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Abstract Several methods have been proposed in the literature in order to
estimate the dimensionality in sliced inverse regression. Most of these methods
are based on sequential tests for the nullity of the last eigenvalues of suit-
able operators. We first establish non consistency for estimators resulting from
these methods. Then, we propose an estimator obtained by minimizing a suit-
able penalization of a statistic based on eigenvalues. A consistency property is
established for this estimator and a simulation study is undertaken to evaluate
its finite sample performance.

Keywords Consistency · Dimensionality · Estimation · Sliced inverse
regression

1 Introduction

Let X be a random variable defined on a probability space (�, A, P) and valued
into a p-dimensional euclidean space E with inner product 〈·, ·〉E and associated
norm ‖·‖E . When E = R

p we use the usual inner product 〈·, ·〉Rp in R
p defined

by 〈u, v〉E = u
′
v = ∑p

i=1 uivi, where u = (
u1, . . . , up

)′
and v = (

v1, . . . , vp
)′

.
Given an univariate response variable Y, we consider the model

Y = f (〈b1, X〉E , . . . , 〈bK, X〉E , ε) (1)
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where K is an integer such that K < p, the vectors b1, . . . , bK of E are unknown,
ε is a random variable that is independent of X, and f is an arbitrary unknown
function on R

K+1. This model was first introduced by Li (1991); it expresses
the fact that the information in X about Y depends only on the projection
of X onto the subspace of E spanned by {b1, . . . , bK}, called effective dimen-
sion-reduction (EDR) space. In SIR, the problem of estimating the EDR space
comes down, under a fairly general condition, to the spectral analysis of the
operator T = V−1/2�V−1/2 where V is the covariance operator of X and �

is an approximation of the covariance operator of the conditional expectation
E (X| Y), obtained by slicing the range of Y. The main characteristic of for-
mulation (1) is that it permits to reduce the number of variables to use for the
estimation of f , since K < p. So, estimating K, say the dimensionality, is a very
important problem. Several approaches have been proposed in the literature
for this problem. First, Li (1991) suggested estimating K by testing successively
the nullity of the p − � smallest eigenvalues of T, starting at � = 0; for doing
that he proposed a chi squared test under normal assumption for X. Since
the resulting method may be nonrobust as it is sensitive to departures from
normality, several extensions were studied. Schott (1994) built a method that
requires elliptically symmetric distribution and, more recently, Velilla (1998)
and Bura and Cook (2001) proposed methods for testing for dimension that
do not depend on specific assumptions on the distribution of the regressor.
All the preceding methods use sequences of tests. Only Ferré (1998) proposed
an approach that is not based on tests. His method consists of estimating the
dimensionality by minimizing a convenient measure of the closeness of sub-
spaces of the EDR space and their estimates. However, for this method it is
assumed that X has a symmetric elliptic distribution, and that the eigenvalues
of T are distinct.

We believe that sequential tests are really not appropriate for the estimation
of the dimensionality in the model (1) because the resulting estimate neces-
sarily depends on the nominal significance levels that are used for the related
tests and, as it is shown in page 7 of Sect. 2, the corresponding estimator
is not consistent. So, there is an interest in introducing a direct estimation
method for the dimensionality which does not require testing procedures to
be used. Such an approach has recently been adopted for canonical analysis
in Nkiet (2005). In this paper, we consider the case of sliced inverse regres-
sion, arguably the most popular sufficient dimension reduction method since
its introduction in 1991 by Li. We propose an estimation procedure which is
based on the minimization of a penalized statistic constructed by using the
eigenvalues of a consistent estimator of T. This method only requires that
the regressor X have finite second order moment and that, for all u ∈ E,
E ( 〈u, X〉E | 〈b1, X〉E , . . . , 〈bK, X〉E) = c0 + c1 〈b1, X〉E + · · · + cK 〈bK, X〉E for
some real constants c0, c1, . . . , cK. This latter condition just is the the condition
3.1 of Li (1991). The proposed method is introduced in Sect. 3 and consistency
of the related estimator is established. Finally, Sect. 4 is devoted to the presen-
tation of some simulations which was made in order to evaluate finite sample
performance of this estimator, and to compare it with estimators resulting from
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methods based on sequential tests. All the proofs of lemmas and theorems are
carried out in Sect. 5.

