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Abstract There are many parameters in multivariate maxima of moving
maxima processes—or M4 processes. However, the more parameters there
are, the more difficult it is to estimate them. It is not just an issue of numerical
stability, of course. The statistical precision of the estimates will be poor if the
number of parameters is too large. We consider asymmetric geometric struc-
tures which correspond to special moving patterns of extreme observations in
observed time series. We study the model identifiability and propose parameter
estimators. All proposed estimators are shown to be consistent and asymptoti-
cally joint normal. Simulation study and real data modeling of North Sea wave
height data are illustrated.

Keywords Multivariate nonlinear time series · Max-stable process · Multivari-
ate maxima of moving maxima · Extreme value theory · Empirical distribution ·
Parameter estimation

1 Introduction

Modeling extreme observations in multivariate time series is a difficult exercise.
There have been well-developed approaches in modeling extreme observations
in univariate time series. Excellent references addressing probabilistic proper-
ties can be found in books by Galambos (1987), Leadbetter et al. (1983), and
Resnick (1987), among others. Smith (1990) gives a comprehensive account of
statistical aspects, especially the maximum likelihood methods in parameter
estimation. Meanwhile, Embrechts et al. (1997) give an excellent viewpoint of
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modeling extremal events. However, problems concerning the environment,
finance and insurance, etc. are multivariate in nature: for example, extremal sea
wave heights at different locations (and possibly at different time) may follow
similar moving patterns as illustrated in Fig. 3 (details in Sect. 6); floods may
occur at different sites along a coastline; the failure of a portfolio investment —
i.e., a big loss of the total investment—may be caused by a single extreme price
movement or extreme price co-movements among several risk factors. Spec-
ification and identification of dependencies cross-sequences and within each
sequence in multivariate time series analysis are very important, especially
when the occurrences of extremal events are concerned.

There have been many attempts to characterize the dependencies—or the
joint probabilities—of extremal events. These attempts—among others—
include de Haan and Resnick (1977), de Haan (1985), and Resnick’s (1987) point
process approach, and Pickands’s (1981) representation theorem for multivar-
iate extreme value distribution with unit Fréchet margins. While multivariate
extreme value distributions do not have unified parametric form, fortunately,
models have been developed that are multivariate extreme value distributions.
Many models are reviewed by Coles and Tawn (1991). Coles and Tawn (1994)
also demonstrate how statistical methods for multivariate extremes may be
applied to a very practical problem of data analysis.

Models for extreme observations in multivariate time series analysis are still
limited. Even in the context of univariate time series, only a small number
of models have been proposed since 1980s. Deheuvels (1983) defines what he
calls the moving minimum (MM) process. The results of Deheuvels (1983) are
strong, but the model itself is still not easily tractable for the estimation of
parameters. Davis and Resnick (1989) study what they call the max-autoregres-
sive moving average (MARMA(p,q)) process of a stationary process. Some
basic properties of the MARMA processes have been shown and the predic-
tion of a max-stable process has been studied relatively completely. However,
much less is known about estimation of the MARMA process. For prediction,
see also Davis and Resnick (1993). Recently, Hall et al. (2002) discuss moving
maximum models which have a direct relation with MM processes. For a finite
number of parameters, they propose parameter estimators based on empirical
distribution functions. Theoretically, all these models assume Fréchet margins.
In most applications, however, data do not follow Fréchet margins. Therefore,
a marginal transformation is needed in order to apply these models.

Methods for exceedance modeling over high thresholds are widely used in
the applications of extreme value theory. The theory used goes back to Pickands
(1975). In statistical applications, one fits a generalized extreme value distribu-
tion (GEV) to subsample maxima or a generalized Pareto distribution (GPD)
to excesses over a threshold, and the data are transformed to have asymptot-
ically Fréchet margins. The full details of modern statistical treatments can be
seen in Embrechts et al. (1997), and Smith (2003) and the references therein. In
financial time series studies of extremes, Smith (2003), Zhang (2002, 2005), and
Zhang and Smith (2002) applied a GEV data fitting and transformation proce-
dure in their models. Beside these transformation procedures, other alternatives
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such as rank transformations can also be adopted. The rank transformation of
wave height data will be discussed in Sect. 6.

