
AISM (2008) 60:205–224
DOI 10.1007/s10463-006-0083-3

Saddlepoint approximations for multivariate
M-estimates with applications to bootstrap accuracy

Chris Field · John Robinson · Elvezio Ronchetti

Received: 4 March 2005 / Published online: 18 October 2006
© The Institute of Statistical Mathematics, Tokyo 2006

Abstract We obtain marginal tail area approximations for the one-dimensional
test statistic based on the appropriate component of the M-estimate for both
standardized and Studentized versions which are needed for tests and confi-
dence intervals. The result is proved under conditions which allow the appli-
cation to finite sample situations such as the bootstrap and involves a careful
discretization with saddlepoints being used for each neighbourhood. These re-
sults are used to obtain second-order relative error results on the accuracy of the
Studentized and the tilted bootstrap. The tail area approximations are applied
to a Poisson regression model and shown to have very good accuracy.

Keywords Empirical saddlepoint · Relative errors · Studentized M-estimates ·
Tail area approximation · Tilted bootstrap

1 Introduction

Let F be a class of distributions of X and let ψ(x, θ) be a score function which
assumes values in �p for values of θ ∈ �p. Let θ(F) be the solution of
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Eψ(X, θ) = 0. (1)

Consider F0 ⊂ F such that the first element of θ(F0), for F0 ∈ F0 is equal
to a specified value θ10. Assume that we have independent, identically distrib-
uted observations X1, . . . , Xn from a distribution F0. Denote the solution of the
equations

n∑

j=1

ψ(Xj, θ) = 0

as the M-estimate T of θ(F). We consider an observed sample x1, . . . , xn, an
observed statistic t, and we wish to test an hypothesis that the first component
of θ(F), θ1, equals θ10. Throughout the paper P0 will denote a probability based
on some fixed distribution F0 ∈ F0 and we will write θ0 = θ(F0) for the corre-
sponding parameter. We are interested in finding accurate approximations to a
P-value for a test of the above hypothesis using T1, the first component of T, as
a test statistic.

If the distribution of T1 were known we could find P0(T1 ≥ t1), where t1 is
the first component of t. In general, this is not possible but we can consider an
approximation of the Studentized statistic ps(a) = P0((T1 − θ10)/S ≥ a), where
S is a consistent estimate of σ , the asymptotic standard deviation of

√
nT1, and

a = (t1 − θ10)/s will be used throughout the paper. A first-order approximation
gives the standard normal distribution. Higher order approximations can be
obtained by means of Edgeworth or saddlepoint techniques, where we need
to use empirical versions of these with estimated cumulants or an estimated
cumulant-generating function, respectively. Finally, since the distribution F0 is
often not specified, it is natural to consider bootstrap approximations to the tail
areas.

In this paper, we provide saddlepoint approximations to tail areas for the
bootstrap case. From a theoretical point of view, they can be used to analyse the
relative error properties of bootstrap approximations. We focus on saddlepoint
techniques because they provide approximations where the relative error can
be controlled. This allows us to go beyond typical results about absolute errors
already available in the bootstrap literature. From a computational point of
view, the saddlepoint approximation is an attractive alternative to the boot-
strap especially when the number of bootstrap replicates has to be large to
obtain a required level of accuracy. More specifically, our contributions to the
literature are as follows.

In Sect. 2 we state the two main theorems which give a saddlepoint approxi-
mation to the tail area when the underlying distribution does not have a density.
This opens up the application of the approximation in the bootstrap case (Sects.
3 and 4). In Theorem 1 we obtain a saddlepoint approximation to P0((T1 −
θ10)/σ ≥ y), where σ is the asymptotic standard deviation of

√
nT1. This gen-

eralizes the result of Almudevar et al. (2000) which was obtained under the
assumption of existence of densities. The proof is not given as it is a simpler
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version of the proof of Theorem 2, given in Sect. 6, in which we give a new
saddlepoint approximation for P0((T1 − θ10)/S ≥ y), where S is a consistent
estimate of σ . The approximation in Theorem 2 is not fully relative but the
absolute errors are kept exponentially small. These results are proved under
the weak conditions which enable us to use them in bootstrap applications. The
proof uses two essential ideas. The first is that the tilting necessary in the saddle-
point approach is performed on only some of the variables involved in the test
statistic. This is similar to the approach in Jing et al. (2002). The second idea,
which is an innovation in this paper, is that we need to relate the distribution of
the test statistic to the behaviour of a set of equations in a small neighbourhood.
Since we do not have densities, the saddlepoint is applied in neighbourhoods
and then aggregated.

In Sect. 3 we consider the Studentized bootstrap and use Theorem 2 to show
that its relative error is OP(

√
na3 ∨ n−1) for a < n−1/3. This implies a rela-

tive error of order OP(n−1) in the normal region and a relative error of order
OP(n−1/2) in a region beyond the normal region up to a ∼ O(n−1/3). These
results extend similar results for smooth functions of means obtained in Jing
et al. (1994), Feuerverger et al. (1999), Robinson and Skovgaard (1998), and
Jing et al. (2002).

An alternative bootstrap approach is to use a tilted bootstrap with P value
p∗

t (a) = P̃∗((T̃∗
1 − t1)/s ≥ a), where s is a consistent estimate of σ computed in

the original sample and the tilde indicates that we have used a bootstrap sample
which has been tilted in order to satisfy the null hypothesis θ1 = θ10. In Sect. 4
we describe this approach and use Theorem 1 to show that its relative error is
O(na4 ∨ n−1) for a < n−1/3. This is similar to the result for the Studentized
bootstrap in the normal region but not quite as good beyond that.