2 Background and motivation

Denoting by E the expectation with respect to P, we assume that E
(‖X‖2

E

)
<

+∞ and that the covariance operator of X equals the identity of E. It is well
known that this latter assumption does not restrict the generality for studying
the dimensionality in the model (1) (see Li, 1991; Bura and Cook, 2001). In
addition, we suppose that the condition 3.1 of Li (1991) holds. It ensures the
EDR space to be generated by eigenvectors of an operator � that is given below.
Let {Ih}1≤h≤H be a partition of the range of Y such that, for any h ∈ {1, . . . , H},
one has ph := P (Y ∈ Ih) > 0 . We consider

µ = E (X) , µh = E (X| Y ∈ Ih) , τh = µh − µ,

then the aforementioned operator � is an approximation to the covariance
operator of E (X| Y); it is given by

� =
H∑

h=1

ph τ⊗2

h ,

where ⊗ is the usual tensor product between vectors: u ⊗ v is the linear map
defined by (u ⊗ v) x = 〈u, x〉 v, where 〈·, ·〉 is the inner product of the Euclidean
space which u belongs to, and we write u⊗2

instead of u⊗u. This tensor product
is related to some well known matrix operations (see Dauxois et al., 1994).
When E = R

p, the operator u⊗v equals the matrix vu′; so, we can simply write:
� = ∑H

h=1 ph τhτ ′
h. In this paper, we use tensor products and operators instead

of matrix notation; this approach is interesting since it allows an easy extension
to the case where functional variates are considered, which has been of great
recent interest (see Dauxois et al., 2001; Ferré and Yao, 2003).

Estimation of the dimensionality is usually made by estimating the rank d of
the operator � (e.g., Li, 1991; Velilla, 1998; Bura and Cook, 2001), which is a
lower bound to the dimension of the EDR space. Since d ≤ K < p, this rank
belongs to {1, . . . , p − 1} and satisfies

λ1 ≥ λ2 ≥ · · · ≥ λd > λd+1 = · · · = λp = 0,

where λi denotes the ith largest eigenvalue of �. The problem of estimating d
has often been tackled in the literature through the use of sequences of tests for
the nullity of the last eigenvalues of a suitable operator (e.g., Li, 1991; Schott,
1994; Velilla, 1998; Bura and Cook, 2001). Our purpose in this section is to
show that such an approach yields an estimator of the dimensionality that is not
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consistent as it does not converge in probability to d, and also that the related
performance depends on the significance levels of the individual tests.

Using sequential tests for the estimation of the dimensionality comes down
to testing hypotheses of the form H� : ξ� = 0, where � ∈ {1, . . . , p − 1} and ξ�

is a given nonnegative index. Beginning with � = 1, one has to do a test for H�

based on a statistic ξ̂
(n)
� . If H� is rejected, then one increments � by 1 and repeats

the procedure until H� is not rejected, or until � = p − 1. Then, the estimate
of d equals the first integer � for which H� is not rejected, or equals p if all the
hypotheses are rejected. Let us assume that ξ̂

(n)
� converges in probability, as

n → +∞, to ξ�, and that there exists a real a > 0 such that, under H�, naξ̂
(n)
�

converges in distribution, as n → +∞, to a distribution with a continuous cumu-
lative distribution function F�. This situation is common in previous methods;
for example, the usual test for dimension considered by Li (1991) and Bura and
Cook (2001) is based on the test statistic ξ

(n)
� = ∑p

i=�+1 λ
(n)
i which converges

almost surely to ξ� = ∑p
i=�+1 λi, and for which we have, under H�, the conver-

gence of nξ
(n)
� to a (weighted) chi-square distribution. Letting α� ∈ ]