In the context of multivariate time series analysis, Smith and Weissman (1996)
extend Deheuvels’ definition to a more general framework—i.e., multivariate
maxima of moving maxima (henceforth M4) process. The M4 processes are
defined as

Yid = max
l

max
k

al,k,dZl,i−k, d = 1, . . . , D, −∞ < i < ∞, (1)

where {Zli, l ≥ 1, −∞ < i < ∞} are an array of independent unit Fréchet
random variables. The constants {al,k,d, l ≥ 1, −∞ < k < ∞, 1 ≤ d ≤ D} are
nonnegative constants satisfying

∞∑

l=1

∞∑

k=−∞
al,k,d = 1, for d = 1, . . . , D. (2)

While MM processes are only specified over one index, however, there are pos-
sibilities to easily extend them over two indexes. In the framework of M4 pro-
cesses, now all random variables Yids are unit Fréchet random variables, and the
logarithms of the bivariate joint distribution functions Pr(Yid ≤ xid, Yi′d′ ≤ xi′d′)
for any i, i′, d, d′ are linear functions of parameters. These properties will be
emphasized in the next section. It is hoped that the extension of MM processes
to M4 processes will make it possible to estimate model parameters easily.

Following de Haan (1984), (1) defines max-stable processes, and we have, for
any finite number r and positive constants {yid},

Pr(Yid ≤ yid, 1 ≤ i ≤ r, 1 ≤ d ≤ D)

= Pr
(

Zl,i−k ≤ yid

al,k,d
for l ≥ 1, −∞ < k < ∞, 1 ≤ i ≤ r, 1 ≤ d ≤ D

)

= Pr
(

Zl,m ≤ min
1−m≤k≤r−m

min
1≤d≤D

ym+k,d

al,k,d
, l ≥ 1, −∞ < m < ∞

)
(3)

= exp

(
−

∞∑

l=1

∞∑

m=−∞
max

1−m≤k≤r−m
max

1≤d≤D

al,k,d

ym+k,d

)
.

This is (2.5) of Smith and Weissman (1996) and we have

Prn(Yid ≤ nyid, 1 ≤ i ≤ r, 1 ≤ d ≤ D) = Pr(Yid ≤ yid, 1 ≤ i ≤ r, 1 ≤ d ≤ D)

which indicates that {Yi = (Yi1, . . . , YiD)} are max-stable. Smith and Weissman
(1996) have argued that the extreme values of a multivariate stationary process
may be characterized in terms of a limiting max-stable process under quite gen-
eral conditions. They also show that a very large class of max-stable processes
may be approximated by M4 processes mainly because those processes have



124 Z. Zhang

the same multivariate extreme indexes as M4 processes have (Theorem 2.3 in
Smith and Weissman, 1996).

In modeling multivariate time series data by M4 process however, there are
an infinite number of parameters in the model. To estimate an infinite num-
ber of parameters, even a large number of parameters, would, perhaps, be too
ambitious a task unless certain structures of parameters are assumed. Usually,
for two finite numbers L and K, we assume the index l varies from 1 to L and
the index k varies from −K1 to K2, where K1 ≥ 0, K2 ≥ 0, K = K1 + K2 + 1.
The constant K gives the order—or the moving range—of the M4 process used
to model a real data set. The order K can be thought as a measure of extre-
mal dependence of a sequence of random variables. This measure tells us that
Yid and Yi+K,d are (extremely) dependent when k ≤ K but not when k > K.
Roughly speaking, the extremal dependence between two random variables
means that the conditional probability of one variable exceeding a threshold
given that another variable has exceeded the threshold is non-zero as the thresh-
old tends to infinity. However, if either K or L is large and the parameters al,k,d
are unconstrained, there will be many free parameters to estimate and the sta-
tistical precision of the resulting estimators will be poor. The main purpose
of this paper is to propose some models in which all the al,k,d are expressed
in terms of a small number of free parameters. By reducing the size of the
parameter space, we hope to improve the statistical properties of the fitting
method.