Finally, we illustrate the theoretical results with an example in Sect. 5 where
we consider Poisson regression with three covariates. We compute the P-values
using the Studentized and the tilted bootstrap and illustrate the accuracy of
the tail area in Theorem 4 to the tilted bootstrap results. The computations are
performed using Splus and avoid coding of complicated derivatives by using
accurate numerical derivatives.

The proofs of the theorems are given in Sect. 6.

2 Two saddlepoint approximation theorems

In order to state the tail area results, we need to set up the notation. We write

L̄θ = n−1
n∑

j=1

ψ(Xj, θ),

M̄θ = n−1
n∑

j=1

ψ ′(Xj, θ),
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Q̄θ = n−1
n∑

j=1

ψ(Xj, θ)ψT(Xj, θ),

and

M̄′
θ = n−1∂M̄θ /∂θ , Q̄′

θ = n−1∂Q̄θ /∂θ ,

where ′ denotes the derivative with respect to θ . Define

L̂θ = M̄−1
θ L̄θ ,

whenever det(M̄θ ) 
= 0. For M-estimates, the asymptotic standard deviation of√
nT1 is σ , where

σ 2 =
[
(EθM̄θ )

−1Eθ Q̄θ (EM̄θ )
−1
]

11

with estimated standard deviation S, where

S2 =
(

M̄−1
T Q̄TM̄−1

T

)

11
.

Denote the cumulant-generating function of ψ(X1, θ) by

κ(τ , θ) = log
∫

exp(τTψ(x, θ))dF0(x) (2)

and define τ(θ) as the solution to

∂κ(τ , θ)
∂τ

= 0. (3)

We will obtain results on the distribution of the standardized and the Stu-
dentized version of T1. First we state a result on the standardized version under
the conditions given in the Appendix (Sect. 6). For this standardized version
we obtain an approximation with relative error O(1/n).

To state the result for Studentized T1 we need some further notation. Let
Ujθ = (Ljθ , Vjθ , Wjθ ) be independent identically distributed random vectors
with positive definite covariance matrix such that all elements of M̄θ and Q̄θ are
linear forms of the sum of (Ljθ , Vjθ ) and all elements of M̄′

θ and Q̄′
θ are linear

forms of the sum of Ujθ . Let the dimensions of the components of Ujθ be p, q,
and r, respectively.

Let FU be the distribution of Ujθ under F0 and define the tilted variable
Uτ = Uτ(θ)θ to have distribution function

Fτ (�, v, w) =
∫

(�′,v′,w′)≤(�,v,w)

eτ(θ)
T�′−κ(τ(θ),θ)dFU(�

′, v′, w′).
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Let �τ = covUτ , and let µτ = EUτ , where µτ has 0 in the first p components
and θ = (ζ , η) where ζ is scalar.

Theorem 1 Suppose conditions (A1)–(A3) of Sect. 6 hold. Then

P0((T1 − θ10)/σ ≥ y) = [1 −�(
√

nw†
1(y))][1 + O(1/n)], (4)

where w†
1(y) = w1(y)− log(w1(y)G1(y)/H′

1(y))/nw1(y), w1(y) = √
2H1(y), and

for ζ = σy + θ10,

H1(y) = inf
η

{−κ(τ(ζ , η), (ζ , η))} = −κ(τ(ζ , η̃), (ζ , η̃)),

and if tilde indicates that values are taken at η̃,

G1(ζ ) = σ J̃

det�̃1/2
Lτ detK̃1/2

22

,

where �Lτ = cov Lτ(θ)θ = Eτ(θ)Q̄θ ,

K22 = ∂2κ(τ(ζ , η), (ζ , η))
∂η2

=
⎛

⎝
[
∂2κ(τ , θ)
∂θ2 − ∂2κ(τ , θ)

∂θ∂τ

(
∂2κ(τ , θ)
∂τ 2

)−1
∂2κ(τ , θ)
∂τ∂θ

]

τ=τ(θ)

⎞

⎠

22

,

where the subscript 22 indicates the part of the matrix corresponding to η, and J
is the expectation of the Jacobian of the transformation (�̂, v) = g(�, v) under the
tilted distribution, namely Eτ(θ)M̄θ .

Note that we can show, after some computation, that

H′
1(y) = −σ

[
∂κ(τ , (ζ , η))

∂ζ

]

τ=τ(ζ ,η̃),η=η̃
.

The proof of Theorem 1 is omitted as it follows in the same way as the proof of
Theorem 2 given in Sect. 6.

