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Abstract The expected value and generating function of the number of over-
lapping occurrences of a pattern P in a Markov chain until the first occurrence
of a member from a finite collection of patterns that start with P is obtained. A
martingale technique is employed to address the problem.
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1 Introduction

The occurrence of patterns in stochastic sequences is an important topic with a
wide range of applications, and it has been studied by many different methods.
The first systematic treatment of the problem can be found in Feller (1968)
who used the recurrent event theory. The combinatorial methods were intro-
duced by Guibas and Odlyzko (1981a,b). Various probabilistic techniques were
employed in Biggins and Cannings (1987), Blom and Thorburn (1982), Breen
et al. (1985), Chrysaphinou and Papastavridis (1990), Han and Hirano (2003),
Robin and Daudin (2001), Stefanov (2003) and Uchida (1998). The modern
probabilistic approach is the Markov chain embedding method. For this method
and related techniques we refer readers to Antzoulakos (2001), Fu (1986, 2001),
Fu and Chang (2002), Fu and Koutras (1994), Stefanov (2000), and Stefanov
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and Pakes (1997, 1999). Two recent books provide a useful review of these
methods: Balakrishnan and Koutras (2002) and Fu and Lou (2003).

In this note we will use the martingale method that was introduced by Li
(1980) and Li and Gerber (1981), and further developed in Pozdnyakov and
Kulldorff (2006) and Pozdnyakov, Glaz, Kulldorff, Steele (2005). The idea of
the method is that a valuable information on the occurrence of patterns can
be obtained from a specially designed martingale. However, the common per-
ception is that the martingale approach is not easy to be employed for Markov
dependent trials. But, in fact, it has been shown by Glaz, Kulldorff, Pozdnyakov,
Steele (2006) that the occurrence of patterns in a Markov chain also can be
treated by the martingale technique.

Here we will consider the problem of the occurrence of subpattern in Mar-
kov chains. The simplest version of this problem in the case of the Bernoulli
trials is as follows. What is the distribution of the number of (overlapping)
occurrences of run of length l until run of length L > l is observed? Closely
related results can be found in Aki, Balakrishnan, Mohanty (1996), Hirano and
Aki (2003) and Uchida (1998), somewhat related – in Aki and Hirano (1994),
Chadjiconstantinidis and Koutras (2001) and Hirano et al. (1997). The progress
made here is twofold. First, we demonstrate that the martingale approach is
fruitful in this case also. Second, what we consider here is more general than
that in the papers mentioned above. Here the stopping rule is determined by
many patterns, not just by one. A potential application of the introduced tech-
nique is a test of randomness that can be designed in a way similar to one
suggested by Rukhin (2001, 2002). A detailed exposition is provided in the last
section of the note.

2 Formal statement of the problem

Let {Zn, n ≥ 1} be a Markov chain of order m over a finite alphabet �. Let P =
a1a2...al be a pattern (a word from the alphabet �) of length l ≥ m. Consider a
collection of patterns C = {PB1, PB2, ..., PBK}, where PBi = a1, ..., alb

(i)
1 , ..., b(i)

li
.

Assume that no pattern from C contains another as a subpattern. Let τi be the
waiting time until the first occurrence of the pattern PBi, and

τ = min{τ1, ..., τK}.

Assume that P(τ < ∞) = 1, and P(τ = τi) > 0 for all 1 ≤ i ≤ K. The main
object of interest is the number of overlapping occurrences of subpattern P
until τ which is denoted by N . The goal is to obtain the expected value and
generating function of N .

3 Key martingale related to pattern PB

Let us imagine a table in a casino that generates Markov chain {Zn, n ≥ 1}. Con-
sider a gambler that arrives in the casino right after n-th trial. First, the gambler
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watches l consecutive trials. If he does not see pattern P then he does not bet.
If he sees P then he starts to place bets on B = b1, ..., bN . More specifically, he
bets a dollar that the

Zn+l+1 = b1.

If it is not, he loses his bet and leaves the game. If he wins, he gets

1/pal−m+1,...,al|b1 ,

where pal−m+1,...,al|b1 = P(Zm+1 = b1|Z1 = al−m+1, ..., Zm = al), the transition
probability. Then he bets his entire capital on the event that

Zn+l+2 = b2.

If he loses, he leaves. If he wins his total capital is now

1/pal−m+1,...,al|b1/pal−m+2,...,alb1|b2 .

He continues the betting through the pattern B. If he finishes the pattern, he
leaves the game with his winning.

Now, if {Xn, n ≥ 1} is a total amount of money that the casino has from the
gambler at moments n, then it is obvious that this stochastic sequence forms a
martingale with respect to filtration generated by {Zn, n ≥ 1}. The initial value
of this martingale is 0.