As illustrated in Fig. 3, there may be a characteristic behavior of a process
near a local maximum, whereby observations either rise or fall for several time
steps before reversing direction. This locally monotone behavior could be mod-
eled by an M4 process with monotone coefficients. Motivated by these facts,
we consider the parameters al,k,d in an M4 model being mixtures of asymmet-
ric, symmetric, and monotone geometric structures on the index k. When the
extreme observations in a time period have an increasing (decreasing) trend
at the beginning, then a decreasing (increasing) trend after a peak (valley) is
reached, these observations may well be approximated by an asymmetric geo-
metric structure or a symmetric geometric structure. When a locally monotone
trend is observed, those observations may well be approximated by a locally
monotone geometric structure. These structures substantially reduce the num-
ber of parameters in the model and make the estimation easier. But they violate
the model identifiability assumptions made in Zhang and Smith (2002). The
objective of this work is to provide model identifiable conditions, to develop
estimating procedures for parameters with asymmetric geometric structures
and to model extreme wave heights at different locations on North Sea.

This paper is organized as follows: in Sect. 2, we study some general proper-
ties regarding M4 processes. In Sect. 3, some basic results regarding empirical
distribution functions are developed. A key lemma regarding the joint limiting
distribution is established at the end of the section. In Sect. 4, we introduce
the model with asymmetric geometric moving patterns when extremal events
occur. For the case of multiple moving patterns in univariate processes, a key
lemma regarding the identifiability of all parameters is proved first. Then the
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consistency and asymptotic normality of the estimators which are the solutions
of a system of nonlinear estimating equations are stated and proved. For the
general case of multiple moving patterns in multivariate processes, sufficient
conditions under which the model is identifiable are provided and the estimat-
ing equations which are used to obtain estimated parameter values are also
provided. Consistency and asymptotic normality are illustrated. A simulation
example is given in Sect. 5. Real data of wave heights on North Sea is modeled
by our proposed models. Conclusions are given in Sect. 7 and the more involved
proofs are deferred to Sect. 8.

2 The models

There are infinitely many parameters in (1). But in practice any moving patterns
will not last forever. For instance, a heavy rainfall lasts a couple of days and stops,
large insurance claims caused by a disaster event last a certain time period, and
a sudden extreme price movement in financial markets may cause big jumps or
dumps in asset prices for a couple of days and then the market is back to normal
until a new extremal event occurs. Under the asymmetric geometric parameter
structures, we may be able to model scale transformed observations using a
workable M4 model. We content ourselves with concentrating attention on a
finite dimensional M4 process model:

Yid = max
1≤l≤L

max
−K1≤k≤K2

al,k,dZl,i−k, d = 1, . . . , D, −∞ < i < ∞, (4)

where L, K1 and K2 are finite non-negative numbers,
∑L

l=1
∑K2

k=−K1
al,k,d = 1

for d = 1, . . . , D. Now there are total (K1 + K2 + 1) × L × D parameters in the
model.

Notice that L, K1 and K2 are generally unknown in practice. For the purpose
of developing an estimation theory, they are assumed known. The references of
determining those values include Zhang and Smith (2002), and Zhang (2005),
etc. Their methods are based on the concepts of lag-k extreme dependence and
a new extreme co-movement measure. In our data (wave heights) modeling,
we simply apply clustering method to the transformed unit Fréchet scaled data
and find the ’best’ values for L, K1 and K2.

Under model (4), when an extremal event occurs or when a large Zli occurs,
Yid ∝ al,i−k,d for i ≈ k—i.e., if some Zlk is much larger than all the neighbor-
ing Z values, we will have Yid = al,i−k,dZlk for i close to k. This indicates a
moving pattern existing in observed time series. This moving pattern is called a
signature pattern (Smith and Weissman, 1996). The constant L is the maximum
number of signature patterns, and K1 and K2 characterize the range of sequen-
tial dependencies. The constant K1 + K2 + 1 represents the order of the moving
maxima processes.

