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Abstract In this paper we define an invariant Markov basis for a connected
Markov chain over the set of contingency tables with fixed marginals and derive
some characterizations of minimality of the invariant basis. We also give a neces-
sary and sufficient condition for uniqueness of minimal invariant Markov bases.
By considering the invariance, Markov bases can be presented very concisely.
As an example, we present minimal invariant Markov bases for all 2 × 2 × 2 × 2
hierarchical models. The invariance here refers to permutation of indices of each
axis of the contingency tables. If the categories of each axis do not have any
order relations among them, it is natural to consider the action of the symmetric
group on each axis of the contingency table. A general algebraic algorithm for
obtaining a Markov basis was given by Diaconis and Sturmfels (The Annals of
Statistics, 26, 363–397, 1998). Their algorithm is based on computing Gröbner
basis of a well-specified polynomial ideal. However, the reduced Gröbner basis
depends on the particular term order and is not symmetric. Therefore, it is of
interest to consider the properties of invariant Markov basis.
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1 Introduction

In performing exact conditional tests in discrete exponential families given
sufficient statistics, the p values are usually calculated by large sample approx-
imations. However, when the sample size is small compared to the size of the
sample space, the large sample approximation may not be sufficiently accurate.
When the sample size and the sample space are relatively small, enumeration
of the sample space may be feasible with some ingenious enumeration schemes.
For the case of two-way contingency tables with fixed row and column sums,
Mehta and Patel (1983) proposed a network algorithm, which incorporates
appropriate trimming in the enumeration. Aoki (2002), Suzuki et al. (2005) and
Aoki (2003) extended this trimming for Fisher’s exact test in two-way contin-
gency tables and for the conditional tests of the Hardy–Weinberg proportions
(triangular two-way contingency tables). However, the problem of computing p
values by enumeration for k-way contingency tables, k > 2, seems to be largely
open among researchers.

As another approach, a Markov chain Monte Carlo approach is extensively
used in various settings of contingency tables, for example, Besag and Clifford
(1989) for performing significance tests for the Ising model; Smith et al. (1996)
for tests of independence, quasi-independence and quasi-symmetry for square
contingency tables; Aoki and Takemura (2005) for tests of quasi-independence
for two-way contingency tables containing some structural zeros; Guo and
Thompson (1992) for tests of the Hardy-Weinberg proportions; Diaconis and
Saloff-Coste (1995) for two-way contingency tables; Hernek (1998), Dyer and
Greenhill (2000) for 2 × J contingency tables; Forster et al. (1996) for 2k con-
tingency tables. Most of these works deal with various two-way settings.

Diaconis and Sturmfels (1998) proposed a general algorithm for generating
random samples from a conditional distribution given sufficient statistics for
general discrete exponential family of distributions. They suggest computing a
Markov basis by finding a Gröbner basis of a well-specified polynomial ideal.
Their approach is extremely appealing because it can be used for problems
of any dimension. In addition, rapid progress of Gröbner bases computation
has made it possible to carry out Markov chain Monte Carlo methods in var-
ious statistical problems efficiently. See Sturmfels (1995) and De Loera et al.
(2004) for example. Nowadays, we can use some nice systems of algebraic com-
putations to obtain Gröbner bases and Markov bases of toric ideals such as
(4ti2 team). Quite recently, the Markov basis of the very difficult and com-
plicated problem of 4 × 4 × 4 contingency tables with fixed two-dimensional
marginals has been solved using Gröbner basis technology. For this problem,
Lauritzen (2005) reported that there is a 15th basis element that was unknown
so far, and Hemmecke and Malkin (2005) actually computed the Markov basis
completely. According to Hemmecke and Malkin (2005), this problem has been
completely solved at last, showing that the list in Aoki and Takemura (2003b)
lacks one basis element.

On the other hand, in this paper, we focus on the theoretical properties of
minimal Markov bases from the viewpoint of invariance. This work is motivated
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by the following facts; (1) a reduced Gröbner basis does not coincide with the
minimal Markov basis in general, and (2) a reduced Gröbner basis lacks sym-
metry in general even when the original problem has obvious symmetry in the
indeterminates. If we only consider Gröbner bases, then under a given mono-
mial ordering the reduced Gröbner basis is unique minimal and Diaconis and
Sturmfels (1998) suggest computing a reduced Gröbner basis under some given
monomial ordering to obtain a Markov basis. However, any system of genera-
tors of the ideal constitutes a Markov basis and a minimal Markov basis is in
general a proper subset of a Gröbner basis. Although the theoretical character-
izations of Markov bases such as minimality and symmetry are not necessarily
needed for performing Markov chain Monte Carlo sampling in actual problems,
the invariance is one of the essential and fundamental features of many statis-
tical models and we believe that this work clarifies some fundamental aspects
of minimal Markov bases.

By utilizing invariance as much as possible, some interesting by-product is
obtained in this paper, namely, concise description of Markov bases by orbit lists.
To illustrate this, we list the numbers of the elements of the unique minimal
Markov basis, along with the numbers of the reduced Gröbner basis elements
calculated by 4ti2 and the number of the orbits with respect to an action of a
direct product of symmetric groups for the problem of 3 × 3 × K (K ≤ 7) con-
tingency tables with fixed two-dimensional marginals in Table 1. As we show in
Sect. 3, a set of moves is partitioned into orbits which are equivalence classes by
the action of the group. As is shown in Aoki and Takemura (2003a), there are at
most six orbits of indispensable moves for these problems. We should mention
that here we are only considering permuting the levels of each axis and not
considering permutation of the axes (see Remark 1 below). In these examples,
a minimal Markov basis is unique. Furthermore it is minimal invariant in the
sense of present paper. Therefore, the representative basis elements for each
orbit contain all the information of the minimal Markov basis. To perform the
Markov chain Monte Carlo simulations using these orbit lists, ordinary users
can first choose an orbit, and then apply the symmetric group action to the
representative basis element for each step of the chain. See Sect. 2.3 for details.

It should be noted that the minimality of Markov bases is not needed for
performing MCMC simulations and the minimality may be not desirable from
the viewpoint of convergence rate. However, given a minimal Markov ba-
sis, it is easy to extend it to a larger basis by combining its moves. In fact,

Table 1 Number of the unique minimal Markov bases elements and reduced Gröbner bases ele-
ments for 3 × 3 × K, K ≤ 7, tables with fixed two-dimensional marginals

K 3 4 5 6 7

No. of the elements in the unique minimal Markov basis 81 450 2,670 10,665 31,815
No. of the elements in the reduced Gröbner basis 110 622 3,240 12,085 34,790
No. of orbits in the unique minimal Markov basis 4 5 6 6 6



232 S. Aoki, A. Takemura

Diaconis and Sturmfels (1998) suggested an MCMC algorithm, in which such
an extended set of moves was implicitly considered. Since it seems obviously
efficient to consider the extended set of moves in view of the convergence rate,
our algorithm in Sect. 2.3 also takes into account this extension.

Another interesting consideration is how to choose a minimal Markov basis if
it is not unique. For such cases, different minimal Markov bases contain different
numbers of orbits in general, and each basis element in these orbits is not neces-
sarily needed in general. As an example, we consider the 2 × 2 × 2 contingency
tables with fixed one-dimensional marginals, i.e., the complete independence
model. As is shown in Sect. 3 of Takemura and Aoki (2004), the minimal Mar-
kov basis for this problem is not unique. Each minimal Markov basis contains
six indispensable elements and three dispensable elements. For example, the
reduced Gröbner basis with respect to the graded reverse lexicographic order
contains three dispensable moves (binomials) such as

(121)(212) − (111)(222), (122)(211) − (111)(222), (112)(221) − (111)(222),

where (121)(212) − (111)(222) denotes the move with +1 in cells (121), (212)

and with −1 in cells (111), (222). A formal definition of this notation is given
in Sect. 2.1. It is seen that these three dispensable basis elements are in differ-
ent orbits, respectively. On the other hand, from the argument in Sect. 3 of
this paper, another minimal basis is constructed from three dispensable basis
elements such as

(121)(212) − (111)(222), (122)(211) − (111)(222), (112)(221) − (121)(212).