The next theorem gives a result in the case of a Studentized statistic. Define
the transformation Zθ = (L̂θ , V̄θ + L̂θ

∂V̄θ
∂θ

, W̄θ ) = g1(L̄θ , V̄θ , W̄θ ) and let J1 be
the Jacobian of the transformation. Suppose S = s(T1, T2, V̄T) and define the
transformation ((T1 − θ10)/S, T2, V̄T , W̄θ ) = g2(T1, T2, V̄T , W̄θ ) and let J2 be
the Jacobian of this transformation. Let (ξ , η, v, w) = g2(ζ , η, v, w) and define
λ(ξ , η, v, w) = −κ(τ(ζ , η), (ζ , η)) and �(ξ , η, v, w) = λ(ξ , η, v, w) + u∗Tu∗/2,
where u∗ = �

−1/2
τ (u − µτ ) and u∗ has 0 in the first p components. Now define

H(ξ) = inf
η,v,w

�(ξ , η, v, w) = H(ξ , η̃, ṽ, w̃) (5)
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and
h(ξ) = inf

η,v,w
{λ(ξ , η, v, w)}. (6)

Theorem 2 If Conditions (A1)–(A3) of Sect. 6 hold, then

P0((T1 − θ10)/S ≥ y) = [1 −�(
√

nw†(y))]
[

1 + O
(

1
n

)]
+ e−nh(y)O

(
1
n

)
,

(7)

where w†(y) = w(y)− log(w(y)G(y)/H′(y))/nw(y), w(y) = √2H(y),

G(ξ) = J̃1J̃2

det�̃1/2
22 det�̃1/2

τ

√
2π/n

(8)

and �22 denotes the submatrix of ∂2�(z)/∂z2 for z = (ξ , η, v, w), excluding the
first row and column.

Remark Because we tilt only on the variables Ljθ we are unable to obtain an
approximation in the Studentized case where the errors are fully relative. How-
ever, we can get a substantial improvement over absolute errors as was possible
in the case of smooth functions of means in Jing et al. (2002). It is worth noting
that the improved result for Theorem 1 over that for Theorem 2, follows since
in proving Theorem 1,

inf
η,v,w

[
−κ(τ(ζ , η), (ζ , η))+u∗Tu∗/2

]
= inf

η
[−κ(τ(ζ , η), (ζ , η))]=−κ(τ(ζ , η̃), (ζ , η̃)),

whereas in Theorem 2, following the transformation to ξ which involves ζ , η,
and v the minima used are given in (5) and (6).

3 Studentized bootstrap

In this section, we consider computing tail areas and P-values by using a stu-
dentized bootstrap. We are interested in ps(a) = P0((T1 − θ10)/S > a), where
the probability is computed under H0. The bootstrap approximation proceeds
as follows. Let X∗

1 , X∗
2 , . . . , X∗

n be a sample from the empirical distribution Fn
and let T∗ denote the solution of

n∑

j=1

ψ(X∗
j , θ) = 0. (9)

In the studentized bootstrap we replace the tail area above by p∗
s (a) = P∗((T∗

1 −
t1)/S∗ > a), where S∗ is the bootstrap version of S. Our aim is to determine the
accuracy of p∗

s (a) relative to ps(a). The result is given in the next theorem.
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Theorem 3 If conditions (A1)–(A3) of Sect. 6 hold, then for a < Cn−1/3, for
some constant C,

p∗
s (a)

ps(a)
= 1 + OP

(√
na3 ∨ n−1

)
, (10)

This ensures that the Studentized bootstrap has relative error OP(1/n) for
values of a = O(1/

√
n) to relative error OP(1/

√
n) up to a = O(n−1/3). We note

that in the case of the Studentized mean (which is a special case of the results
considered here), under the assumption that E exp(tX2) < ∞ for t in an open
neighbourhood of 0, the relative error can be kept of order O(

√
na3), that is of

order o(1) for a = o(n−1/6). We are not able, under these conditions and with
the methods used here, to extend Theorem 2 beyond a = O(n−1/3).

4 Bootstrap tilting

In the previous section, we showed that p∗
s (a), the bootstrap approximation to

the P value of the studentized statistic was accurate to relative order OP(
√

na3∨
n−1). Here we will look at a tilted bootstrap which will avoid the issue of stu-
dentizing and compare the accuracy of the P value for the tilted bootstrap to
p∗

s (a).
For the tilted bootstrap we will choose weights wi which minimize the back-

ward Kullback–Leibler distance between the weighted distribution and the
distribution with weights 1/n subject to the constraints that, for each θ ,

n∑

i=1

wiψ(xi, θ) = 0 (11)

and
∑n

i=1 wi = 1. Thus, we minimize

n∑

i=1

wi log(nwi)− βT
n∑

i=1

wiψ(xi, θ)+ γ

(
n∑

i=1

wi − 1

)
(12)

with respect to wi. This, together with the constraints, leads to

wi = eβ(θ)
Tψ(xi,θ)−κ∗(β(θ),θ), (13)

where

κ∗(β, θ) = log
n∑

i=1

eβ
Tψ(xi,θ)

and with β(θ) chosen so that (11) holds. The minimum of (12) is—κ∗(β(θ), θ)+
log n. Now if θ1 = θ10, we can choose θ2 to minimize this by choice of θ2 as the
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solution to
n∑

i=1

wiβ(θ)
T∂ψ(xi, θ)/∂θ2 = 0. (14)

Denote the solution by θ̃ , where θ̃1 = θ10.
We now sample from the tilted empirical distribution with weights

w̃i = eβ(θ̃)
Tψ(xi,θ̃ )−κ∗(β(θ̃),θ̃ ). (15)

We denote this empirical distribution by F̃n and the bootstrap sample as X̃∗
i , i =

1, . . . , n. We now solve

n∑

i=1

ψ(X̃∗
i , t) = 0

to get the estimate T̃∗. Our interest is in approximating the P value

p∗
t (a) = P̃∗((T̃∗

1 − θ10)/s > a),

where s is the standard deviation of
√

nT1 computed with the original data and
a = (t1 − θ10)/s, and comparing it with p∗

s (a). To get this saddlepoint approxi-
mation we use Theorem 1 with κ(τ , θ) = log

∑n
i=1 w̃i exp(τTψ(xi, θ)). The next

theorem gives the result.