0, 1
[

be the
nominal significance level of the test for H� and putting s� = F−1

� (1 − α�), the
hypothesis H� is rejected if naξ̂

(n)
� > s�. This test is consistent since ξ̂

(n)
� con-

verges in probability to ξ�. Indeed, under the alternative hypothesis H� defined
as ξ� > 0, we can consider a real δ ∈ ]0, ξ�[ and an integer n0 such that n ≥ n0
implies n−as� < ξ� − δ. Therefore, for n ≥ n0,

PH�

(∣
∣
∣̂ξ

(n)
� − ξ�

∣
∣
∣ ≤ δ

)
≤ PH�

(
ξ̂

(n)
� ≥ ξ� − δ

)
≤ PH�

(
naξ̂

(n)
� > s�

)

and, consequently, limn→+∞ PH�
(naξ̂

(n)
� > s�) = 1. Putting I = {1, . . . , p − 1} ,

it is easily seen that the estimator of d resulting from the preceding sequence
of tests is given by:

d̂(n)
ST = min

{
� ∈ I / naξ̂

(n)
� ≤ s�

}
, (2)

with the convention min (∅) = p. We will now prove that this estimator does
not converge in probability to d. For any � ∈ {1, . . . , d − 1}, since H� is true, we
have

lim
n→+∞ P

(
naξ̂

(n)
� > s�

) = 1.

Hence,

lim
n→+∞ P

⎛

⎝
d−1⋂

�=1

{
naξ̂

(n)
� > s�

}
⎞

⎠ = 1,
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and since

d−1⋂

�=1

{
naξ̂

(n)
� > s�

} ⊂ {
naξ̂

(n)

d ≤ sd
} ∪

d−1⋂

�=1

{
naξ̂

(n)
� > s�

}

we also have

lim
n→+∞ P

⎛

⎝
{
naξ̂

(n)

d ≤ sd
} ∪

d−1⋂

�=1

{
naξ̂

(n)
� > s�

}
⎞

⎠ = 1.

Moreover, the equality

{
d̂(n)

ST = d
} = {

naξ̂
(n)

d ≤ sd
} ∩

d−1⋂

�=1

{
naξ̂

(n)
� > s�

}

implies

P
(

d̂(n)
ST = d

)
= P

(
naξ̂

(n)

d ≤ sd

)
+ P

⎛

⎝
d−1⋂

�=1

{
naξ̂

(n)
� > s�

}
⎞

⎠

−P

⎛

⎝
{
naξ̂

(n)

d ≤ sd
} ∪

d−1⋂

�=1

{
naξ̂

(n)
� > s�

}
⎞

⎠ ;

therefore,

lim
n→+∞ P

(
d̂(n)

ST = d
) = lim

n→+∞ P
(

naξ̂
(n)

d ≤ sd

)
= Fd (sd) = 1 − αd < 1. (3)

Since d̂(n)
ST and d are valued into a subset of N, the formula in (3) is equivalent to

the fact that d̂(n)
ST does not converge in probability to d as n → +∞. So, d̂(n)

ST is
a non consistent estimator of d which is an undesirable attribute. However, in
practice, the effect of the aforementioned non consistency will not be relevant
for values that are usually taken for nominal significance level. Indeed, usually
in applications, αd = 0.1, 0.05, 0.01 and, therefore, the limit in (3) is greater than
or equal to 0.9. But a consistent estimator for d would be, of course, preferable
to d̂(n)

ST , and there is an interest in finding such an estimator.

3 A consistent estimator

Let {(Xi, Yi)}1≤i≤n be independent, identically distributed random variables
each with the same distribution as (X, Y). We consider the sample mean Xn =
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n−1 ∑n
i=1 Xi, and, for h ∈ {1, . . . , H}, the random variables

n̂h =
n∑

i=1

1I{Yi∈Ih}, X
(h)

n = 1
n̂h

n∑

i=1

1I{Yi∈Ih}Xi, τ̂
(n)

h = X
(h)

n − Xn,

where 1IA denotes the indicator function of the set A. Then, we consider the
moment estimator of �:

�̂n =
H∑

h=1

n̂h

n
τ̂

(n)⊗2

h .