In this basis, the second and the third binomials, (122)(211) − (111)(222) and
(112)(221) − (121)(212), are in the same orbit. In fact, we see that (112)(221) −
(121)(212) can be produced from (122)(211) − (111)(222) by interchanging the
cell indices 1, 2 in the second axis. Accordingly, if we consider an action of the
symmetric group, only two basis elements such as

(121)(212) − (111)(222), (122)(211) − (111)(222)

have to be included in our list because the third basis element can be produced
by permuting the second axis. This example indeed corresponds to a minimal
invariant Markov basis defined in this paper. Such an invariance and minimality
is not necessarily needed for irreducibility and the convergence behavior of the
chain. Our argument in this paper is focused on the conciseness of the list. In
Takemura and Aoki (2004), we derived some characterizations of a minimal
Markov basis and gave a necessary and sufficient condition for uniqueness of
a minimal Markov basis. We combine these results with the theory of trans-
formation groups to study the minimality of invariant Markov bases and give
some characterizations of an invariant Markov basis and its minimality. We also
give a necessary and sufficient condition for uniqueness of a minimal invariant
Markov basis.
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The construction of this paper is as follows. Definitions and notations of
contingency tables, Markov basis and invariance are given in Sect. 2. Structures
of a minimal invariant Markov basis are derived in Sect. 3. All hierarchical
2 × 2 × 2 × 2 models are systematically investigated in Sect. 4.

2 Preliminaries

In this section, we give necessary notations and definitions on Markov basis in
Sect. 2.1 and group actions on contingency tables in Sect. 2.2. We also describe
the Metropolis–Hastings sampling algorithms using the orbit list of an invariant
Markov basis in Sect. 2.3.

2.1 Contingency tables and Markov basis

Consider an I1 ×· · ·×Ik k-way contingency table x. We denote a cell of the con-
tingency table by i = (i1 . . . ik) or i = (i1, . . . , ik). The set of cells is denoted by

I = I1 × · · · × Ik,

where I� ={1, . . . , I�}, � = 1, . . . , k. We write x = {x(i)}i∈I where x(i) is a fre-
quency of the cell i. Let X denote the set of all k-way contingency tables given by

X = {x = {x(i)}i∈I | x(i) ∈ {0, 1, 2, . . .} for i ∈ I} .

We define the sample size of x ∈ X as |x| = ∑
i∈I x(i). Then X is partitioned

by the sample sizes as

X =
∞⋃

n=0

Xn, Xn = {x ∈ X | |x| = n}.

Let K = {1, . . . , k} and let D denote a subset of K. The D-marginal xD =
{xD(iD)}iD∈ID of x is the contingency table with marginal cells iD ∈ ∏

�∈D I�

and entries given by

xD(iD) =
∑

jK\D∈IK\D

x(iD, jK\D).

Note that xD is an m-way contingency table if D = {i1, . . . , im}.
Let D1, . . . , Dr ⊂ K. Throughout this paper we assume that D1∪· · ·∪Dr = K

and there does not exist i �= j such that Di ⊆ Dj. Note that {D1, . . . , Dr}
corresponds to the generating class of a hierarchical log-linear model for the
contingency tables. The set of D-marginal frequencies

t = t(x) = (xD1 , . . . , xDr)
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is the sufficient statistic under the hierarchical log-linear model. Note that if the
cells and the elements of the sufficient statistic are ordered appropriately, we can
write t in a matrix form as t = Ax as in Sect. 2.1 of Takemura and Aoki (2004).

We define the reference set of all the contingency tables having the same
(D1, . . . , Dr)-marginals as

Ft = Ft(D1, . . . , Dr) = {x ∈ X | t(x) = t} .

Since all the contingency tables in the same reference set Ft have the same
sample size, we define the sample size of t by |t| = |x|, x ∈ Ft . Then the set T of
possible values of the sufficient statistic t, i.e., T = {t(x) | x ∈ X }, is partitioned as

T =
∞⋃

n=0

Tn, Tn = {t | |t| = n}.

Let Z ⊃ X be the set of k-way arrays z = {z(i)}i∈I containing integer entries

Z = {z = {z(i)}i∈I | z(i) ∈ {. . . , −1, 0, 1, . . .} for i ∈ I} .

Similarly, to the D-marginal xD of x, the D-marginal of z is defined and
denoted by zD. An array z ∈ Z is a move for D1, . . . , Dr if zDj = 0 for j = 1, . . . , r.
Here 0 denotes the zero array. Let M(D1, . . . , Dr) denote the set of all moves
for D1, . . . , Dr given by

M(D1, . . . , Dr) = {z ∈ Z | zDj = 0, j = 1, . . . , r} ⊂ Z .

For a move z for D1, . . . , Dr, the positive part z+ = {z+(i)}i∈I and the negative
part z− = {z−(i)}i∈I are defined by

z+(i) = max(z(i), 0), z−(i) = max(−z(i), 0),

respectively. Then z = z+ − z− and z+, z− ∈ X . Moreover, z+ and z− have the
same sufficient statistic, i.e., t(z+) = t(z−), and are in the same reference set:

z+, z− ∈ Ft(z+)(D1, . . . , Dr) = Ft(z−)(D1, . . . , Dr).

Note that if z is a move, then −z is also a move with (−z)+ = z− and (−z)− = z+.
Furthermore non-zero elements of z+ and z− do not share a common cell. We
define the set of moves with the same value of the sufficient statistic of their
positive and negative part t = t(z+) = t(z−) as

Mt(D1, . . . , Dr) = {z ∈ M(D1, . . . , Dr) | t(z+) = t(z−) = t}.

We define the degree of z ∈ M(D1, . . . , Dr) as the sample size of its positive and
negative part, i.e., deg(z) = |z+| = |z−|. We also define the set of moves with
degree less than or equal to n as
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Mn(D1, . . . , Dr) = {z ∈ M(D1, . . . , Dr) | deg(z) ≤ n}. (1)

In this paper, we occasionally write simply M, Mt or Mn instead of M(D1, . . . ,
Dr), Mt(D1, . . . , Dr) or Mn(D1, . . . , Dr), respectively, for convenience.

Let B ⊂ M(D1, . . . , Dr) be a set of moves for D1, . . . , Dr. Let x, x′ ∈ Ft(D1,
. . . , Dr). We say that x′ is accessible from x by B if there exists a sequence of
moves z1, . . . , zA ∈ B and εs ∈ {−1, 1}, s = 1, . . . , A, such that

x′ = x +
A∑

s=1

εszs,

x +
a∑

s=1

εszs ∈ Ft(D1, . . . , Dr) for 1 ≤ a ≤ A,

(2)

i.e., we can apply moves from B to x one by one and go from x to x′, without
causing negative cell frequencies on the way. It should be noted that the acces-
sibility by B is an equivalence relation and each reference set is partitioned into
disjoint equivalence classes by B. We call these equivalence classes B-equiva-
lence classes of the reference set. If x and x′ are elements from two different
B-equivalence classes of the same reference set, we say that a move z = x − x′
connects these two equivalence classes (see Sect. 2 of Takemura and Aoki 2004).

Here we define a Markov basis.

Definition 1 A finite set B ⊂ M(D1, . . . , Dr) is a Markov basis for D1, . . . , Dr if
for all t ∈ T , Ft(D1, . . . , Dr) itself constitutes one B-equivalence class.

A logically important point here is the existence of a finite Markov basis for
any D1, . . . , Dr, which is guaranteed by the Hilbert basis theorem (see Sect. 3.1
of Diaconis and Sturmfels 1998). In this definition, if B is a Markov basis and
z, −z ∈ B, then B\{z} and B\{−z} are also Markov bases, respectively. More-
over, if we replace any element z of a Markov basis B with −z, the resulting set
is again a Markov basis. In other words, there is a freedom of the signs of the
elements of a Markov basis. In this paper, we identify an element z of a Markov
basis with its sign change −z for convenience.

A Markov basis B is minimal if no proper subset of B is a Markov basis. A min-
imal Markov basis always exists, because from any Markov basis, we can remove
redundant elements one by one, until none of the remaining elements can be
removed any further. However, a minimal Markov basis is not always unique.
Takemura and Aoki (2004) gives some characterizations of a minimal Markov
basis. An important fact is that for t ∈ T such that Ft(D1, . . . , Dr) = {x, x′} is a
two-element set, a move z = x−x′ belongs to each Markov basis for D1, . . . , Dr
(see Lemma 2.3 of Takemura and Aoki 2004). We call such a move an indis-
pensable move. Furthermore, the unique minimal Markov basis exists if and
only if the set of indispensable moves forms a Markov basis. In this case, the set
of indispensable moves is the unique minimal Markov basis (see Corollary 2.2
of Takemura and Aoki 2004).
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Our moves contain many zero cells. Furthermore, often the non-zero cells
of a move contain either 1 or −1. Therefore, a move can be concisely denoted
by locations of its non-zero cells. We express a move z of degree n as z =
i1 . . . in − j1 . . . jn, where i1, . . . , in are the cells of positive frequencies of z and
j1, . . . , jn are the cells of negative frequencies of z. In the case z(i) > 1, i is
repeated z(i) times. Similarly j is repeated −z(j) times if z(j) < −1. We use
a similar notation for contingency tables as well. x ∈ Xn is simply denoted as
x = i1 . . . in.

