E
[
T2

k

]
=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(
1
k!
)2

r(s1)r(t1)r(s2)r(t2)L(�+k)
g (s1 − t1) L(�+k)

g (s2 − t2)

× hk(F−1
0 (s1), F−1

0 (t1), F−1
0 (s2), F−1

0 (t2))ds1 dt1 ds2 dt2

=
∫ 1

0

∫ s2

s2−1

∫ 1

0

∫ s1

s1−1

(
1
k!
)2

r(s1)r(s1−u1)r(s2)r(s2−u2)L(�+k)
g (u1) L(�+k)

g (u2)

× hk(F−1
0 (s1), F−1

0 (s1 − u1), F−1
0 (s2), F−1

0 (s2 − u2))du1 ds1 du2 ds2.

Note that closed expressions for hk can be obtained using the expressions
for the moments of order r = (r1, r2, r3, r4, r5) of Z, a random variable with
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multinomial distribution with parameters (n; p1, p2, p3, p4, p5). Based on these
expressions, the condition (R2) and the use of integration by parts we can
rewrite E

[
T2

k

]
as follows:

E
[
T2

k

]
=
∫ 1

0

∫ s2

s2−1

∫ 1

0

∫ s1

s1−1

(
1
k!
)2

Lg (u1) Lg (u2)

× ∂2(�+k)

∂u�+k
1 ∂u�+k

2

(h̃k(u1, s1, u2, s2))du1, ds1, du2 ds2,

where

h̃k(u1, s1, u2, s2) = r(s1)r(s1 − u1)r(s2)r(s2 − u2)

×hk(F−1
0 (s1), F−1

0 (s1 − u1), F−1
0 (s2), F−1

0 (s2 − u2)).

Besides, based on the multinomial moments we can show that supz∈�4 |hk(z)|
= O

(
1

nk

)
.This result and condition (R2) allow us to conclude that Var (Tk) ≤

E
[
T2

k

] = O
(

1
nk

)
, for 1 ≤ k < N, which implies that Var (Tk) = o

(
1
n

)
, for

2 ≤ k < N.
A Taylor expansion of order N = 6, gives Var (T6) = O

(
1

nNg2(N+�+1)

)
, which

using condition (B3), proves Var (T6) = o
(

1
n

)
. Consequently,

Var
[
�̂�(g)

]
= 2

m2g2�+1
�0C

(
L(�)

)
+ o

((
m2g2�+1

)−1
)

+ O
(

n−1
)

.

Remark 4 If Eq. (22) is replaced by a three-term Taylor expansion
∑2

i=1 Ii + I∗
3 ,

where

I∗
3 = 1

3!g�+4

∫∫
E
[
L(�+3) (ζn) (F0n (x1) − F0 (x1) − F0n (x2) + F0 (x2))

3
]

×f (x1)f (x2)dx1 dx2,

and ζn is a value between F0(x1)−F0(x2)
g and F0n(x1)−F0n(x2)

g , then I∗
3 = O

(
1

n
3
2 g�+4

)

and we would have to ask for the condition ng6 −→ ∞ to conclude that

I∗
3 = o

(
1

ng�+1

)
. However, this condition is very restrictive because it is not

satisfied by the optimal bandwidth g� with � = 0, 2, which is g� ∼ n− 1
�+3 . We

could consider
∑3

i=1 Ii + I∗
4 and then we would need to ask for the condition

ng4 −→ ∞. However, this condition is not satisfied by g� with � = 0. In fact, it
follows that ng4

� −→ 0 if � = 0 and ng4
� −→ ∞ if � = 2, 4, . . . Something sim-

ilar happens when we consider
∑4

i=1 Ii + I∗
5 or

∑5
i=1 Ii + I∗

6 , i.e., the condition
required in g, it is not satisfied by the optimal bandwidth when � = 0. Only
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when we stop in I∗
7 , the required condition, ng

14
5 −→ ∞, it is satisfied for all

even �.
If Eq. (30) is reconsidered by the mean-value theorem, and then we consider

that A� = T∗
1 with

T∗
1=
∫∫

1
g�+2 L(�+1) (ζn)

[
F0n (y) − F0n (z) − (F0 (y) − F0 (z))

]
f (x1) f (x2) dy dz,

it follows that Var (A�) = O
(

1
ng2(�+2)

)
. However, assuming that g −→ 0, it is

impossible to conclude from here that Var (A�) = o
(

1
n

)
. �
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