4 Expected value of N

To compute the expected number of occurrences till τ we introduce K teams of
gamblers. A gambler from the j-th team that arrives at moment n bets yj dollars
(the amount of money that we specify a bit later) on pattern Aj in the way
described in the previous section. Let Xn be a net gain of the casino at moment
n. Since it is a sum of finite number of martingales, Xn is a martingale itself.

Next step is to obtain the expression of the stopped martingale Xτ . To do
that one needs to introduce a new notion of “profit matrix”. Let yjWij will be
total winnings of the j-th team whenever τ = τi. The matrix Wij, 1 ≤ i, j ≤ K is
called the profit matrix. Only gamblers who observe P enter the game, and most
of them are losers. Also note only those gamblers that enter the game right
before the stopping time τ (more precisely, those who enter the game after
τ − L, where L is length of the longest pattern from C) can have some money
in their pockets at time τ . Moreover, when τ = τi, the amount of winnings of
the j-th team is completely determined by overlapping of PBi and PBj, and this
quantity is a constant not a random variable. Later an explicit formula for Wij
will be provided. Also one needs to distinguish the patterns from C that ends by
P from those that do not. If the game is stopped because of the first occurrence
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of a pattern that also ends with P the total amount of money paid by the j-th
team is yj(N − 1). The gambler who observes the last occurrence of P does not
place his bet before τ . If the game is stopped because of the first occurrence of
a pattern that does not end with P the total amount of money paid by the j-th
team is yjN .

Without loss of generality let us assume that PB1, PB2, ..., PBQ ends with P,
and PBQ+1, PBQ+2, ..., PBK do not. Then the stopped martingale is given by

Xτ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(y1 + · · · + yK)(N − 1) − (W11y1 + · · · + W1KyK), if τ = τ1,
... ...
(y1 + · · · + yK)(N − 1) − (WQ1y1 + · · · + WQKyK), if τ = τQ,
(y1 + · · · + yK)N − (WQ+11y1 + · · · + WQ+1KyK), if τ = τQ+1,
... ...
(y1 + · · · + yK)N − (WK1y1 + · · · + WKKyK), if τ = τK.

Or one can write this in a more compact form

Xτ =
K∑

j=1

yjN −
Q∑

i=1

K∑

j=1

yj(Wij + 1)Iτ=τi −
K∑

i=Q+1

K∑

j=1

yjWijIτ=τi .

Now, let us assume that there exists a solution, (y∗
1, ..., y∗

K), of the following
linear system:

(W11 + 1)y1 + · · · + (W1K + 1)yK = 1
... ...
(WQ1 + 1)y1 + · · · + (WQK + 1)yK = 1
W(Q+1)1y1 + · · · + W(Q+1)KyK = 1
... ...
WK1y1 + · · · + WKKyK = 1

(1)

For this choice of the initial bets (y∗
1, ..., y∗

K), the stopped martingale is given by
a very simple formula

Xτ = (y∗
1 + · · · + y∗

K)N − 1.

Now one can show that the increments of the martingale Xn are almost sure
bounded, and the expected value of τ is finite. Therefore, by Optional-Stopping
Theorem (e.g., Williams 1991, p. 100) we find that

E(Xτ ) = 0.

Since the weights are not random, we get the following result.

Theorem 1 If (y∗
1, ..., y∗

K) solves system (1), then

E(N ) = 1
y∗

1 + · · · + y∗
K

.
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Remark 1 An interesting observation [which is consistent, for instance, with
results of Uchida (1998)] is that the expected value of N does not depend on
the initial distribution of the Markov chain.

5 Computation of the profit matrix Wij

One can say that the definition of Wij is too vague, but, in fact, it is not. The
explicit expression for that matrix can be presented. First, one needs to intro-
duce the following measure of overlapping of B = b1b2, ..., bN and C =
c1c2, ..., cM:

W(B, C) =
min(N,M)−l∑

k=1

δk(B, C),

where

δk(B, C) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
pcl−m+1...cl|cl+1 ...pcl−m+k...cl+k−1|cl+k

, if c1 = bN−k−l+1,

c2 = bN−k−l+2,
...
cl+k = bN ,

0, otherwise,

and l is the length of the pattern P. Now, having this notation at hand one can
show that

Wij = W(PBi, PBj).

For instance, if {Zn, n ≥ 1} is a second-order Markov chain with two states
H and T, C = {HHTHH, HHHHT}, and P = HH, then

W21 = W(HHHHT, HHTHH) = 1
pHH|T

+ 0 + 0,

and

W22 = W(HHHHT, HHHHT) = 0 + 0 + 1
pHH|HpHH|HpHH|T

.