2.2 Symmetric group and its action

Here we define an action of a direct product of symmetric groups on cells. From
the action on cells, further actions are induced on contingency tables, marginal
cells, marginal frequencies and moves.

First we give a brief list of definitions and notations of a group action. Let
a group G acts on a set U . Define G(u) = {gu | g ∈ G} as the orbit through u.
For a subset A of U , we write G(A) = {gu | u ∈ A, g ∈ G}. Let U/G denote
the orbit space, i.e., the set of orbits. Let Gu = {g | gu = u} denote the isotropy
subgroup of u in G. If G acts on U , the action of G on the set of functions
f on U is induced by (gf )(u) = f (g−1u). Let h : U → V be a surjection. If
h(u) = h(u′) ⇒ h(gu′) = h(gu), ∀g ∈ G, then the action of G on V is induced
by defining gv = h(gu), where v = h(u). Throughout the rest of this paper, the
number of elements of a finite set A is denoted by |A|.

In our problem G is the direct product of symmetric groups, which acts on
the index set I. Let G� denote the symmetric group of order I� for � = 1, . . . , k
and let

G = G1 × G2 × · · · × Gk

be the direct product. We write an element of g ∈ G as

g = g1 × · · · × gk =
(

1 . . . I1
σ1(1) . . . σ1(I1)

)

× · · · ×
(

1 . . . Ik
σk(1) . . . σk(Ik)

)

.

G acts on I by

i′ = gi
= (g1i1, . . . , gkik)

= (σ1(i1), . . . , σk(ik)).

Then the action of G on X is induced by

x′ = gx
= {x(g−1i)}i∈I .
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G also acts on the marginal cells by

i′D = giD
= (gs1 is1 , . . . , gsm ism)

= (σs1(is1), . . . , σsm(ism)),

where D = {s1, . . . , sm}. Hence G acts on the marginal tables by

x′
D = gxD

= {xD(g−1iD)}iD∈ID .

Considering this action simultaneously for D1, . . . , Dr, the action of G on the
sufficient statistic t = (xD1 , . . . , xDr) is defined by

gt = (gxD1 , . . . , gxDr).

An important point here is that the action of G on t is induced from the action
of G on x, because the calculation of D-marginals and the action of G on X are
commutative. We state this as a lemma. Proof is easy and omitted.

Lemma 1 (gx)D = gxD for all g ∈ G and x ∈ X .

By this lemma, if xDi = yDi
, i = 1, . . . , r, then (gx)Di = (gy)Di , i = 1, . . . , r,

∀g ∈ G. In terms of the sufficient statistic this can be equivalently written as
t(x) = t(y) ⇒ t(gx) = t(gy), ∀g ∈ G. Therefore, the action of G on T is induced
from the action of G on X . Also it is important to note that the isotropy sub-
group Gt of t acts on the reference set Ft .

So far we have only considered non-negative frequencies. However, clearly
the above consideration can also be applied to the set Z of integer arrays. In
particular, Lemma 1 holds for the action of G on Z , i.e., taking marginals of
integer arrays commutes with the action of G. Therefore, if z is a move, then gz
is a move as well. Therefore,

G(M(D1, . . . , Dr)) = M(D1, . . . , Dr).

and G acts on M(D1, . . . , Dr). More concretely, in terms of the positive part
and the negative part we can write

z′ = gz
= gz+ − gz−.

We also define that a move z = z+ − z− is symmetric if z+ = gz− for some
g ∈ G. Conversely, a move z is asymmetric if G(z+) ∩ G(z−) = ∅.

Now we can define an invariant set of moves. B ⊂ M(D1, . . . , Dr) is
G-invariant if G(B) = B. Note that here we are identifying a move z ∈ B
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with its sign change −z. Therefore, B is G-invariant if and only if

∀g ∈ G, ∀z ∈ B �⇒ gz ∈ B or − gz ∈ B.

In other words, B is G-invariant if and only if it is a union of orbits B =⋃
z∈A G(z) for some subset A ⊂ M(D1, . . . , Dr) of moves.
A finite set B ⊂ M(D1, . . . , Dr) is an invariant Markov basis for D1, . . . , Dr if

it is a Markov basis and it is G-invariant. An invariant Markov basis is minimal
if no proper G-invariant subset of B is a Markov basis. A minimal invariant
Markov basis always exists because from any invariant Markov basis, we can
remove orbits one by one, until none of the remaining orbits can be removed
any further.

Remark 1 In the formulation above we have considered permutation of the
levels for each axis. If the number of levels of the axes is common and if in
addition the hierarchical log-linear model considered is symmetric with respect
to permutations of axes, we can further consider the permutation of the axes.
For example in the case of the 3 × 3 × 3 contingency tables with no three-factor
interactions, we can consider the permutation of the axes. As is shown in Aoki
and Takemura (2003a), if this additional symmetry of axes is considered, there
are only 2 orbits corresponding to moves of degree 4 and 6, whereas if this
additional symmetry is not considered there are 4 orbits as indicated in Table 1.
In this paper we only consider a permutation of the levels for each axis, because
it is applicable to all hierarchical models and numbers of levels.

2.3 Metropolis–Hastings sampling using the orbit lists

To perform the exact tests of various hierarchical models, our approach is to
generate samples from the conditional distribution f (x | xD1 , . . . , xDr), where
{D1, . . . , Dr} is the generating class of the model considered, and calculate the
null distribution of various test statistics. If a connected Markov chain over
Ft(D1, . . . , Dr) is constructed, the chain can be modified to give a connected
and aperiodic Markov chain with stationary distribution f (x | xD1 , . . . , xDr) by
the usual Metropolis procedure (Hastings 1970, for example).

As we have mentioned, we consider the sampling algorithms based on the
invariant Markov basis in this paper. Our algorithm is described as follows. Let
B be an invariant Markov basis and let x be the current state in Ft . To define
the next state, choose z ∈ B and g ∈ G at random, where G is the symmetric
group defined in Sect. 2.2, and calculate z′ = gz. We also calculate the set of
integers, {εi} so that x + εiz′ ∈ Ft . Then the next state is selected amongst these
points with the probability

pi = f (x + εiz′)
/∑

j

f (x + εjz′).
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3 Characterizations of a minimal invariant Markov basis and its uniqueness

In this section, we characterize the structure of a minimal invariant Markov
basis and its uniqueness.

3.1 Structure of a minimal invariant Markov basis

In considering the orbits of G acting on X , we note that |x| = |gx|, ∀g ∈ G,
and hence G(Xn) = Xn. Therefore, we can consider the action of G on each
Xn separately. Similarly we can consider the action of G on each Tn separately
since |t| = |gt|, ∀g ∈ G. Consider a particular sufficient statistic t ∈ Tn. Let
G(t) ∈ Tn/G be the orbit through t. Let

MG(t)(D1, . . . , Dr) =
⋃

t′∈G(t)

Mt′(D1, . . . , Dr)

denote the union of the set of moves Mt′ over the orbit G(t) through t. Here-
after, we write MG(t) instead of MG(t)(D1, . . . , Dr) for simplicity.

Let B ⊂ M be a finite set of moves. An important observation is that B is
partitioned as

B =
⋃

n

⋃

α∈Tn/G

Bn,α , (3)

where we define

Bn,α = B ∩ Mα , α ∈ Tn/G.

Since B is invariant if and only if it is a union of orbits G(z), the following lemma
holds.

Lemma 2 B is invariant if and only if Bn,α is invariant for each n and α ∈ Tn/G.

Proof Let z ∈ Bn,α and t = t(z+) ∈ α. Then it follows that gz ∈ Mgt ⊂ Mα and
the lemma is proved. ��

This lemma shows that we can restrict our attention to each Bn,α in studying
the invariance of a Markov basis.