It is a strongly consistent estimator since, from an obvious application of the
strong law of large numbers, we have its almost sure uniform convergence to
�, as n → +∞. Denoting by λ̂

(n)
i the i-th largest eigenvalue of �̂n, we take as

estimator of ξ� (� = 0, . . . , p − 1) the random variable

ξ̂
(n)
� =

p∑

i=�+1

λ̂(n)
i .

This statistic is a strongly consistent estimator of ξ�. Indeed, the almost sure
uniform convergence of �̂n to � (as n → +∞) ensures that each λ̂

(n)
i converges

almost surely, as n → +∞, to λi (see Gohberg and Krejn 1971 or Lemma 2.1 in
Tyler 1981) and, therefore, that ξ̂

(n)
� converges almost surely to ξ� as n → +∞.

Note that this statistic is classically used in the literature for estimating the
dimensionality via sequential tests for the nullity of the last eigenvalues of �

under normality assumption ( see Li, 1991) or for more general distributions
(Velilla, 1998; Bura and Cook, 2001).

Our goal is to make an appropriate penalization of ξ̂
(n)
� in order to obtain a

consistent estimator of the dimensionality. Let (kn)n∈N∗ be a sequence of maps
from J := {0, . . . , p − 1} to R+ such that there exist a real β ∈ ]

0, 1/2
[

and a
striclty increasing function k : J → R+ satisfying:

lim
n→+∞

(
nβ kn

) = k. (4)

Then, we consider the real random variable

φ̂
(n)
� = ξ̂

(n)
� + kn (�) (� ∈ J); (5)

this statistic is a strongly consistent estimator for ξ�. Indeed, (4) implies the
equality: limn→+∞ kn (�) = 0, and since ξ̂

(n)
� converges almost surely to ξ�, as

n → +∞, so does φ̂
(n)
� .
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We define our estimator of d as the random variable

d̂(n) := min

{

� ∈ J / φ̂
(n)
� = min

j∈J

(
φ̂

(n)
j

)}

. (6)

From (6), it is easily seen that the value d̂(n) = p can not be taken; that does
not cause any problem for the estimation of d since, from the hypotheses, one
has d ≤ K < p. Now, we will state a consistency property for this estimator.
This is obtained from the following lemma that gives the limiting distribution
of the random operator Ûn = √

n
(
�̂n − �

)
. Note that, since this lemma just

requires that E
(‖X‖2

E

)
< +∞, it is an extension of Theorem 1 in Sarraco (1997)

that gives the limiting distribution of Ûn under the assumption that X has an
elliptic distribution. For two Euclidean spaces F and G, we denote by L (F, G)

the space of operators (linear maps) from F to G; when F = G, it is simply
denoted by L (F). Any operator T of L (

R
H , E × R

H
)

can be writen as

T =
(

T1
T2

)

where T1 ∈ L (
R

H , E
)
, T2 ∈ L (

R
H

)
; then, we denote by π1 and π2 the projectors

defined by

π1 : T ∈ L (
R

H , E × R
H

) �→ T1 ∈ L (
R

H , E
)

,

π2 : T ∈ L (
R

H , E × R
H

) �→ T2 ∈ L (
R

H
)

.

Besides, we consider the random vector defined as W := ∑H
h=11I{Y∈Ih} eh , where

{e1, . . . , eH} is the canonical basis of R
H , and the E×R

H- valued random vector:

Z =
(

X
W

)

.

Then, we have:

Lemma 1 Put

U =
H∑

h=1

{
〈π2 (N ) eh, eh〉

RH

(
µ⊗2 −µ⊗2

h

)
+(π1 (N ) eh) ⊗ τh+τh ⊗ (π1 (N ) eh)

}
,

where N is a random variable valued into L (
R

H , E × R
H

)
and having a cen-

tered normal distribution with covariance operator equal to that of W ⊗ Z. Then
Ûn → U, in distribution, as n → +∞.

This lemma permits to obtain the following theorem which gives a consis-
tency property for d̂(n) as an estimator of d.
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Theorem 1 For the procedure in (6), d̂(n) → d, in probability, as n → +∞.