When we model real data by an M4 process, the original data has to be
transformed into unit Fréchet scale. If an exact transformation to an M4 model
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exists, but it’s not perfectly estimated, than the estimated transformed process
will be only approximately M4. Therefore the transformed data may not exactly
follow (4). Let us consider the following model and compare it with (4):

Ỹid = max
1≤l≤L

max
−K1≤k≤K2

al,k,dZl,i−k + Ni, d = 1, . . . , D, −∞ < i < ∞, (5)

where {Ni} are iid white noises with mean 0 and standard deviation σ ,∑L
l=1
∑K2

k=−K1
al,k,d = 1 for d = 1, . . . , D. A comparison between these two

models is shown in Fig. 1. The idea here is to show that an M4 process model
may be a good approximation to an observed process which nearly follows (5).

In Fig. 1, Panel a shows simulated data from a symmetric geometric moving
pattern M4 process (solid lines) and simulated data from (5) (dashed dotted
lines) in a range of 365 days; Panels b–e are plots within local windows. One
can see b and d are similar but in a different vertical scales. Similar phenom-
ena can be observed in c and e for solid lines. Panels b and d are thought to
follow one signature pattern, meanwhile Panels c and e are thought to follow
another signature pattern though the dashed dotted lines in c and e are quite
different. We can notice that the dashed dotted lines in Panels b, c, and d are
not as significant as the dashed dotted lines in Panel e. These are due to the
plot scaling and the facts that large Zlis occur and the first term (the M4 part)
in (5) is much larger than the second term (the noise part). From Panel e in
Fig. 1, while we see that dashed dotted lines are not showing any symmetric
patterns, however, it may still be a better choice to use certain M4 process with
geometric moving patterns (solid lines) to approximate those clustered extreme
observations (dashed dotted lines).

The theory of Smith and Weissman implies that M4 processes will
approximate the extremal behavior of wide classes of multivariate time series
models. We will focus on Model (4) and hope this model can be used to approx-
imate most clustered extreme observations, especially when the moving range
is large.

Our goal is to estimate all parameters {al,k,d} under the constraints that the
parameters are nonnegative and their sum is equal to one for each d = 1, . . . , D.
Under model (4), it is easy to obtain the joint distribution of {Yid, 1 ≤ i ≤ r, 1 ≤
d ≤ D} from (3). However, the method of maximum likelihood is not directly
applicable in this instance due to the degeneracy of the multivariate joint distri-
bution function of the M4 processes. An alternative way to develop estimators
is to use the joint empirical distribution functions which are studied in the next
section.

For any two component processes—say the dth and d′th—and choices of
non-negative values of y, yid, yi+r,d, y1d, y1d′ , it follows immediately from (3)
and (4) that

Pr(Yid ≤ y) = e−1/y, (6)

Pr(Yid ≤ yid, Yi+r,d ≤ yi+r,d) = exp

⎡

⎣−
L∑

l=1

1+r+K1∑

m=1−K2

max

{
al,1−m,d

yid
,

al,1+r−m,d

yi+r,d

}⎤

⎦, (7)
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Fig. 1 Plots for an M4 process (solid lines), and a sum of an M4 process and a white noise process
(dashed dotted lines). Panel (a) is a simulated 365 days data for a specific d in (4). b–e are partial
pictures drawn from the whole simulated data. They show two different moving patterns— called
signature patterns— in certain time periods when extremal events occur

Pr(Y1d ≤ y1d, Y1d′ ≤ y1d′ ) = exp

⎡

⎣−
L∑

l=1

1+K1∑

m=1−K2

max

{
al,1−m,d

y1d
,

al,1−m,d′
y1d′

}⎤

⎦, (8)

where r is a positive integer and al,K2+j,d = 0, al,−K1−j,d = 0, j = 1, . . . , r,
d = 1, . . . , D. When we estimate Model (4), we use a fixed number of r.

Notice that the marginal distributions of the process contain no information
about the dependence properties, one must examine at least the bivariate distri-
butions to make any meaningful inferences. In practice, for many processes the
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bivariate distributions are sufficient, one does not need trivariate and higher-
order joint distributions. Therefore, the theory and methods will be developed
for the bivariate distribution functions in this study.