In characterizing a Markov basis and its minimality, Takemura and Aoki
(2004) showed that it is essential to consider M|t|−1-equivalence classes of Ft ,
where Mn is given in (1). Considering the appropriate group actions on the
set of moves and each reference set, we characterize the structure of a minimal
invariant Markov basis in this section. As we will show in the following, the rela-
tion between the action of the isotropy subgroup Gt and M|t|−1-equivalence
classes of Ft is important. In this paper, we write the set of M|t|−1-equivalence
classes of Ft as Ht for simplicity, i.e., Ht = Ft/M|t|−1.

Now we state the main theorem.
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Theorem 1 Let B be a minimal G-invariant Markov basis and Let B = ⋃
n⋃

α∈Tn/G Bn,α be the partition in (3). Then each Bn,α , α ∈ Tn/G, is a minimal
invariant set of moves, where Bn,α ∩ Mt , t ∈ α, connects M|t|−1-equivalence
classes of Ft and

Bn,α = G(Bn,α ∩ Mt) (4)

for any t ∈ α.
Conversely, from each α ∈ Tn/G with |Ht| ≥ 2, where t ∈ α is a representative

sufficient statistic, choose a minimal Gt-invariant set of moves Bt ⊂ Mt connect-
ing M|t|−1-equivalence classes of Ft , where Gt ⊂ G is the isotropy subgroup of
t, and extend Bt to G(Bt). Then

B =
⋃

n

⋃

α∈Tn/G
|Ht |≥2,t∈α

G(Bt)

is a minimal G-invariant Markov basis.

This theorem only adds a statement of minimal G-invariance to the structure
of a minimal Markov basis considered in Theorem 1 of Takemura and Aoki
(2004).

In principle this theorem can be used to construct a minimal invariant Markov
basis by considering

⋃
α∈Tn/G Bn,α , n = 1, 2, 3, . . . step by step. By the Hilbert

basis theorem, there exists some n0 such that for n ≥ n0 no new moves need to be
added. Then a minimal invariant Markov basis is written as

⋃n0
n=1

⋃
α∈Tn/G Bn,α .

Obviously, there is a considerable difficulty in implementing this procedure
directly.

To prove this theorem, we prepare some lemmas in the following.
First, we derive some basic properties of orbits of G acting on each reference

set. As we stated before, we consider the action of G on each Xn separately. Let

FG(t) =
⋃

t′∈G(t)

Ft′

denote the union of reference sets over the orbit G(t) through t. Let x ∈ Ft .
Because t(gx) = gt, it follows that

gx ∈ Fgt ⊂ FG(t).

Therefore, G(FG(t)) = FG(t). This implies that Xn is partitioned as

Xn =
⋃

α∈Tn/G

Fα , (5)
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where α runs over the set of different orbits and we can consider the action of
G on each FG(t) separately.

Consider a particular FG(t). An important observation is that there is a direct
product structure in FG(t). Write

G(t) = {t1, . . . , ta}, (6)

where a = a(t) = |G(t)| is the number of elements of the orbit G(t)⊂ Tn. Let
b = b(t) = |FG(t)/G| be the number of orbits of G acting on FG(t) and let
x1, . . . , xb be representative elements of different orbits, i.e.,

FG(t) = G(x1) ∪ · · · ∪ G(xb) (7)

gives a partition of FG(t). Then we have the following lemma.

Lemma 3 We use the notations (6) and (7). Then FG(t) is partitioned as

FG(t) =
a⋃

i=1

b⋃

j=1

Fti ∩ G(xj), (8)

where each Fti ∩ G(xj) is non-empty. Furthermore, if t′i = gti, then x ∈ Fti �→
gx ∈ Ft′i gives a bijection between Fti ∩ G(x) and Ft′i ∩ G(x).

Proof Let FG(t) = Ft1 ∪ · · · ∪ Fta is a partition. Intersecting this partition with
FG(t) = ⋃b

j=1 G(xj) gives the partition (8). Let x ∈ Ft . Then the orbit G(x)

intersects each reference set, i.e. G(x) ∩ Fti �= ∅ for i = 1, . . . , a. Since every
g ∈ G is a bijection of FG(t) to itself and

g(Ft ∩ G(x)) = Fgt ∩ G(x),

g gives a bijection between Fti ∩ G(x) and Ft′i ∩ G(x). ��
In particular, for each j, Fti ∩ G(xj), i = 1, . . . , a, have the same number of

elements

|Ft1 ∩ G(xj)| = · · · = |Fta ∩ G(xj)|.

In addition, for ti, t′i ∈ G(t) such that t′i = gti, the map g : Gti → gGti g
−1 gives

an isomorphism between Gti and Gt′i = gGtig
−1, where Gti and Gt′i are the

the isotropy subgroup of ti and t′i in G, respectively. Therefore, there are the
following isomorphic structures in Fti ,

(Gti , Fti) � (Gt′i , Ft′i). (9)

Considering the isomorphic structure of (9), now we can focus our atten-
tion on each reference set. Consider a particular reference set Ft . Here we can
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restrict our attention to the action of Gt on Ft . As we have stated before, the
relation between the action of Gt and Ht = Ft/M|t|−1 (the M|t|−1-equivalence
classes of Ft) is essential. First we show the following lemma.

Lemma 4 For any integer n, if x′ is accessible from x by Mn, then gx′ is accessible
from gx by Mn.

We give a proof of Lemma 4 in Appendix.
This lemma holds for all g ∈ G. In particular, gx ∈ Ft(x) if g ∈ Gt . This

implies that an action of Gt is induced on Ht . In the sequel let Xγ ∈ Ht denote
each equivalence class:

Ht = {Xγ }1≤γ≤|Ht |.

Let π : x �→ Xγ denote the natural projection of x to its equivalence class, then
Lemma 4 states

π(x) = π(x′) ⇒ π(gx) = π(gx′).

Let x ∈ Xγ and g ∈ Gt . Then gx belongs to some Mn−1-equivalence class Xγ ′ .
By Lemma 4, this γ ′ does not depend on the choice of x ∈ Xγ and we may write
γ ′ = gγ . Since by definition a group action is bijective the following lemma
holds.

Lemma 5 g ∈ Gt : Xγ �→ Xγ ′ is a bijection of Ht to itself.

Here we give an illustration of a direct product structure of FG(t). Figure 1
shows a structure of FG(t) where a = a(t) = |G(t)| = 3 and b = b(t) =
|FG(t)/G| = 2. In each Ft ⊂ FG(t), there are two M|t|−1-equivalence classes,
i.e., |Ht| = 2. Figure 1 also shows Gt orbits in each Ft , which we consider in
Sect. 3.2. In fact, Figure 1 is derived from an example of 2×2×2×3 contingency
tables of the model

D1 = {1, 2}, D2 = {1, 3}, D3 = {2, 3}, D4 = {3, 4}.

We see the above structure by considering x = (1111)(1221)(2122)(2212), for
example. In this case, Ft(x) is an eight elements set as follows.

(1111)(1221)(2122)(2212), (1111)(1222)(2121)(2212),
(1112)(1222)(2121)(2211), (1112)(1221)(2122)(2211),

}

Xγ (� x)

(1121)(1211)(2112)(2222), (1121)(1212)(2111)(2222),
(1122)(1212)(2111)(2221)
︸ ︷︷ ︸

Gt(x)

, (1122)(1211)(2112)(2221).

Now we give a proof of Theorem 1.
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Fig. 1 A direct product structure of FG(t) (a = 3, b = 2, p = 1, qi = 2, ri = 2)

Proof of Theorem 1 Let B be a minimal invariant set of moves and consider the
partition (3). Then each Bn,α , α ∈ Tn/G is G-invariant from Lemma 2. More-
over, from the argument of Takemura and Aoki (2004), each z = z+−z− ∈ Bn,α
is a move connecting Xγ ∈ Ht and Xγ ′ ∈ Ht , γ �= γ ′, i.e., z+ ∈ Xγ and z− ∈ Xγ ′ ,
from the minimality of B. In this case, gz = gz+ − gz− is a move connecting
Xgγ and Xgγ ′ . Applying g−1 the converse is also true. This implies that the way
Bn,α ∩ Mt connects the Mn−1-equivalence classes Ht is the same for all t ∈ α

and hence the relation (4) holds.
Conversely, to construct a minimal invariant Markov basis, we only have to

consider sets of moves connecting M|t|−1-equivalence classes of each Ft from
the argument of Takemura and Aoki (2004). Considering the isomorphic struc-
ture (9) of Lemma 3 and Lemma 5, we see that the structure of Ht′ is common
for all t′ ∈ G(t), and therefore it suffices to consider Gt-invariant set of moves
Bt for some representative sufficient statistic t ∈ α satisfying |Ht| ≥ 2 for each
α ∈ Tn/G. ��

3.2 Conditions for the uniqueness of a minimal invariant Markov basis

Now we derive a necessary and sufficient condition for the existence of a unique
minimal invariant Markov basis. As is shown in Takemura and Aoki (2004), a
minimal Markov basis is unique if and only if the set of the indispensable
moves constitutes a Markov basis. Since the set of the indispensable moves is
G-invariant, a minimal invariant Markov basis and a minimal Markov basis
differ only in dispensable moves. In view of this we here state the following
obvious fact.
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Lemma 6 If there exists a unique minimal Markov basis, then it is a unique
minimal invariant Markov basis.