The penalty term kn (�) is introduced in (5) in order to ensure the previous
consistency property. As it can be seen in the simultion study in Sect. 4, the
method for estimating d that is proposed above is sensitive to the choice of this
term. A study for making an optimal choice for kn may perhaps be done, but
we do not pursue that subject in this paper.

4 Simulation results

This section studies empirical aspects of the previous method for estimating the
dimensionality. As this method gives an estimate which does not use sequen-
tial tests, we call it a direct estimation method (DEM). In order to evaluate
its performance on finite samples, we compute percentages of correct estima-
tion (PCE) of the dimensionality over 1,000 replications. We first compute PCE

from DEM, with penalty kn (�) = n−0.45�, and also from two classical methods
based on sequential tests that give estimator defined as in (2): the first method
(CST) uses the Chi-squared tests of Li (1991) and the second method (ACS) uses
the adjusted version of weighted chi-squared tests, as proposed in Bura and
Cook (2003). These two latter methods are used with nominal significance level
α = 0.05, 0.10. For sample sizes n = 50, 100, 500, 700, 900, and number of slices
H = 7, 10 and 15, we generate 1000 independent replicates of a structure, with
K = 2, of the form

Y = X1 (X1 + X5 + 1) + 0.5 ε. (7)

The dimension p of the regressor X is taken to be p = 5; therefore, X =
(X1, X2, X3, X4, X5)

′
. The error ε in (7) is N (0, 1) and is independent from the

predictors. For generating X, two different models are used:
* Model A: X is N5 (0, I5), where I5 denotes the identity matrix of R

5.
* Model B: X is defined by

X1 = V3 + V4 + W1

6
, X2 = −V3 + V4 + W1

6
, (8)

X3 = −V4 + W1

3
, X4 = V1 + V2, X5 = −V1 + V2, (9)

where V1, V2, V3, V4 and W1 are independent random variables such that V1,
V2, V3, V4 have the exponential distribution with parameter 1, and W1 has the
uniform distibution on [0, 3]. The relations (8) and (9) ensure that the regressors
in Model B satisfy the condition 3.1 of Li (1991) (see Velilla, 1998, p. 1092). The
percentages of correct estimation of the dimensionality obtained from DEM,
CST and ACS are reported in Table 1 for Model A, and in Table 2 for Model B.
In the normal regressors case, DEM is better than CST and ACS for large sample
size (that is, n = 500, 700, 900). For moderate sample size (n = 50, 100), the con-
clusion is the same, excepted for H = 15 where DEM is outperformed by ACS.
In Table 2, the situation is slightly different: DEM gives the best performance
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Fig. 1 Model A, H = 10
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Fig. 2 Model B, H = 7

only for H = 7. For H = 10, it is better than CST for large sample size, but it
is outperformed by the two classical methods for moderate sample size. When
H = 15 it has the worst performance. These results also show that all methods
are sensitive to number of slices.

In order to assess of the importance of the choice of β, we compute PCE, over
1000 replications, from DEM with kn (�) = n−β�, and for values of β from 0.05
up to 0.5. The results are given in Fig. 1 for Model A with H = 10, and in Fig. 2
for Model B with H = 7. It is seen that, when the regressors are normal and
the sample size is large, DEM has bad performance for small values of β, and
performs better for large values: PCE increases as β becomes more large, until
reaching 100% for β > 0.4. The situation is similar for Model B, excepted for
large values of β for which a slight decrease of PCE is observed.
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Table 1 Percentages of correct estimation for Model A

n Method H = 7 H = 10 H = 15

50 DEM 63.90 47.50 4.10
CST (α = 0.05) 4.90 3.70 2.30
ACS (α = 0.05) 7.90 11.70 21.00
CST (α = 0.10) 8.40 7.80 4.70
ACS (α = 0.10) 16.20 20.20 28.40

100 DEM 62.20 69.00 24.40
CST (α = 0.05) 21.70 15.80 11.30
ACS (α = 0.05) 25.00 23.10 25.60
CST (α = 0.10) 31.70 24.70 19.50
ACS (α = 0.10) 34.50 34.20 35.80