3 Some basic results regarding empirical distribution functions

In this section, we first study the properties of the empirical distribution func-
tions constructed from Model (4). These properties will be used to study asymp-
totic normality of all estimators constructed in the next section.
Now for each d, let A1d = (0, x1d) × (0, y1d), . . . , Amd = (0, xmd) × (0, ymd) be
different sets for some m > 0 and I(.) be an indicator function. Let {Yid, d =
1, 2, . . . , D; i = 1, 2, . . . , n+ r} be a sample from (4). For a fixed number r, define
the empirical probability that (Yid, Yi+r,d) falls in Ajd as

X̄Ajd = 1
n

n∑

i=1

IAjd

{
Yid, Yi+r,d

}
. (9)

The asymptotic results related to X̄Ajds were first derived in Zhang and Smith
(2002) when r = 1. In this work, r has to be 2 or larger in order to show that M4
processes with geometric moving patterns are identifiable. This is illustrated in
Sect. 4. Now we state some basic results and notations for a general r. Proofs of
the following two Lemmas are direct generalizations of Lemmas 3.2 and 3.3 in
Zhang and Smith (2002).
The strong law of large numbers (SLLN) implies

X̄Ajd

a.s.−→ Pr(Ajd) = Pr(Y1d ≤ xjd, Y1+r,d ≤ yjd) � µjd, as n → ∞. (10)

Lemma 1 Suppose that X̄Ajd and µjd are defined in (9) and (10), respectively.
If σjd > 0, then

√
n(X̄Ajd − µjd)

L−→ N(0, σ 2
jd), as n → ∞,

where

σ 2
jd = µjd − µ2

jd + 2
K1+K2+1∑

k=1

[
Pr
(
Y1d ≤ xjd, Y1+r,d ≤ yjd, Y1+k,d

≤ xjd, Y1+r+k,d ≤ yjd
)− µ2

jd

]
.
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Lemma 2 Suppose that X̄Ajd and µjd are defined in (9) and (10), respectively.
Then

√
n

⎛

⎜⎝

⎡

⎢⎣
X̄A1d

...
X̄Amd

⎤

⎥⎦−
⎡

⎢⎣
µ1d

...
µmd

⎤

⎥⎦

⎞

⎟⎠
L−→ N

⎛

⎝0, �d +
K1+K2+1∑

k=1

{Wkd + WT
kd}
⎞

⎠ , as n → ∞,

where µi,j,d = Pr{Y1d ≤ min(xid, xjd), Y1+r,d ≤ min(yid, yjd)}, µi,i,d = µid, the
matrix �d has the entries σi,j,d = µi,j,d − µidµjd, the matrix Wkd has entries

wij
kd = Pr(Y1d ≤ xid, Y1+r,d ≤ yid, Y1+k,d ≤ xjd, Y1+r+k,d ≤ yjd) − µidµjd.

Our goal is to use (7) and (8) and their empirical counterparts—i.e., empir-
ical distribution functions – to construct estimators for all parameters in the
model. The probability evaluated at the points (yid, yi+r,d) in (7) depends on the
comparison of al,1−m,d/yid and al,1+r−m,d/yi+r,d, and similarly in (8). By fixing
one of yid and yi+r,d, say yid, then al,1−m,d/(al,1+r−m,dyid) is the change point of
max(al,1−m,d/yid, al,1+r−m,d/yi+r,d) when yi+r,d varies. Without loss of general-
ity, we fix yid = 1 for simplicity of our calculation. In a real data analysis, we
may choose a threshold value u′ and fix yid = u′ since the data will have to be
transformed to have a unit Fréchet marginal distribution according to a gener-
alized extreme value distribution—or a generalized Pareto distribution—fitting
of exceedances over a threshold u.
Now define the following two functions which play a key role in constructing
parameter estimators.

qd(x) = −x log{Pr(Y1d ≤ 1, Y1+r,d ≤ x)}, (11)

qdd′(x) = −x log{Pr(Y1d ≤ 1, Y1d′ ≤ x)}. (12)

From (6) and (7), qd(x) and qdd′(x) can be expressed as

qd(x)=
L∑

l=1

⎡

⎣
r−1∑

i=0

al,K2−i,dx + max(al,K2−r,dx, al,K2,d) + max(al,K2−r−1,dx, al,K2−1,d)

+ max(al,K2−r−2,dx, al,K2−2,d) + · · · + max(al,−K1,dx, al,−K1+r,d)

+
r−1∑

i=0

al,−K1+i,d

⎤

⎦ ,

d = 1, . . . , D,

(13)
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and

qdd′(x) =
L∑

l=1

1+K1∑

m=1−K2

max(al,1−m,dx, al,1−m,d′), d, d′ = 1, . . . , D, d < d′.