To make the arguments clear, we give the following corollary to Theorem 1
without a proof.

Corollary 1 A minimal invariant Markov basis B is unique if and only if for
each n and α ∈ Tn/G with |Ht| ≥ 2 for a representative sufficient statistic t ∈ α,
Bt = B ∩ Mt is a unique minimal Gt-invariant set of moves connecting M|t|−1-
equivalence classes of Ft .

Considering this corollary, we consider Ft for each t separately. We need to
understand the action of Gt on Ft in more detail. An important structure of Ft
is derived by considering the orbit space Ht/Gt . Write

Ht/Gt = {�1, . . . , �p}, (10)

where p = p(t) = |Ht/Gt| is the number of orbits of Gt acting on Ht . We also
write

�i =
qi⋃

j=1

Xγi,j , i = 1, . . . , p, (11)

where qi = |�i/M|t|−1| is the number of different equivalence classes Xγ in �i.
By definition, �i is Gt-invariant and Gt acts on �i for i = 1, . . . , p. Therefore we
consider each �i separately. An important observation is that there is a direct
product structure in each �i, which is similar to Lemma 3. Let ri = |�i/Gt| be
the number of orbits of Gt acting on �i and let xi,1, . . . , xi,ri be representative
elements of different Gt-orbits, i.e.,

�i = Gt(xi,1) ∪ · · · ∪ Gt(xi,ri) (12)

gives a partition of �i. Then we have the following lemma.

Lemma 7 Ft is partitioned as

Ft =
p⋃

i=1

�i =
p⋃

i=1

⎛

⎝
qi⋃

j=1

ri⋃

k=1

Xγi,j ∩ Gt(xi,k)

⎞

⎠ , (13)

where each Xγi,j ∩ Gt(xi,k) is non-empty for i = 1, . . . , p, j = 1, . . . , qi, k =
1, . . . , ri. Furthermore, if γ ′

i,j = gγi,j, g ∈ Gt , then x ∈ Xγi,j �→ gx ∈ Xgγi,j gives a
bijection between Xγi,j ∩ Gt(x) and Xγ ′

i,j
∩ Gt(x).

Proof Similarly to the proof of Lemma 3, intersecting the partition (11) with
the partition (12) gives the partition (13). For each x ∈ �i, the orbit Gt(x) inter-
sects all the equivalence classes Xγi,j , j = 1, . . . , qi, i.e., Gt(x) ∩ Xγi,j �= ∅ for all
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j = 1, . . . , qi. From Lemma 5 and the definition of �i, every g ∈ Gt is a bijection
of �i to itself and

g(Xγi,j ∩ Gt(x)) = Xgγi,j ∩ Gt(x).

Therefore, g ∈ Gt gives a bijection between Xγi,j ∩ Gt(x) and Xγ ′
i,j

∩ Gt(x). ��
Figure 1 shows a case that p = |Ht/Gt| = 1. In fact, all the examples con-

sidered in Sect. 4 correspond to the case of p = 1. For theoretical interest, we
present the following complicated example of p = 2.

Example 1 Consider the case of k = 6 and D1 = {1, 2}, D2 = {1, 3}, D3 =
{2, 3}, D4 = {4, 5}, D5 = {4, 6}, D6 = {5, 6}. This is a direct product model of two
three-way models with all two-dimensional marginals fixed. As for the 1, 2, 3
axes, we consider I1 = 3, I2 = 5, I3 = 6 and define xD1 , xD2 , xD3 as

xD1 = (11)(13)(14)(15)(22)(23)(24)(25)(31)(32)(33)(34)(35)(35),
xD2 = (11)(12)(13)(16)(23)(24)(25)(26)(31)(32)(34)(35)(36)(36),
xD3 = (11)(16)(24)(26)(32)(33)(34)(41)(43)(45)(52)(55)(56)(56).

In this case, it can be easily verified that there are only two possible patterns of
x{1,2,3} as

x1 =(111)(132)(143)(156)(224)(233)(245)(256)(316)(326)(334)(341)(352)(355),
x2 =(116)(133)(141)(152)(226)(234)(243)(255)(311)(324)(332)(345)(356)(356).

Note that there is a frequency of 2 at the cell (356) in x2. This implies that there
is no g ∈ G satisfying x1 = gx2, i.e., G(x1) ∩ G(x2) = ∅. Therefore, x1 − x2 is
an asymmetric indispensable move in {1, 2, 3}-marginal tables. As for the 4, 5, 6
axes, we consider I1 = 2, I2 = 7, I3 = 7 and define xD4 , xD5 , xD6 as

xD4 = xD5 = (11)(12)(13)(14)(15)(16)(17)(21)(22)(23)(24)(25)(26)(27),
xD6 = (11)(12)(21)(23)(32)(34)(43)(45)(54)(56)(65)(67)(76)(77).

In this case, again there are two possible patterns of x{4,5,6} as

x′
1 =(111)(123)(132)(145)(154)(167)(176)(212)(221)(234)(243)(256)(265)(277),

x′
2 =(112)(121)(134)(143)(156)(165)(177)(211)(223)(232)(245)(254)(267)(276).

Therefore, x′
1 −x′

2 is a symmetric indispensable move in {4, 5, 6}-marginal tables.
For the sufficient statistic t = {xD1 , xD2 , xD3 , xD4 , xD5 , xD6} defined above,

consider the structure of Ft . Ft is written as

Ft = {x | x{1,2,3} = x1 or x2 and x{4,5,6} = x′
1 or x′

2} = X11 ∪ X12 ∪ X21 ∪ X22,

where Xij = {x | x{1,2,3} = xi, x{4,5,6} = x′
j}. Consider M13-equivalence classes of

Ft . Note that the above four sets X11, X12, X21, X22 are M2-equivalence classes
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of Ft since each set contains all combinations of permutations of {1, 2, 3}- and
{4, 5, 6}-marginal patterns. Furthermore, any two elements in the different sets
are not mutually accessible by M13 since x1 − x2 and x′

1 − x′
2 are indispensable

moves in {1, 2, 3}- and {4, 5, 6}-marginal tables, respectively. From these consid-
erations, we see that |Ht| = 4 and Ht = {X11, X12, X21, X22}. Considering the
Gt-orbit space of Ht , we have

Ht/Gt = {{X11, X12}, {X21, X22}}

since x1 − x2 is an asymmetric move in {1, 2, 3}-marginal tables, whereas x′
1 − x′

2
is a symmetric move in {4, 5, 6}-marginal tables. Therefore, p = |Ht/Gt| = 2
and qi = |�i| = 2 for each �i ∈ Ht/Gt , and we have the union of the direct
products structure in (13).

Using this direct products structure of Ft as shown in (13), first we summarize
the structure of a minimal invariant set of moves connecting different �i’s.

Lemma 8 B is a minimal Gt-invariant set of moves that connects �1, . . . , �p in
(10) if and only if B is written as

B = Gt(z1) ∪ · · · ∪ Gt(zp−1), (14)

where the set of the representative moves z1, . . . , zp−1 connects �1, . . . , �p into a
tree.

Proof Let z = z+ − z− is a move that connects �i and �j, i �= j, i.e., z+ ∈ �i and
z− ∈ �j. Then gz also connects �i and �j for any g ∈ Gt , since gz+ ∈ �i, gz− ∈ �j.

��
This lemma implies the following necessary condition for the existence of a

unique minimal invariant Markov basis.

Corollary 2 If a minimal invariant Markov basis is unique, then the following
conditions hold for all t such that |Ht| ≥ 2.