500 DEM 95.70 98.60 97.80
CST (α = 0.05) 95.40 96.00 94.90
ACS (α = 0.05) 95.50 95.10 94.20
CST (α = 0.10) 91.70 92.00 92.90
ACS (α = 0.10) 91.20 91.30 91.20

700 DEM 98.60 99.90 99.30
CST (α = 0.05) 96.60 96.20 95.30
ACS (α = 0.05) 96.60 95.80 94.80
CST (α = 0.10) 92.50 92.00 91.60
ACS (α = 0.10) 92.30 91.80 91.70

900 DEM 99.30 100 100
CST (α = 0.05) 94.90 95.60 95.90
ACS (α = 0.05) 95.00 95.40 95.00
CST (α = 0.10) 88.30 90.90 91.60
ACS (α = 0.10) 88.50 90.50 90.90

5 Proofs

5.1 Proof of Lemma 1

For i ∈ {1, . . . , n}, we consider the random variables Wi := ∑H
h=11I{Yi∈Ih} eh and

Zi =
(

Xi
Wi

)

.

Clearly,

W ⊗ Z =
(∑H

h=1 1I{Y∈Ih}eh ⊗ X
∑H

h=1 1I{Y∈Ih}e⊗2

h

)

, Wi ⊗ Zi =
(∑H

h=1 1I{Y∈Ih}eh ⊗ Xi
∑H

h=1 1I{Yi∈Ih}e⊗2

h

)

;

and since E
(
1I{Y∈Ih}X

) = phµh and n−1 ∑n
i=11I{Yi∈Ih}Xi = n̂h

n X
(h)

n , we deduce

that, putting Ĥn := √
n

[
n−1 ∑n

i=1 Wi ⊗ Zi − E (W ⊗ Z )
]

, Ĥ(n)

12 := π1
(
Ĥn

)
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Table 2 Percentages of correct estimation for Model B

n Method H = 7 H = 10 H = 15

50 DEM 53.80 15.70 0.70
CST (α = 0.05) 48.90 55.6 56.60
ACS (α = 0.05) 12.60 24.30 29.90
CST (α = 0.10) 52.70 55.70 56.70
ACS (α = 0.10) 20.80 30.10 37.30

100 DEM 65.8 29.80 1.90
CST (α = 0.05) 64.80 64.80 60.20
ACS (α = 0.05) 28.10 36.10 41.80
CST (α = 0.10) 62.70 62.50 56.70
ACS (α = 0.10) 37.90 45.80 51.30

500 DEM 95.10 82.30 37.10
CST (α = 0.05) 73.90 64.90 50.90
ACS (α = 0.05) 95.40 96.40 96.00
CST (α = 0.10) 63.10 53.80 41.90
ACS (α = 0.10) 94.40 93.20 92.60

700 DEM 97.80 89.50 55.30
CST (α = 0.05) 70.30 56.40 49.10
ACS (α = 0.05) 97.00 96.00 95.70
CST (α = 0.10) 59.90 48.60 40.50
ACS (α = 0.10) 94.50 91.80 91.90

900 DEM 98.90 93.20 66.00
CST (α = 0.05) 66.10 56.00 44.10
ACS (α = 0.05) 95.10 95.70 94.60
CST (α = 0.10) 58.40 45.00 36.80
ACS (α = 0.10) 91.30 91.80 88.50

and Ĥ(n)
22 := π2

(
Ĥn

)
, we have:

Ĥ(n)

12 =
H∑

h=1

eh ⊗
[√

n
(

n̂h

n
X

(h)

n − phµh

)]

(10)

Ĥ(n)
22 =

H∑

h=1

[√
n

(
n̂h

n
− ph

) ]

e⊗2

h (11)

Moreover, we have for h ∈ {1, . . . , H} :

√
n

(
�̂n − �

) =
H∑

h=1

{√
n

(
n̂h

n
− ph

)

τ̂
(n)⊗2

h + ph

[√
n

(
τ̂

(n)

h − τh

)]
⊗ τ̂

(n)

h

+ph τh ⊗
[√

n
(
τ̂

(n)

h − τh

)]}
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and

√
n

(
τ̂

(n)

h − τh

)
= n

√
n

n̂h

[(
n̂h

n
X

(h)

n − ph µh

)

−
(

n̂h

n
− ph

)

µh

]

− √
n

(
Xn − µ

)
.