Theorem 4 If conditions (A1)–(A3) of Sect. 6 hold, then for a < Cn−1/4, for
some constant C,

p∗
s (a)

p∗
t (a)

= 1 + O(na4 ∨ n−1). (16)

This is not quite as good as the result for the Studentized bootstrap although
it still gives relative error O(n−1) for a < Cn−1/2 but we can only obtain relative
error o(1) for a = o(n−1/4).

5 Numerical example

In this section, we illustrate the numerical accuracy of the tail areas approxima-
tions derived in the paper. Consider a Poisson regression model, Yi ∼ P(µi),
where

logµi = θ1 + θ2xi2 + θ3xi3 = xT
i θ i = 1, . . . , n

xi = (1, xi2, xi3)
T , θ = (θ1, θ2, θ3)

T . We want to test the null hypothesis H0 : θ3 =
θ30 = 1.
(xi2, xi3) are generated from a uniform distribution on (0, 1) for each sample

and then Yi are obtained as Poisson variables with mean µi. The parameter θ is
set to (1, 1, 1)T and the sample size n = 30.
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Fig. 1 The first panel gives tail probabilities for the saddlepoint approximation to the tilted boot-
strap and approximate tail probabilities from 30,000 tilted bootstrap samples from one original
sample. The second panel gives the relative errors of these two approximations

We consider the maximum likelihood estimator for the parameter θ , θ̂ , the
M-estimator defined by the equation

n∑

i=1

ψ(Yi, θ) = 0,

where ψ(Yi, θ) = (Yi − µi)xi and µi = exT
i θ .

We first consider the accuracy of the saddlepoint approximation of Theorem 1
by simulating a single sample of size 30 and obtaining the saddlepoint approxi-
mation to the tail probabilities, p∗

t (a) for a sequence of values of a, for the tilted
bootstrap for this sample. Then we obtain 30,000 tilted bootstrap samples from
the original sample and get approximate tail area probabilities from these. These
tail areas are plotted in the first panel of Fig. 1 together with the saddlepoint
approximation from Sect. 4 (We note that derivatives used in the saddlepoint
approximation are calculated numerically without loss of accuracy). In the sec-
ond panel we plot the relative errors. It is clear that throughout the range an
excellent approximation is obtained, illustrating the results of Theorem 1.

We also consider the accuracy of the tilted bootstrap to the true distribu-
tion. We take 10,000 Monte Carlo samples and for each sample compute θ̂ , S,
and (θ̂3 − θ30)/S. We approximate the tail areas corresponding to ps(a) of the
Studentized statistic for a = (0.5, 1.0, 1.5, 2.0) using these 10,000 Monte Carlo
samples. Then we obtain 10 samples and from each we get 1,000 tilted bootstrap
samples from which we get approximate tail probabilities corresponding to the
four values of a. The mean (BSM) and standard deviation (BSSD) of these
are given in Table 1. In addition, Table 1 gives the mean (SPM) and standard
deviation (SPSD) of the 10 saddlepoint approximations corresponding to each
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Fig. 2 Boxplots of 3,000 Studentized bootstrap p values corresponding to exact tail areas 0.2, 0.1,
0.05,0.01

Table 1 Values a, Monte Carlo approximation, mean and standard deviation of 10 saddlepoint
approximations to tilted bootstrap, mean and standard deviation of 10 tilted bootstrap approxima-
tions using 1,000 bootstrap samples and standard deviation of the difference of the approximations

a MC SPM SPSD BSM BSSD SDDIF

0.5 0.314 0.298 0.046 0.296 0.050 0.015
1.0 0.164 0.152 0.051 0.153 0.054 0.012
1.5 0.068 0.069 0.041 0.074 0.042 0.008
2.0 0.020 0.030 0.028 0.032 0.028 0.008

of the four values of a. It also gives the standard error of the difference between
the 10 pairs for each a value (SDDIF). The tilted bootstrap and the saddlepoint
are seen to be very close from the last column (SDDIF) and much of the small
variation can be explained by the fact that only 1,000 bootstrap samples were
used. The approximation to the true distribution is not as good, as is to be
expected from Theorems 3 and 4.

In addition, to examine the Studentized bootstrap, we take 3,000 Monte Carlo
samples and obtain approximations to the quantiles of (θ̂3 −θ30)/S, correspond-
ing to frequencies 0.2, 0.1, 0.05, 0.01. For each of the 3,000 Monte Carlo samples
we generate 100 nonparametric bootstrap samples, (Y∗

i , x∗
i1, x∗

i2) for i = 1, . . . , n
and for each of these we compute (θ∗

3 − θ̂3)/S∗. Using the “a” given by the
quantiles of the 3,000 Monte Carlo samples we compute the frequencies (out of

100) p∗
s (a) = ∑

(
(θ∗

3 − θ̂3)/S∗ ≥ a
)

. This provides 3,000 values for p∗
s (a) which

are represented in the boxplots of Fig. 2 and can be used to compare p∗
s (a) with
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Fig. 3 Boxplots of 3,000 tilted bootstrap p values corresponding to exact tail areas 0.2, 0.1, 0.05,0.01

the exact tail areas 0.2, 0.1, 0.05, 0.01. These give boxplots as expected for 3,000
random binomial (100, p) variates with p taking the values 0.2, 0.1, 0.05, 0.01.
This is repeated with the tilted bootstrap to give Fig. 3.