(i) p = p(t) = |Ht/Gt| is at most 2.
(ii) For Ft such that p(t) = 2, Gt(z) is the same for all z = z+ − z−, z+ ∈

�1, z− ∈ �2, where Ft = �1 ∪ �2.

Combining the above results on the structure of a minimal invariant set of
moves connecting the equivalence classes in each �i, we can derive a necessary
and sufficient condition that a minimal invariant Markov basis is unique.

First we define an orbit graph Gγi,j = G(�i, Eγi,j) for j = 2, . . . , qi, where the
edge set Eγi,j is defined as

Eγi,j = {(Xγi,j′ , Xγ
i,j′′ ) | (gz+, gz−) ∈ (Xγi,j′ , Xγ

i,j′′ ) for some g ∈ Gt

where z+ ∈ Xγi,1 , z− ∈ Xγi,j}. (15)
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Here we are considering a Gt-orbit Gt(z) of a move z = z+ − z− connecting
Xγi,1 , Xγi,j ∈ �i, i.e., z+ ∈ Xγi,1 , z− ∈ Xγi,j . We assume z+ ∈ Xγi,1 without loss of
generality because Gt acts transitively on �i. Eγi,j does not depend on the choice
of z with z+ ∈ Xγi,1 , z− ∈ Xγi,j , although the orbit Gt(z) might depend on z.

We also define that the orbit graph Gγi,j is indispensable if the graph
G(�i,

⋃
j′ �=j Eγi,j′ ) is not connected. An important point here is that if the set

of indispensable orbit graphs connects all the equivalence classes in �i, then
this corresponds to the unique minimal invariant set of moves for �i. Using
these definitions, we have the following result.

Theorem 2 A minimal invariant Markov basis is unique if and only if the fol-
lowing conditions hold for all t such that |Ht| ≥ 2, in addition to (i) and (ii) of
Corollary 2.

(iii) ri = |�i/Gt| = 1 for all i = 1, . . . , p.
(iv) The set of indispensable orbit graphs connects all Xγi,j ∈ �i for all i =

1, . . . , p.
(v) For each orbit graph of (iv), Gt(z) is common for all z defining the edge

set in (15).

We give a proof of Theorem 2 in Appendix.
In Sect. 3 of Takemura and Aoki (2004), minimal Markov bases and their

uniqueness are shown for some examples. We see that for some examples a
minimal Markov basis is unique, and for other examples it is not unique. Since a
unique minimal Markov basis is also the unique minimal invariant Markov basis,
a logically interesting case is that, a minimal invariant Markov basis is unique,
nevertheless a minimal Markov basis is not unique. The Hardy-Weinberg model
is such an example, if we define a symmetric group acting on the upper triangu-
lar tables appropriately. See Sect. 3 of Takemura and Aoki (2004). Except for
this peculiar example, the only example that we have found so far is one-way
contingency tables.

Example 2 Consider the case of k = 1 and D = {1}. As is stated in Takemura
and Aoki (2004), a minimal Markov basis for this case is not unique, and con-
sists of I1 − 1 degree 1 moves that connect I elements in X1 into a tree. By
Cayley’s theorem, there are II1−2

1 ways of choosing a minimal Markov basis. On
the other hand, the set of all degree 1 moves,

B = {x − x′ | x, x′ ∈ X1, x �= x′}

is a G-orbit in M(D). Therefore, B is the unique minimal invariant Markov

basis. B consists of
(

I1
2

)

degree 1 moves.
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4 Orbit list of minimal invariant Markov bases for all hierarchical 24 models

In this section, we present an orbit list of minimal invariant Markov bases for
all hierarchical 2×2×2×2 models. There are 20 different such models. Figure 2
is the list of independence graphs of these models.

For each model, we can derive minimal Markov bases by 4ti2. Our purpose
of this section is to characterize the outputs by 4ti2, by considering the direct
product structure given in Sect. 3 and derive the orbit lists for minimal invariant
Markov bases. Before presenting an orbit list of minimal invariant Markov
bases, we first summarize the numbers of different minimal and minimal invari-
ant Markov bases and numbers of elements in each basis. Table 2 shows the num-
bers (“kinds” in the table) of the minimal and minimal invariant bases and the
number of elements in each minimal basis and minimal invariant basis together
with their degrees. In this table, we specify each model by their generating set.
For example, a model 123/24/34 means D1 = {1, 2, 3}, D2 = {2, 4}, D3 = {3, 4}.

As we have stated, if the set of indispensable moves constitutes a Markov
basis, this is a unique minimal (invariant) Markov basis. On the other hand, if a
minimal Markov basis is not unique, uniqueness of a minimal invariant Markov
basis is important. In all of 24 hierarchical models, however, we found that a
minimal invariant Markov basis is also not unique when a minimal Markov basis
is not unique. We discuss this point in Sect. 5. Furthermore, even the number of

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2
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1 2
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1 2

3 4

1 2

3 4 
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Fig. 2 Independence graphs for four-way contingency tables
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Table 2 Number of minimal basis elements and minimal invariant basis elements for 24

hierarchical models

Graph Generating set Number of basis

(a) 1234 ∅
123/124/134/234 Unique minimal basis (1 move of deg 8)
123/124/134 Unique minimal basis (2 moves of deg 4)
123/124/34 Unique minimal basis (6 moves of deg 4)
123/14/24/34 Unique minimal basis (12 moves of deg 4 and 8 moves of deg 6)
12/13/14/23/24/34 Unique minimal basis (20 moves of deg 4 and 40 moves of deg 6)

(b) 123/234 Unique minimal basis (4 moves of deg 2)
123/24/34 Unique minimal basis (4 moves of deg 2 and 16 moves of deg 4)
12/13/23/24/34 Indispensable moves: 4 moves of deg 2 and 28 moves of deg 4

Dispensable moves of a minimal basis: 16 kinds of 3 moves of deg 4
Dispensable moves of a minimal invariant basis:

3 kinds of 4 moves of deg 4
(c) 12/13/24/34 Unique minimal basis (8 moves of deg 2 and 8 moves of deg 4)
(d) 123/34 Unique minimal basis (12 moves of deg 2)

12/13/23/34 Indispensable moves: 12 moves of deg 2 and 4 moves of deg 4
Dispensable moves of a minimal basis:

4, 096 kinds of 5 moves of deg 4
Dispensable moves of a minimal invariant basis:

8 kinds of 10 moves of deg 4 or 2 kinds of 16 moves of deg 4
(e) 123/4 Unique minimal basis (28 moves of deg 2)

12/13/23/4 Indispensable moves: 28 moves of deg 2 and 2 moves of deg 4
Dispensable moves of a minimal basis:

9216 kinds of 3 moves of deg 4
Dispensable moves of a minimal invariant basis:

24 kinds of 10 moves of deg 4 or 12 kinds of 16 moves of deg 4
(f) 12/13/24 Unique minimal basis (20 moves of deg 2)
(g) 12/13/14 Indispensable moves: 12 moves of deg 2

Dispensable moves of a minimal basis:
256 kinds of 6 moves of deg 2

Dispensable moves of a minimal invariant basis:
3 kinds of 8 moves of deg 2

(h) 12/13/4 Indispensable moves: 28 moves of deg 2
Dispensable moves of a minimal basis:

256 kinds of 6 moves of deg 2
Dispensable moves of a minimal invariant basis:

3 kinds of 8 moves of deg 2
(i) 12/34 Unique minimal basis (36 moves of deg 2)
(j) 12/3/4 Indispensable moves: 28 moves of deg 2

Dispensable moves of a minimal basis:
166 = 16, 777, 216 kinds of 18 moves of deg 2

Dispensable moves of a minimal invariant basis:
27 kinds of 24 moves of deg 2

(k) 1/2/3/4 Indispensable moves: 24 moves of deg 2
Dispensable moves of a minimal basis:

168 × 86 = 1.1259 × 1015 kinds of 31 moves of deg 2
Dispensable moves of a minimal invariant basis:

2, 268 kinds of 44 moves of deg 2
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elements in a minimal invariant basis is not unique for the model 12/13/23/34
as discussed in Sect. 3. In order to illustrate construction of our orbits list, we
discuss minimal invariant Markov basis for this complicated model.