Then using the equalities µ = ∑H
h=1 ph µh and Xn = ∑H

h=1
n̂h
n X

(h)

n , together

with (10) and (11), we finally obtain
√

n(̂τ
(n)

h − τh) = â(h)
n (Ĥn), where â(h)

n is
the random operator

A ∈ L
(
R

H , E × R
H

)
�→ n

n̂h

(
π1 (A) eh − 〈π2 (A) eh, eh〉

RH µh
)

−
H∑

�=1

π1 (A) e� ∈ E.

Consequently, we have
√

n
(
�̂n − �

) = ̂n
(
Ĥn

)
where ̂n is the random oper-

ator:

A �→
H∑

h=1

{

〈π2 (A) eh, eh〉
RH τ̂

(n)⊗2

h + ph â(h)
n (A) ⊗ τ̂

(n)

h + ph τh ⊗ â(h)
n (A)

}

.

Since, from the law of large numbers, n̂h
n converges almost surely to ph, as

n → +∞, it is clear that
(

â(h)
n

)

n∈N∗ converges almost surely uniformly to

the operator a(h) defined by a(h) (A) = p−1
h

(
π1 (A) eh − 〈π2 (A) eh, eh〉

RH µh
) −

∑H
�=1 π1 (A) e� . This property together with the almost sure convergence τ̂

(n)

h
→ τh, as n → +∞, implies that

(
̂n

)
n∈N∗ converges almost surely uniformly

to the operator  defined by

 (A) =
H∑

h=1

{
〈π2 (A) eh, eh〉

RH τ⊗2

h + ph a(h) (A) ⊗ τh + ph τh ⊗ a(h) (A)
}

A more explicit expression can be given for . Indeed, since

H∑

h=1

phτh =
H∑

h=1

ph µh − µ = 0,

we deduce

H∑

h=1

H∑

�=1

ph (π1 (A) e�) ⊗ τh =
(

H∑

�=1

π1 (A) e�

)

⊗
(

H∑

h=1

phτh

)

= 0,
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thus

H∑

h=1

ph a(h) (A) ⊗ τh =
H∑

h=1

{
(π1 (A) eh) ⊗ τh − 〈π1 (A) eh, eh〉

RH µh ⊗ τh
}

.

Therefore, using the equality τ⊗2

h − µh ⊗ τh − τh ⊗ µh = µ⊗2 − µ⊗2

h , we finally
obtain:

 (A)=
H∑

h=1

{
〈π2 (A) eh, eh〉

RH

(
µ⊗2 − µ⊗2

h

)
+(π1 (A) eh) ⊗ τh+τh ⊗ (π1 (A) eh)

}
.

The central limit theorem gives the convergence in distribution, as n → +∞, of
Ĥn to a random variable N having a centered normal distribution in
L (

R
H , E × R

H
)

with covariance operator equal to that of W ⊗ Z. Further,
denoting by ‖·‖ the usual norm for operators defined by ‖A‖ = √

tr (AA∗),
and by ‖·‖∞ the uniform convergence norm of operators given by ‖A‖∞ =
supx �=0 ‖Ax‖ / ‖x‖, we have the inequality

∥
∥̂n

(
Ĥn

) − 
(
Ĥn

)∥
∥ ≤ ∥

∥̂n − 
∥
∥∞

∥
∥Ĥn

∥
∥

which implies that the sequence εn := ̂n
(
Ĥn

) − 
(
Ĥn

)
converges in proba-

bility, as n → +∞, to 0; therefore, ̂n
(
Ĥn

)
and 

(
Ĥn

)
have the same limiting

distribution (because ̂n
(
Ĥn

) = 
(
Ĥn

) + εn). Since  is continuous (because
it is a linear map from a finite-dimensional space to another) and since Ĥn
converges in distribution to N , we deduce that this limiting distribution is the
distribution of U =  (N ).