(14)

From (13) and (14), it is easy to see that both qd(x) and qdd′(x) are piecewise
linear functions and their slope changing (jumping) points—al,i+r,d/al,i,d and
al,1−m,d′/al,1−m,d—are determined by the parameter values. Meanwhile, when
the values of qd(x) and qdd′(x) are given at a series of points, we can determine
the slope jumping points. Under certain conditions, the slope jumping points
uniquely determine the values of the parameters. The study of those conditions
is postponed to the next section. We now study the properties of the empirical
counterparts of qd(x) and q1d′(x).

The empirical counterparts of qd(x) and q1d′(x) are defined as:

Ud(x) = 1
n

n∑

i=1

I{Yid≤1, Yi+r,d≤x}, q̂d(x) = −x log [Ud(x)] , d = 1, . . . , D, (15)

U1d′(x) = 1
n

n∑

i=1

I{Yi1≤1, Yid′≤x}, q̂1d′(x) = −x log [U1d′(x)] , d′ = 2, . . . , D. (16)

Let

x1d, x2d, . . . , xmdd, d = 1, . . . , D,

and

y1d′ , y2d′ , . . . , yvd′ d′ , d′ = 2, . . . , D,

be suitable choices of the points used to evaluate the values of all functions
defined. Methods of choosing these points will be addressed in the following
sections when we study model identifiability and model estimation. At the
moment, they can be regarded as any arbitrary collections of points. The fol-
lowing notations and results will be used to derive the asymptotic properties of
all estimators.

x = (x11, x21, . . . , xm11, x12, . . . , xmDD, y12, y22, . . . , yv22, y13, . . . , yvDD
)T,

U = (
U1(x11), . . . , U1(xm11), U2(x12), . . . , UD(xmDD), U12(y12), . . . ,

U12(yv22), . . . , U1D(yvDD)
)T ,

q = (
q1(x11), . . . , q1(xm11), q2(x12), . . . , qD(xmDD) ,

q12(y12) , . . . , q12(yv22), . . . , q1D(yvDD)
)T ,
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µdjd = E
[
Ud(xjd)

] = Pr(Y1d ≤ 1, Y1+r,d ≤ xjd),

µ1d′jd′ = E
[
U1d′(yj′d′)

] = Pr(Y11 ≤ 1, Y1d′ ≤ yj′d′),

µdjd, d′j′d′ = E
[(

I{Y1d≤1,Y1+r,d≤xjd} − µdjd
)(

I{Y1d′≤1,Y1+r,d′≤xj′d′ } − µd′j′d′
)]

µdjd, 1d′j′d′ = E
[(

I{Y1d≤1,Y1+r,d≤xjd} − µdjd
)(

I{Y11≤1,Y1d′≤yj′d′ } − µ1d′j′d′
)]

,

µ1d′j′d′, djd = E
[(

I{Y11≤1,Y1d′≤yj′d′ } − µ1d′j′d′
)(

I{Y1d≤1,Y1+r,d≤xjd} − µdjd
)]

,

µ1djd, 1d′j′d′ = E
[(

I{Y11≤1,Y1d≤yjd} − µ1djd
)(

I{Y11≤1,Y1d′≤yj′d′ } − µ1d′j′d′
)]

,

w(k)

djd, d′j′d′ = E
[(

I{Y1d≤1,Y1+r,d≤xjd} − µdjd
)(

I{Y1+k,d′≤1,Y1+r+k,d′≤xj′d′ } − µd′j′d′
)]