Figures 2 and 3 show that the studentized bootstrap and the tilted bootstrap
(which is not studentized) tail areas are equivalent. Both are centred around the
exact values with the tilted bootstrap slightly less variable than the studentized
bootstrap at least for the 0.2 and 0.1 tail areas.

Acknowledgements The authors thank Joanna Flemming for her help with the computation of
the numerical example.

6 Appendix

6.1 Conditions

Consider independent, identically distributed observations X1, X2, . . . , Xn from
a distribution F0. We have a score function ψ(X1, θ) which assumes values in
�p such that

∫
ψ(x, θ)dF0(x) = 0 has a solution θ0. Suppose that ψ(X1, θ) has a

derivative ψ ′(X1, θ) with respect to θ , with probability 1, and assume

(A1) det
(∫
ψ ′(x, θ0)dF0(x)

) 
= 0.

Then, if for some γ > 0,
∫
ψ ′(x, θ)dF0(x) is continuous at all θ ∈ Bp

γ (θ0), the
solution θ0 is the unique solution in Bp

γ (θ0), where by Bp
γ (θ0) we mean a cube

with side length 2γ of dimension p centred at θ0.
Assume that

(A2) The elements of ψ(X1, θ) and its first four derivatives with respect to θ
exist and are bounded and continuous.
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In order to apply an Edgeworth expansion we need a smoothness condition
for the variables Uτ . Assume

(A3) 0 < c < det�1/2
τ < C and if ϕτ (ξ) = EeiξT Uτ

, then |ϕτ (ξ)| < 1 − ρ, for
ρ > 0 and for all c < |ξ | < Cnd/2, where d = p + q + r + 1.

Choose 0 < ε < 1
4 |detE0ψ

′(X1, θ0)|, γ > 0 and B > 0 and define the set E by

E = E(ε, γ , B)

=
{
|detM̄−1

θ Q̄θM̄−1
θ |> ε, max|M̄′′

θ | <B, |L̂θ |< 3
4
γ , for θ ∈ Bp

γ (θ0)

}
. (17)

Then the conditions (A1)–(A3) together with Cramér’s large deviation theorem
ensure that

P0(E) > 1 − e−cn

for some c > 0 depending only on ε, γ , B. We can then restrict attention to
X ∈ E since for any event A

P0(A) = P0(A ∩ E)+ O(e−cn)

and we will be concerned only with approximations to probabilities of events
with errors at least O(e−cn). In the following, we will restrict attention to samples
in E. Then

||M̄−1
θ (M̄θ0 − M̄θ )|| < Bγ /ε <

1
4

for θ ∈ Bp
γ (θ0) by choice of γ < ε/4B. The inequality allows the application

of Lemma 1 of Almudevar et al. (2000) with α = 1/4 to show that there is a
unique solution T of

∑n
j=1 ψ(Xj, θ) = 0 in Bp

γ (θ0).

6.2 Proof of Theorem 2

Since in the problem considered here no densities exist we find the probability
of the tail event {(T1 − θ10)/S ≥ y} by partitioning the space of (T, VT) into
small regions and approximating P0((T1−θ10)/S ≥ y) by summing probabilities
of the appropriate small regions. To do this we need to bound the probabilities
of these small regions in the space of (T, VT) by probabilities of regions in the
space of Ūθ . These bounds are derived in the technical lemma below. Next we
use indirect Edgeworth approximations to these probabilities and an integral
approximation to the sum of the indirect Edgeworth approximations. As part
of this we find bounds for the errors of approximation.
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Lemma 1 Take θ ∈ Bp
3
4 γ
(θ0), v ∈ Rq and 0 < δ < 1

4γ . Then there is a C > 0,

depending only on B, ε such that for δ chosen so that Cδ < 1
4 ,

{L̂θ ∈ Bp
δ(1−Cδ)(0)} ∩

{
V̄θ + L̂θ

[
∂V̄θ
∂θ

]
∈ Bq

δ(1−Cδ)(v)

}

⊂ {T ∈ Bp
δ (θ)} ∩ {V̄T ∈ Bq

δ (v)}

⊂ {L̂θ ∈ Bp
δ(1+Cδ)(0)} ∩

{
V̄θ + L̂θ

[
∂V̄θ
∂θ

]
∈ Bq

δ(1+Cδ)(v)

}
. (18)

Proof Suppose T ∈ Bp
δ (θ) and VT ∈ Bq

δ (v). Expanding L̄T = 0 about θ and
noting that in E, |M̄′

θ | are bounded and that |det M̄θ | > ε, we can choose

|L̂θ − (θ − T)| ≤ Cδ2

and then similarly

∣∣∣∣∣

∣∣∣∣∣V̄T − Vθ − L̂θ

[
∂V̄θ
∂θ

]∣∣∣∣∣

∣∣∣∣∣ ≤ Cδ2,

verifying the second inclusion of (18). Conversely, we can choose C such that

sup
θ ′∈Bp

δ (θ)

|M̄−1
θ ′ M̄θ − Ip| ≤ 1

2
Cδ.

So from Lemma 1 of Almudevar et al. (2000), if L̂θ ∈ Bp
δ(1−Cδ)(0) and δ is such

that Cδ < 1/4, then there is a unique solution T ∈ Bp
δ (θ). Also as before, if

V̄θ + L̂θ [ ∂V̄θ
∂θ

] ∈ Bq
δ(1−Cδ)(v), then V̄T ∈ Bq

δ (v). This concludes the proof of the
lemma.