Example 3 (Minimal invariant Markov bases for the model 12/13/23/34)
For this model, there are 12 indispensable moves of degree 2 and 4 indispens-
able moves of degree 4, and the set of indispensable moves does not constitute
a Markov basis. To construct a Markov basis, we have to consider the following
two reference sets:

Ft(x1
1)

=
{
x1

1, x1
2, x1

3, x1
4

}
,

Ft(x2
1)

= {
x2

1, x2
2, x2

3, x2
4, x2

5, x2
6, x2

7, x2
8

}
,

where

x1
1 = (1111)(1221)(2121)(2212), x1

2 = (1112)(1221)(2121)(2211),

x1
3 = (1121)(1211)(2112)(2221), x1

4 = (1121)(1212)(2111)(2221),

x2
1 = (1111)(1221)(2122)(2212), x2

2 = (1112)(1222)(2121)(2211),

x2
3 = (1111)(1222)(2121)(2212), x2

4 = (1112)(1221)(2122)(2211),

x2
5 = (1121)(1211)(2112)(2222), x2

6 = (1122)(1212)(2111)(2221),

x2
7 = (1121)(1212)(2111)(2222), x2

8 = (1122)(1211)(2112)(2221).

The isomorphic structures of these reference sets are given as

FG(t(x1
1))

= G(x1
1),

∣
∣
∣G

(
t
(
x1

1

))∣
∣
∣ = 4, |FG(t(x1

1))
/G| = 1, |Ft(x1

1)
| = 4,

Ft(x2
1)

= G(x2
1) ∪ G

(
x2

3

)
,

∣
∣G

(
t
(
x2

1

))∣
∣ = 1, |FG(t(x2

1))
/G| = 2, |Ft(x2

1)
| = 8.

To make a minimal invariant Markov basis, we have to consider the direct prod-
uct structures for Ft(x1

1)
and Ft(x2

1)
. Since p = |Ht/Gt| = 1 for both cases, we

can write Ft = ⋃q
j=1 Xγj for simplicity. The direct product structures of Ft(x1

1)
is

given as

Ft(x1
1)

= Xγ1 ∪ Xγ2 = Gt(x1
1)

(x1
1),

Xγ1 = {x1
1, x1

2}, Xγ2 = {x1
3, x1

4},
q = 2, r = 1,

|Xγ1 ∩ Gt(x1
1)

(x1
1)| = |{x1

1, x1
2}| = 2.
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Similarly, the direct product structures of Ft(x2
1)

is given as

Ft(x2
1)

= Xγ1 ∪ Xγ2 = Gt(x2
1)

(x2
1) ∪ Gt(x2

1)
(x2

3),

Xγ1 = {x2
1, x2

2, x2
3, x2

4}, Xγ2 = {x2
5, x2

6, x2
7, x2

8},
q = 2, r = 2,

|Xγ1 ∩ Gt(x2
1)

(x2
1)| = |{x2

1, x2
3}| = 2

Since p = 2 for both cases, one move for each reference set suffices to construct
a minimal Markov basis. However, to construct a minimal invariant Markov
basis, we have to consider the orbit graph. The orbit graph for Ft(x1

1)
consists

of two vertices, {Xγ1 , Xγ2}, with edge, and is indispensable. However, there are
two ways of choosing moves

B1 = {x1
1 − x1

3, x1
2 − x1

4},
B2 = {x1

1 − x1
4, x1

2 − x1
3},

which derive the above orbit graph. Therefore, the minimal invariant Markov
basis has two kinds of two moves, B1 or B2, for Ft(x1

1)
, and is not uniquely deter-

mined. On the other hand, the orbit graph for Ft(x2
1)

consists of two vertices,
{Xγ1 , Xγ2}, with edge, and is also indispensable. In this case, there are five ways
of choosing moves

B1 = {x2
1 − x2

5, x2
2 − x2

6}, B2 = {x2
1 − x2

6, x2
5 − x2

2},
B3 = {x2

3 − x2
7, x2

4 − x2
8}, B4 = {x2

3 − x2
8, x2

7 − x2
4},

B5 = {x2
1 − x2

7, x2
1 − x2

8 x2
3 − x2

5, x2
3 − x2

6 x2
4 − x2

5, x2
4 − x2

6 x2
2 − x2

7, x2
2 − x2

8},

which derive the above orbit graph. Therefore, there are five kinds of moves,
i.e., four kinds of two moves, B1, . . . , B4, or one kind of eight moves, B5, in the
minimal invariant Markov basis.

Now we present an orbit list of minimal invariant Markov bases. For the
models where the minimal invariant bases are not unique, we present one of
the minimal orbits. Table 3 shows the representative basis elements for each
orbit. This list includes 1 indispensable degree 8 move, 5 indispensable degree 6
moves (w1, . . . , w5), 21 indispensable degree 4 moves (x1, . . . , x21), 11 indispens-
able degree 2 moves (y1, . . . , y11) and sets of dispensable moves constructing
minimal invariant Markov bases.

Though our result is restricted to the case of 2 × 2 × 2 × 2, if a set of moves
whose supports are contained in 2 × 2 × 2 × 2 array constitutes a Markov basis
for a general I1 × I2 × I3 × I4 case, we can derive a minimal and a minimal
invariant Markov basis for the general case, by considering the orbits Tn/G.
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Table 3 Orbits list of minimal invariant bases for 24 hierarchical models

Graph Generating set Representative elements

(a) 1234 ∅
123/124/134/234 (1111)(1122)(1212)(1221)(2112)(2121)(2211)(2222)

−(1112)(1121)(1211)(1222)(2111)(2122)(2212)(2221)

123/124/134 (1111)(1122)(1212)(1221) − (1112)(1121)(1211)(1222) = x1
123/124/34 x1, (1111)(1122)(2112)(2121) − (1112)(1121)(2111)(2122) = x2,

(1111)(1122)(2212)(2221) − (1112)(1121)(2211)(2222) = x3
123/14/24/34 x1, x2, x3, (1111)(1212)(2112)(2211) − (1112)(1211)(2111)(2212) = x4,

(1111)(1212)(2122)(2221) − (1112)(1211)(2121)(2222) = x5,
(1111)(1222)(2112)(2221) − (1112)(1221)(2111)(2222) = x6,
(1111)(1111)(1122)(1212)(2112)(2221) − (1112)(1112)(1121)(1211)(2111)(2222) = w1

12/13/14/23/24/34 x1, x2, x3, x4, x5, x6, w1,
(1111)(1221)(2121)(2211) − (1121)(1211)(2111)(2221) = x7,
(1111)(1221)(2122)(2212) − (1121)(1211)(2112)(2222) = x8,
(1111)(1222)(2121)(2212) − (1121)(1212)(2111)(2222) = x9,
(1111)(1222)(2122)(2211) − (1122)(1211)(2111)(2222) = x10,
(1111)(1111)(1222)(2122)(2212)(2221) − (1112)(1121)(1211)(2111)(2222)(2222) = w2,
(1111)(1111)(1122)(1221)(2121)(2212) − (1112)(1121)(1121)(1211)(2111)(2222) = w3,
(1111)(1111)(1212)(1221)(2122)(2211) − (1112)(1121)(1211)(1211)(2111)(2222) = w4,
(1111)(1111)(1222)(2112)(2121)(2211) − (1112)(1121)(1211)(2111)(2111)(2222) = w5

(b) 123/234 (1111)(2112) − (1112)(2111) = y1
123/24/34 y1, x1, x3,

(1111)(1122)(1212)(2221) − (1112)(1121)(1211)(2222) = x11,
(1111)(1122)(1221)(2212) − (1112)(1121)(1222)(2211) = x12,
(1111)(1212)(1221)(2122) − (1112)(1211)(1222)(2121) = x13,
(1111)(1212)(2122)(2221) − (1112)(1211)(2121)(2222) = x14,
(1111)(1221)(2122)(2212) − (1112)(1222)(2121)(2211) = x15,
(1111)(2122)(2212)(2221) − (1112)(2121)(2211)(2222) = x16

12/13/23/24/34 y1, x1, x3, x7, x9, x11, x12, x13, x14, x16,
(1111)(1221)(2121)(2212) − (1121)(1211)(2111)(2222) = x17,
(1111)(1221)(2122)(2211) − (1121)(1211)(2112)(2221) = x18,
(1111)(1222)(2121)(2211) − (1121)(1212)(2111)(2221) = x19,
(1111)(1222)(2122)(2212) − (1121)(1212)(2112)(2222) = x20,
(1111)(1222)(2122)(2211) − (1121)(1212)(2112)(2221) = x21,
(1111)(1221)(2122)(2212) − (1121)(1211)(2112)(2222),
(1111)(1221)(2122)(2212) − (1112)(1222)(2121)(2211)