6 Examples: expected number of occurrences

Let {Zn, n ≥ 1} be a sequence of Bernoulli trials with P(Zn = H) = p > 0 and
P(Zn = T) = q > 0. Let C = {HHTHH, HHHHT}, and P = HH. Then the
matrix Wij, 1 ≤ i, j ≤ 2 is equal to
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⎛

⎜
⎜
⎝

1
p2q

0

1
q

1
p2q

⎞

⎟
⎟
⎠ .

Solving (1) we find that

y∗
1 = p2q − p4q2

1 + p2q − p4q
, y∗

2 = p2q(1 − p2 + p2q)

(1 + p2q − p4q)
.

Finally, by Theorem 1 we find that

E(N ) = 1 + p2q − p4q
2p2q − p4q

.

Remark 2 The nature of the problem is such that making {Zn, n ≥ 1} a Markov
chain does not really complicate the problem. Since every gambler watches the
game for l rounds first they know how to bet in a fair fashion even if we have
Markov dependent sequence with an dependence order less than l. The exactly
same algorithm works in this case.

For example, let now {Zn, n ≥ 1} be a second-order two-state Markov chain,
and again C = {HHTHH, HHHHT}, P = HH. The profit matrix then is

⎛

⎜
⎜
⎝

1
(1 − pHH|H)pHT|HpTH|H

0

1
1 − pHHH

1
(pHH|H)2(1 − pHH|H)

⎞

⎟
⎟
⎠ .

Solving system (1) and applying Theorem 1 we obtain that

E(N ) = 1 + (1 − pHH|T)2(1 + pHH|H)pHT|HpTH|H
(1 − pHH|H)((1 − pHT|HpTH|H)(pHH|H)2 + pHT|HpTH|H)

.

Remark 3 Let us now comment on computational difficulties that one can have
with the usage of this approach. The algorithm is consist of three step: first
we form a profit matrix, then we solve a linear system associated with the
matrix, and, finally, we apply formula of Theorem 1. First of all, the examples
above show us that the imposing Markov dependence structure on a stochastic
sequence does not complicate calculations – unconditional probabilities should
be simply substituted by conditional ones. Also making the alphabet bigger is
not an issue. A computational difficulty can be caused by the size of the profit
matrix. The size of Wij is always K × K, where K is the number of stopping
patterns in list C. If the number of patterns in C is huge it will be not easy to use
the Theorem 1. Fortunately, the intended application of this method – test of
randomness – does not require a long list of stopping patterns. Also we do not
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think that any other method can lead to smaller matrices. It is is not clear for
the moment how this problem can be solved by an appropriate Markov chain
embedding. But most likely the number of needed states will be a number of
all the prefixes of the compound pattern C. As a consequence, the size of the
transition matrix of the embedded Markov chain will be larger than K ×K, and
it will be significantly larger if the number of patterns, K, is much smaller than
the average length of patterns in C.

7 Generating function of N

When the martingale method of gambling teams has been already developed
for the expected value, the transition to the generating function is relatively
easy. All the needed ideas have been introduced. We will use the same key
martingale, but now we play a bit with the amount of initial bets.

Again the gambler from j-th teams first observes l consecutive trials. If he
does not see P he leaves the game without playing. If it is P he bets yjα

k dollars
on Bj where k is a number of overlapping occurrences of P till this moment,
and 0 < α < 1. Since the size of the bet is fully determined by the previous
history of the process, the total net gain of the casino, Xn, forms a martingale.
Let αNyjWij(α) be total winnings of the j-team when game is ended with the
pattern PBi. Then the stopped martingale Xτ is given by

Xτ =
K∑

j=1

yjα
1 − αN

1 − α

−αN

⎡

⎣
Q∑

i=1

K∑

j=1

yj(Wij(α) + 1)Iτ=τi +
K∑

i=Q+1

K∑

j=1

yjWij(α)Iτ=τi

⎤

⎦ .

As before the key property of Wij(α) is that it is not a random variable. The
explicit algorithm that allows us to compute Wij(α) will be presented a bit later.
Now, let us choose weights (y1, ..., yK) in such a way that

(W11(α) + 1)y1 + · · · + (W1K(α) + 1)yK = 1
... ...
(WQ1(α) + 1)y1 + · · · + (WQK(α) + 1)yK = 1
WQ+11(α)y1 + · · · + WQ+1K(α)yK = 1
... ...
WK1(α)y1 + · · · + WKK(α)yK = 1

(2)

With this choice of the weights denoted by (y∗
1, ..., y∗

K) we get the following
simple expression for the stopped martingale:

Xτ =
K∑

j=1

y∗
j α

1 − αN

1 − α
− αN .
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After the routine application of the Optional-Stopping Theorem and a bit of
algebra we get the following result.