We want

P0((T1 − θ10)/S ≥ y)

= P0({(T, V̄T) ∈ Bp+q
3
4 γ
(θ0, E0V̄θ0)} ∩ {(T1− θ10)/S ≥ y})+O(e−cn). (19)

Let (ζi, ηj, vk), where i, j, k take values . . . , −2, −1, 0, 1, 2, . . ., be centres of cubes
of side 2δ giving a partition of Rp+q with (ζ0, η0, v0) = (θ10, θ20, E0V̄θ0). Denote
by
∑ † the sum over {(i, j, k) : (ζi, ηj, vk) ∈ Bp+q

3
4 γ
(θ0, E0V̄θ0) and ζi/s(ζi, ηj, vk) ≥

y}, where s(ζ , η, v) corresponds to S. Then

P0((T1 − θ10)/S ≥ y)

=
∑

†P0((T1, T2, V̄T) ∈ Bp+q
δ (ζi, ηj, vk))(1 + O(δ))+ O(e−cn) (20)
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where the relative error O(δ) is due to using the cubes touching the boundary
of the region {(T1 − θ10)/S ≥ y} within Bp+q

3
4 γ
(θ0, E0V̄θ0).

Now the lemma applied to the probability of this cube gives

P0

⎛

⎝{L̂(ζi,ηj) ∈ Bp
δ(1−Cδ)(0)} ∩

⎧
⎨

⎩V̄(ζi,ηj) + L̂(ζi,ηj)

[
∂V̄θ
∂θ

]

θ=(ζi,ηj)

∈ Bq
δ(1−Cδ)(vk)

⎫
⎬

⎭

⎞

⎠

< P0((T1, T2, V̄T) ∈ Bp+q
δ (ζi, ηj, vk))

<P0

⎛

⎝{L̂(ζi,ηj) ∈ Bp
δ(1+Cδ)(0)}∩

⎧
⎨

⎩V̄(ζi,ηj)+L̂(ζi,ηj)

[
∂V̄θ
∂θ

]

θ=(ζi,ηj)

∈ Bq
δ(1+Cδ)(vk)

⎫
⎬

⎭

⎞

⎠

Take Bkm to be a typical Bp
δ(1−Cδ)(0)×Bq

δ(1−Cδ)(vk)×Br
δ(wm), or by a similar

term with 1−Cδ replaced by 1+Cδ, where m takes values . . . , −2, −1, 0, 1, 2 . . ..
The wm are centres of cubes of radius δ giving a partition of Rr with w0 =
E0(W̄θ0). We can bound the sum in (20) by

∑
†
∑

‡P0(Z(ζi,ηj) ∈ Bkm)+ O(e−cn),

where
∑ ‡ is a sum over m such that |wm| < 3

4γ and where for the lower bound
Bkm has 1 − Cδ and 1 + Cδ for the upper bound.

Writing u = (�, v, w), let

ed(u, Fτ ) = exp(−nu∗Tu∗/2)
(2π/n)(p+q+r)/2 det�1/2

τ

⎛

⎝1 +
d∑

l=1

Qln(u
∗√n)

⎞

⎠ .

Then using Theorem 1 of Robinson et al. (1990), we have

P0(Zθ ∈ Bkm) = P0((L̄θ , V̄θ , W̄θ ) ∈ g−1
1 (Bkm))

= enκ(τ(θ),θ)

⎡

⎢⎢⎣

∫

g−1
1 (Bkm)

e−n�Tτ(θ)ed((�, v, w), Fτ )d�dvdw + R

⎤

⎥⎥⎦ ,

(21)

where R = R1 +R2 +R3 corresponding to the three residuals of Robinson et al.
(1990). The first term in the last equation is equal to

enκ(τ(θ),θ)
∫

Bkm

J1(z)e
−n�Tτ(θ)ed(g

−1
1 (z), Fτ )dz,
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where J(z) is the Jacobian of the transformation z = g1(�, v, w) and we write
g−1

1 (z) = (�(z), v(z), w(z)). Noting that for this transformation g−1
1 (0, v, w) =

(0, v, w), we can approximate this integral by

P0(Zθ ∈ B) = enκ(τ(θ),θ)[J1(0, vk, wm)ed((0, vk, wm), Fτ )δp+q+r(1 + O(nδ))+R].

Take δ = n−2 so that the term O(nδ) is O(n−1). Then noting that d = s − 3
from Theorem 1 of Robinson et al. (1990) and that our result concerns means
rather than sums,

R1 < Cvol(g−1
1 (B))n(p+q+r)/2−(d+1)/2 < Cvol(g−1

1 (B))n−1 (22)

if d = p + q + r + 1, where vol(A) is the volume of the set A. Also

R3 < C sur(g−1
1 (B))n(p+q+r)/2ε < Cvol(g−1

1 (B))n(p+q+r)/2ε/δ, (23)

where ε is the smoothing parameter in the theorem, where sur(A) is the surface
area of the set A. Taking ε = n−(d+5)/2, we get

R3 < Cvol(g−1
1 (B))n−1.