5.2 Proof of Theorem 1

Since

{
d̂(n) = d

}
=

⎛

⎝
⋂

0≤�<d

{
φ̂

(n)

d < φ̂
(n)
�

}
⎞

⎠ ∩
⎛

⎝
⋂

d<�≤p−1

{
φ̂

(n)

d ≤ φ̂
(n)
�

}
⎞

⎠

with the convention
⋂

�∈∅ A� = � for any family (A�) of subsets of �, it suffices
to prove

lim
n→+∞ P

⎛

⎝
⋂

0≤�<d

{
φ̂

(n)

d < φ̂
(n)
�

}
⎞

⎠ = 1 (12)

and

lim
n→+∞ P

⎛

⎝
⋂

d<�≤p−1

{
φ̂

(n)

d ≤ φ̂
(n)
�

}
⎞

⎠ = 1. (13)
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First, φ̂
(n)

d converges almost surely to ξd = 0, as n → +∞. Further, for any

integer � such that � < d, we have the almost sure convergence of φ̂
(n)
� to ξ� > 0.

Using these convergence results and the inclusion

{
φ̂

(n)
� > ξ� − δ

} ∩ {
φ̂

(n)

d < δ
} ⊂ {

φ̂
(n)

d < φ̂
(n)
�

}

which holds for any � < d and any δ ∈]0, ξ�/2[, we obtain the equality

lim
n→+∞ P

({
φ̂

(n)

d < φ̂
(n)
�

})
= 1

that gives (12) since it holds for all � ∈ {1, . . . , d − 1}. If d ≥ p − 1, then (13)

is obviously obtained from the equality
⋂

�∈∅
{
φ̂

(n)

d ≤ φ̂
(n)
�

}
= �. Now suppose

that d < p − 1 and consider an integer � ∈ {d + 1, . . . , p − 1}, then:

nβ
(
φ̂

(n)
� − φ̂

(n)

d

)
= −nβ−1/2

�∑

i=d+1

(√
n̂λ(n)

i

)
+ nβ (hn (�) − hn (d))

= −nβ−1/2a
′
�

[√
n

(
�̂(n) − �

)]
+ nβ (hn (�) − hn (d)) ,

where �̂(n) =
(
λ̂

(n)

1 , · · · , λ̂(n)
p

)′
, � = (

λ1, · · · , λp
)′

and a� =
(

0
′
d, 1I

′
�−d, 0

′
p−�

)′
.

Using Lemma 1 and known results (see Eaton and Tyler, 1991), it is easily
seen that

√
n

(
�̂(n) − �

)
converges in distribution to a random vector W. Thus

a
′
�

[√
n

(
�̂(n) − �

)]
converges in distribution to a

′
�W as n → +∞ and since

β < 1/2, we deduce that nβ−1/2a
′
�

[√
n

(
�̂(n) − �

)]
converges in probability to

0 as n → +∞. Consequently, nβ
(
φ̂

(n)
� − φ̂

(n)

d

)
converges in probability to

k (�)−k (d) as n → +∞. Since k is strictly increasing, we have k (�)−k (d) > 0.
Let δ be a real satisfying 0 < δ < k (�) − k (d) , the latter convergence in
probability gives:

lim
n→+∞ P

(
nβ

(
φ̂

(n)
� − φ̂

(n)

d

)
> k (�) − k (d) − δ

)
= 1.

Finally, since
{

nβ
(
φ̂

(n)
� − φ̂

(n)

d

)
> k (�) − k (d) − δ

}
⊂

{
φ̂

(n)

d ≤ φ̂
(n)
�

}
, it follows

that
lim

n→+∞ P
(
φ̂

(n)

d ≤ φ̂
(n)
�

)
= 1, (14)

and (13) comes from the fact that (14) holds for any � ∈ {d + 1, . . . , p − 1} .
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