Theorem 2 If (y∗
1, ..., y∗

K) solves system (2), then

EαN = 1 − 1
α

1−α
(y∗

1 + · · · + y∗
K) + 1

,

8 Computation of Wij(α)

One can derive an explicit formula for matrix Wij(α). Consider two patterns
B = b1b2...bN and C = c1c2...cM. Let us introduce the following measure of
overlapping of B and C:

W(B, C)(α) =
min(N,M)−l∑

k=1

δk(B, C)α−nk ,

where δk(·, ·) is the same function defined earlier, and nk is the number of
occurrences of P in the suffix bN−k−l+2...bN . The matrix Wij(α) is given by

Wij(α) = W(PBi, PBj)(α).

9 Examples: generating function

Consider a sequence of Bernoulli trials {Zn, n ≥ 1} with P(Zn = H) = p > 0
and P(Zn = T) = q > 0. Let C = {HHTHH, HHHHT}, and P = HH. Then
the matrix Wij(α), 1 ≤ i, j ≤ 2 is given by

⎛

⎜
⎜
⎝

1
αp2q

0

1
q

1
α2p2q

⎞

⎟
⎟
⎠

Theorem 2 then tells us that

E(αN ) = α2p2(−1 + α(−1 + αp2))q
−1 + α + αp2(−1 + α2(−1 + p2))q

.

One can check also that

∂E(αN )

∂α

∣
∣
∣
α=1

= 1 + p2q − p4q
2p2q − p4q

,

the expected value of N .
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Let us give another example. Again we consider Bernoulli trials {Zn, n ≥ 1}
with P(Zn = H) = p > 0 and P(Zn = T) = q > 0. Let P = HH, but now
C = {HHH, HHT}. The matrix Wij(α), 1 ≤ i, j ≤ 2 is given by

⎛

⎜
⎜
⎝

1
αp

0

0
1
q

⎞

⎟
⎟
⎠ ,

y∗
1 = p2α/(1+pα), y∗

2 = 1−p. After a bit arithmetics the formula of Theorem 2
gives us

E(αN ) = α(1 − p) + pα2.

Now, this answer can be easily obtained without any help of Theorem 2. Indeed,
as soon as we have run HH we stop the next round. Therefore, N can take only
two values: 1 when we are stopped by HHT, or 2 if we stopped because of
HHH. Finally, for instance, using Li (1980) one can obtain P(τ = τ1) = p and
P(τ = τ2) = 1 − p.

10 Application: test of randomness

Most standard generators of random numbers are really pseudo-random.
Various deterministic procedures are employed to produce “random”
sequences. As a consequence, some patterning can be observed for such gener-
ators. Therefore, testing based on occurrence of words (patterns) seems to be a
natural idea (see Rukhin 2001, 2002).

In particular, in Rukhin (2001, p. 118) a number of occurrences of a given
(nonoverlapping with itself or nonperiodic) word in a random text is suggested
as a test statistic for randomness. Depending on the relationship between the
length of the word and the length of the random text, a Poisson limiting distri-
bution or normal can be used to make inference.

Clearly, that random variable N can be also employed to design a similar test
of randomness. The difference between our test and one suggested by Rukhin
(2001) that here we stop at random time τ . But it is not bad. The stopping time
is defined by collection C the choice of which is completely up to us. As a result,
we can control the average stopping time. In general, to increase E(τ ) we need
longer patterns in C and a smaller K, cardinality of C. In return, we have an exact
distribution, and we are not restricted to nonperiodic words. Also the previous
section demonstrates that C provides a good control over the distribution of N
as well.

Let us consider a four-letter alphabet {1, 2, 3, 4} with the uniform distribution
over it. We assume that letters are drawn in an independent way. The testing
word is P = 111, and
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Table 1 Test of randomness Exact Simulated

P(N = 1) 0.18750 0.18788
P(N = 2) 0.15234 0.15019
P(N = 3) 0.17456 0.17714
P(N = 4) 0.11961 0.11831
P(N = 5) 0.09183 0.09156
P(N = 6) 0.06848 0.06797
P(N = 7) 0.05143 0.05125
P(N = 8) 0.03856 0.03909
P(N = 9) 0.02892 0.02891
P(N = 10) 0.02169 0.02255
P(N = 11) 0.01627 0.01629
P(N > 11) 0.04879 0.04886

C = {11111, 11122, 11133, 11144}.

In this case, E(τ ) = 287.15789, by Theorem 1 E(N ) = 4.42105, and Theorem 2
gives us

E(αN ) = 12α + 3α2 + 4α2

64 − 36a − 9a2 .

Taylor series of this rational function gives us needed probabilities. Results
of 100,000 simulations together with the exact probabilities are presented in
Table 1. The simulated expected number of occurrences is 4.42671. We can see
that there is a good agreement between the exact and simulated probabilities.
Thus we can claim that Splus function sample passed this test of randomness.
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