To bound the other term we use (A4) from which we see

R2 < Ce−cn. (24)

Approximating the sums by integrals, we have

P0((T1 − θ10)/S ≥ y) =
∫

Ay

enκ(τ(ζ ,η),(ζ ,η))J1(0, v, w)ed((0, v, w), Fτ )dζdηdvdw

× (1 + O(n−1))+
∫

Ay

enκ(τ(ζ ,η),(ζ ,η))dζdηdvdwO(n−1),

(25)

where Ay = {(ζ , η, v) : {(ζ − θ01)/s(ζ , η, v) ≥ y} ∩ Bp+q+r
3
4 γ

(θ10, θ20, E0V̄θ , E0W̄θ )

and where we may incorporate the exponential error term in the relative error
term by bounding y by a sufficiently small constant.

Consider the transformation (ξ , η, v, w) = g2(ζ , η, v, w), where ξ = (ζ −
θ10)/s(ζ , η, v) with Jacobian J2(ξ , η, v, w). So we can write

P0((T1 − θ10)/S ≥ y) =
ν∫

y

∫

D

e−n�(ξ ,η,v,w)J1J2

(2π/n)(p+q+r)/2det�1/2
τ

dξdηdvdw(1 + O(1/n))

+
ν∫

y

∫

D

e−nλ(ξ ,η,v,w)dξdηdvdwO(n−1), (26)
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where the first Edgeworth term in ed((0, v, w), Fτ ) integrates to zero by
symmetry and the other terms are in the O(1/n) relative error term, and ν

and the sides of the rectangle D are chosen small enough so that (y, ν) × D
is in Bp+q+r−1

3
4 γ

(0, E0V̄θ0 , E0W̄θ0), and so the transformation is one to one and

�(ξ , η, v, w) and λ(ξ , η, v, w) remain convex as functions of (ξ , η, v, w).
Now define H and h as in (5) and (6). Then using (A2)

P0((T1 − θ10)/S ≥ y) =
ν∫

y

[
e−nH(ξ)
√

2π/n
G(ξ)(1 + O(1/n))+ e−nh(ξ))O

(
1
n

)]
dξ .

(27)

Putting w = w(ξ) = √
2H(ξ) and w†(ξ) = w(ξ)−log(w(ξ)G(ξ)/H′(ξ))/nw(ξ)

we can obtain (7) of Theorem 2 as in Jing and Robinson (1994).

6.3 Proof of Theorem 3

In order to prove the result, we need to have an approximation for the tail area
which is valid both under sampling from F0 and under bootstrap sampling. In
particular the approximation must be valid for the situation when the quantity
of interest does not have a density. Theorem 2 gives such a result covering both
cases since Condition (A3) still holds for the bootstrap (see Weber and Kokic
1997). To apply Theorem 2 to the bootstrap, denote the cumulant-generating
function of ψ(X∗

1 , θ) by

κ∗(τ , θ) = log
∑

exp(τTψ(xi, θ))/n. (28)

Our interest is now in the approximation for the tail area

P∗((T∗
1 − t1)/S

∗ ≥ a) = (1 −�(
√

nw†∗(a)))(1 + O(1/n)),

where P∗ denotes the probability computed under Fn and w†∗(a) is defined in
the same way as w† in Theorem 2 with F0 replaced by Fn.

Part of the argument follows closely that given in Sect. 2.1 of Feuerverger et
al. (1999). To match their notation, write α(w(a)) = w(a)G(a)/H′(a) and note
that w† here corresponds to w∗ and α corresponds to ψ in their paper. As both
w(a) and α(w(a)) are analytic functions of y in a neighbourhood of the origin,
we obtain

w(a) = A0 + A1a + A2a2 + A3a3 + A4a4 + O(a5)

and

α(w(a)) = B0 + B1a + B2a2 + B3a3 + B4a4 + O(a5),
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where the coefficients Aj and Bj depend on the cumulants of ψ(Xi, θ) and its
derivatives under Fτ but not on n. We have a similar expression for w∗ and
α∗(w∗) from the bootstrap tail area.

By the same calculations as in the proof of Theorem 2 in Robinson et al.
(2003) we obtain

H(0) = 0, H′(0) = 0, H′′(0) = 1. (29)

Therefore, from the expansion of w, we get A0 = 0 and A1 = 1. Moreover, by
equating the integral in (27) taken over �1 to 1, we obtain α(0) = 1 and thus
B0 = 1. We want to consider the ratio

p∗
s (a)

ps(a)
= 1 −�(

√
nw†∗)

1 −�(
√

nw†)
[1 + O(1/n)] + e−nh(a))

1 −�(
√

nw†)
O(1/n). (30)

The first term here is considered in the same way as in Sect. 2.1 of Feuerverger
et al. (1999) and we can bound it by 1+OP(

√
na3) for a < n−1/3. For the second

term, we need to note that (29) holds and similarly that h(0) = 0, h′(0) =
0, h′′(0) = 1, so exp(−nh(a))/(1 −�(

√
nw†)) = O(na3). So if we restrict atten-

tion to a = O(n−1/3) we can see that the ratio in (30) is 1 + OP(
√

na3), which,
for a = O(n−1/3), is 1 + OP(1/

√
n).

6.4 Proof of Theorem 4

In the case of the tilted bootstrap, the cumulant generating function of F̃n is
given by

κ̃∗(τ , θ) = log
(∑

w̃ieτ
Tψ(xi,θ)

)
. (31)

This is used in Theorem 1 to obtain the saddlepoint approximation to the tilted
bootstrap.