(c) 12/13/24/34 y1, x3, x5, x9, x10, (1111)(1221) − (1121)(1211) = y2
(d) 123/34 y1, (1111)(1212) − (1112)(1211) = y3, (1111)(2212) − (1112)(2211) = y4

12/13/23/34 y1, y3, y4, x7, x10,
(1111)(1221)(2121)(2212) − (1121)(1211)(2112)(2221),
(1111)(1221)(2122)(2212) − (1121)(1211)(2112)(2222)

(e) 123/4 y1, y3, y4,
(1111)(1122) − (1112)(1121) = y5, (1111)(1222) − (1112)(1221) = y6,
(1111)(2122) − (1112)(2121) = y7, (1111)(2222) − (1112)(2221) = y8

12/13/23/4 y1, y3, y4, y5, y6, y7, y8, x7,
(1111)(1221)(2121)(2212) − (1121)(1211)(2111)(2222),
(1111)(1221)(2122)(2212) − (1121)(1211)(2112)(2222)

(f) 12/13/24 y1, y2, y5, y6, y7
(g) 12/13/14 y2, y3, y5,

(1111)(1222) − (1112)(1221), (1111)(1222) − (1121)(1212)

(h) 12/13/4 y1, y2, y3, y4, y5, y7, y8,
(1111)(1222) − (1112)(1221), (1111)(1222) − (1121)(1212)

(i) 12/34 y1, y2, y3, y4, y6, y7, y8,
(1111)(2121) − (1121)(2111) = y9, (1111)(2221) − (1121)(2211) = y10
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Table 3 (continued)

Graph Generating set Representative elements

(j) 12/3/4 y1, y2, y3, y4, y5, y9, y10,
(1111)(1222) − (1112)(1221), (1111)(1222) − (1121)(1212),
(1111)(2122) − (1112)(2121), (1111)(2122) − (1121)(2112),
(1111)(2222) − (1112)(2221), (1111)(2222) − (1121)(2212)

(k) 1/2/3/4 y1, y2, y3, y5, y9, (1111)(2211) − (1211)(2111) = y11,
(1111)(1222) − (1112)(1221), (1111)(1222) − (1121)(1212),
(1111)(2122) − (1112)(2121), (1111)(2122) − (1121)(2112),
(1111)(2212) − (1112)(2211), (1111)(2212) − (1211)(2112),
(1111)(2221) − (1121)(2211), (1111)(2221) − (1211)(2121),
(1111)(2222) − (1112)(2221), (1111)(2222) − (1121)(2212),
(1111)(2222) − (1211)(2122)

5 Discussion

In this paper we define a minimal invariant Markov basis and derive its basic
characteristics. Of course, we can construct an invariant Markov basis from any
Markov basis as the union of all the orbits of the basis elements. However, even
if we start with a minimal Markov basis, the union of all the orbits of the basis
elements is not necessarily a minimal invariant basis. For example, consider
again the complete independence model of the three-way case of Sect. 1. A set
of moves,

(121)(212) − (111)(222), (122)(211) − (111)(222), (112)(221) − (111)(222),

i.e., the reduced Gröbner basis with respect to the graded reverse lexicographic
order, connects the four elements {(111)(222), (112)(221), (121)(212), (122)

(211)} into a tree, and thus is a minimal basis elements for the reference
set {(111)(222), (112)(221), (121)(212), (122)(211)}. However, it is seen that the
union of the orbits of these three moves contains six moves, and hence not min-
imal invariant. From these considerations, the structure of a minimal invariant
Markov basis is important, if we want to make an orbit list as concise as possible.

Theorem 1 states how to construct a minimal invariant Markov basis. This
theorem is an extension of Theorem 1 of Takemura and Aoki (2004). To con-
struct a minimal Markov basis, we can add basis elements step by step from
the low degree, by considering all the reference sets as stated in Theorem 1 of
Takemura and Aoki (2004). On the other hand, to construct a minimal invari-
ant Markov basis, we have to add the orbit of moves step by step from the low
degree. Similar to the construction of a minimal Markov basis, it is difficult to
construct a minimal invariant Markov basis by applying Theorem 1 directly. But
if a minimal Markov basis is available, we can construct a minimal invariant
Markov basis relatively easily, by considering all the reference sets one by one,
which is covered by the dispensable moves in the minimal Markov basis. The
results of Sect. 4 is obtained in such a way.

It seems also difficult to give a simple necessary and sufficient conditions on
D1, . . . , Dr such that a minimal invariant Markov basis is unique. It is of inter-



254 S. Aoki, A. Takemura

est to derive conditions such that a minimal invariant Markov basis is unique
even if a minimal Markov basis is not unique. As stated in Sect. 3, such an
example we have found so far is the obvious one-way contingency table, except
for the peculiar case of the Hardy–Weinberg model. We would like to remind
the readers that the investigation of uniqueness of minimal Markov basis in
Takemura and Aoki (2004) led to the important notion of indispensable moves.
Similarly, we expect that the investigation of uniqueness of minimal invariant
Markov bases leads to some interesting facts on Markov bases and the actions
of symmetric groups.

In this paper, we restrict our attention to the situation that the number of
axes is fixed for a given problem. On the other hand, there are some situations
that the cardinality of Markov bases increases linearly in the number of axes.
One of such examples is the chain model described as

D1 = {1, 2}, D2 = {2, 3}, . . . , Dr = {r, r + 1},

which is suggested by a referee. In this case, our minimal invariant Markov basis
will require exponentially many orbits as a function on r and it might be true
that our minimal invariant Markov basis lacks the universality at this point. As
the universality of minimal invariant Markov basis, we only consider the line-
arity in the number of levels of each axis. The linearity of Markov bases for r
seems to be quite difficult condition. In fact, although it is true that this linearity
exists for the Markov bases of decomposable models as the chain model, it is
quite difficult to investigate the similar linearity for general non-decomposable
models. Though this is a very interesting problem, we leave it to the future work.

Finally, the work in this paper is motivated from the theoretical interest
for characterizations of invariant Markov bases, rather than practical values
of invariant Markov bases. Our procedure for obtaining a minimal invariant
Markov in Sect. 4 is rather complicated from practical viewpoint. Moreover,
at present there is no efficient algorithm to obtain minimal invariant Markov
bases. The authors believe, however, that symmetry is one of the important and
essential features in most algebraic topics, and there is a possibility that this
work may serve as one step towards a breakthrough in developing more effi-
cient algorithms, namely, a symmetric Buchberger algorithm. This is an attractive
topic, which is left to future work.

Appendix: Proofs of Lemma 4 and Theorem 2

Proof of Lemma 4 Note that deg(z) ≤ n if and only if deg(gz) ≤ n. If x′ is
accessible from x by Mn, then there exists z1, . . . zA ∈ Mn satisfying

x′ = x +
A∑

s=1

εszs,

x +
a∑

s=1

εszs ∈ Ft for 1 ≤ a ≤ A
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by (2). Applying g to the both sides of the equations we get

gx′ = gx +
A∑

s=1

εsgzs,

gx +
a∑

s=1

εsgzs ∈ Fgt for 1 ≤ a ≤ A.

Since gzs ∈ Mn for s = 1, . . . , A, the lemma is proved. ��
Proof of Theorem 2 Let B be a unique minimal invariant Markov basis. (iv)

holds since B is an invariant Markov basis, and (v) also holds from the unique-
ness of B. To show (iii), suppose ri ≥ 2 for some i = 1, . . . , p. In this case,
the orbits Gt(z) differ for a different choice of (δ1, δ2), where z+ ∈ Xγi,1 ∩
Gt(xδ1), z− ∈ Xγi,j ∩ Gt(xδ2), j ≥ 2, which contradicts the uniqueness of minimal
invariant Markov basis.

Conversely, suppose the conditions (i), . . . , (v) holds. Let z be an element of a
minimal invariant Markov basis connecting different �′

is. By (i) we can assume
that p = 2 and Ft = �1 ∪ �2. By (ii) Gt(z) is the same for all z = z+ − z−, z+ ∈
�1, z− ∈ �2. Now let z be an element of a minimal invariant Markov basis
connecting different Xγi,j ’s for all i = 1, . . . , p. We see that all the orbit graphs
derived from z are indispensable from (iv) and minimality of invariant Markov
basis. Moreover, for each orbit graph Gt(z) is common for all z from (v). There-
fore, we have shown that every minimal invariant Markov basis has the same
set of orbits. ��
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