We first prove the second order accuracy of the Edgeworth in this case. This
is needed to obtain the comparisons of the expansions of w†

1(a) of Theorem 1
and w†(a) of Theorem 2, used later in the proof. The first part of the following
proof is related to that of DiCiccio and Romano (1990) but differs in significant
ways. We could use the general results of Hall (1992) to give the Edgeworth
results but it is more transparent to write them out directly. For simplicity we
will neglect all terms of smaller order than n−1/2 in the rest of this section. We
have
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p∗
s (a) = P∗((T∗

1 − t1)/S
∗ ≥ a)

= P∗
(

T∗
1 − t1

s
− S∗2 − s2

2s3 a ≥ a
)

= 1 −�

(√
na(1 − acov(T∗

1 , S∗2)

s3

)
+ 1√

n
p(

√
na)φ(

√
na)

= 1 −�(
√

na)+ φ(
√

na)√
n

(
p(

√
na)− √

na2 cov(T∗
1 , S∗2)

s3

)
(32)

and, if s̃ is the variance of T1 under the tilted distribution,

p∗
t (a) = P̃∗((T̃∗

1 − θ10)/s ≤ a)

= P∗((T̃∗
1 − θ10)/s̃ ≤ a(1 − (s̃2 − s2)/2s2))

= 1 −�(
√

na(1 − (s̃2 − s2)/2s2))+ 1√
n

p(
√

na)φ(
√

na)

= 1 −�(
√

na)+ φ(
√

na)√
n

(
p(

√
na)− √

na
s̃2 − s2

2s2

)
. (33)

To show that

p∗
s (a)− p∗

t (a) = o(1/
√

n)

we need to show
s̃2 − s2

s2 = a
cov(T∗

1 , S∗2)

s3 . (34)

We can see that t − θ0 = BT
θ0

L̄θ0 , where BT
θ0

= M̄−1
θ0

and T∗ − t = BT
t L̄t, so

T∗
1 − t1 = BT

t1L̄t. Let Ȳθ be the vector of all elements of M̄θ and Q̄θ and let
g(Ȳθ ) = s2 = BT

t1QtBt1. Then

S∗2 = g(ȲT∗) = g(Ȳt)+ (Ȳ∗
t − Ȳt)g′(Ȳt)+ (T∗ − t)

∂Ȳt

∂t
g′(Ȳt).

So

cov(T∗
1 , S∗2) = BT

t1C12g′(Ȳt)+ BT
t1C1Bt

∂Ȳt

∂t
g′(Ȳt),

where C12 = cov(L̄∗
t , Ȳ∗

t ) and C1 = var(L̄∗
t ).

Also T̃∗
1 − θ10 = B̃T

t1
∑n

i=1 ψ(X̃
∗
i , θ̃ )/n and s2 = g(Ȳt) and s̃2 = g(Ỹθ̃ ), where

by Ỹθ̃ we mean weighted means of ψ(xi, θ̃ ) and similar terms with weights w̃i.
Then

s̃2 = s2 + (Ȳθ̃ − Ȳt)g′(Ȳt)+ (Ỹθ̃ − Ȳθ̃ )g
′(Ȳt). (35)

Now Ȳθ̃ − Ȳt = (θ̃ − t)∂Ȳt/∂t and
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Ỹθ̃ =
n∑

i=1

w̃iYiθ̃ = Ȳθ0 + λBT
t1C12

since w̃i = 1/n + λ̃BT
t1ψ(xi, t). Also λ̃ = −(t − θ10)/s2 = −a/s and expanding in

(11) we have

1
n

n∑

i=1

ψ(xi, θ̃ )+ λ̃

n∑

i=1

ψ(xi, t)ψ(xi, t)T = 0.

Now θ̃ − t = λ̃BT
t Qt, so using these in (35) gives (34).

In order to obtain a result on the relative error, we can use Theorems 1 and
2 to get

p∗
s (a)

p∗
t (a)

= 1 −�(
√

nw∗
s )

1 −�(
√

nw∗
t )

(36)

and then use Mill’s ratio to get

1 −�(
√

nw∗
s )

1 −�(
√

nw∗
t )

≤ nw∗
s |w∗

t − w∗
s |ew∗

s |w∗
t −w∗

s |. (37)

We now expand the functions w∗
s and w∗

t . Since the expansion has the same
form for each, we write an expansion for w∗ noting that the coefficients will
differ for the two functions. Now

w∗(a) = a + A2a2 + A3a3 + · · · − log(1 + B1a + B2a2 + · · · )
n(a + A2a2 + A3a3 + · · · )

= a + A2a2 + A3a3 + · · · − B1/n − aB′
2/n + · · · .

As a result

nw∗
s (w

∗
s − w∗

t ) = na(A2s − A2t)a2 + na(A3s − A3t)a3 − na(B1s − B1t)/n + · · · .

(38)

Now A2s − A2t and B1s − B1t are both of order O(1/
√

n) from the equivalence
of the Edgeworth expansions up to order O(1/n) but A3s − A3t can only be
shown to be of order O(1). As a result we have that

1 −�(
√

nw∗
s )

1 −�(
√

nw∗
t )

= 1 + O(na4 ∨ n−1) (39)

if we restrict a to O(n−1/3).
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