,

w(k)

djd, 1d′j′d′ = E
[(

I{Y1d≤1,Y1+r,d≤xjd} − µdjd
)(

I{Y1+k,1≤1,Y1+k,d′≤yj′d′ } − µ1d′j′d′
)]

,

w(k)

1d′j′d′, djd = E
[(

I{Y1,1≤1,Y1,d′≤yj′d′ } − µ1d′j′d′
)(

I{Y1+k,d≤1,Y1+r+k,d≤xjd} − µdjd
)]

,

w(k)

1djd, 1d′j′d′ = E
[(

I{Y11≤1,Y1d≤yjd} − µ1djd
)(

I{Y1+k,1≤1,Y1+k,d′≤yj′d′ } − µ1d′j′d′
)]

.

In the above notations, we have triple and quadruple subindexes like djd and
1djd. For the tripe subindexes, we have d = 1, 2, . . . , D, j = 1, . . . , md; for the
quadruple subindexes, we have d = 2, . . . , D, j = 1, . . . , v′

d. The ranges in d′jd′,
and 1d′jd′ are defined similarly.

It is not convenient to use the above notations to write a multivariate cen-
tral limit theorem. This can be resolved by defining the following relations and
transforming each triple or quadruple sub-index into a single index:

{
µdjd → µs, qd(xjd) → hs, where s = Sd−1 + j, d = 1, . . . , D,
µ1d′jd′ → µs, q1d′(yjd′) → hs, where s = SD + S′

d′−1 + j, d′ = 2, . . . , D,

where S0 = 0, Sd = ∑d
j=1 mj, d = 1, . . . , D, S′

1 = 0, and S′
d′ = ∑d′

j=2 vj, d′ =
2, . . . , D.

Let µ = (µ1, µ2, . . . , µSD+S′
D
)′, q = (h1, h2, . . . , hSD+S′

D
)′. We now use the

similar relations between the indexes of µdjd and the indexes of µs to define the
following variables:

σst =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

µdjd,d′j′d′ , if s ≤ SD, t ≤ SD,

µdjd,1d′j′d′ , if s ≤ SD, t > SD,

µ1djd,d′j′d′ , if s > SD, t ≤ SD,

µ1djd,1d′j′d′ , if s > SD, t > SD,
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wst
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

w(k)

djd,d′j′d′ , if s ≤ SD, t ≤ SD,

w(k)

djd,1d′j′d′ , if s ≤ SD, t > SD,

w(k)

1djd,d′j′d′ , if s > SD, t ≤ SD,

w(k)

1djd,1d′j′d′ , if s > SD, t > SD,

and the matrices:

� = (σst), Wk = (wst
k ), � = (diag{µ})−1 × (diag{x}).

Putting everything above together yields the following lemma. Its proof follows
the Mean Value Theorem and the arguments used to establish Lemma 2.

Lemma 3 For the choices of xjd, yj′d′ and the definitions of each variable above,
we have

√
n(U − µ)

L−→ N

⎛

⎝0, � +
K1+K2+1∑

k=1

{
Wk + WT

k

}
⎞

⎠, as n → ∞,

√
n(̂q − q)

L−→ N

⎛

⎝0, �

⎡

⎣� +
K1+K2+1∑

k=1

{Wk + WT
k }
⎤

⎦�T

⎞

⎠, as n → ∞.

Having established the asymptotic properties of the statistics U and q̂, we now
turn our attention to the asymmetric geometric moving models.

4 The models for asymmetric geometric moving patterns

In Fig. 4, we plot transformed wave height data which are obtained by rank
transformation and are asymptotically unit Fréchet scaled. We see that the
plotted curves show piecewise geometric moving patterns. Motivated by these
facts, we consider an asymmetric geometric parameter structure model:

al,k+h(l,d),d = bldλ
(k)+
ld φ

(k)−
ld , d = 1, . . . , D, l = 1, . . . , L,

k = −K1(l, d), . . . , K2(l, d), (17)

where bld > 0, φld > 0, λld ≥ 0, al,h(l,d),d = bld. When λld = 0 or λld = 1/φld, we
have a monotone geometric signature pattern. When λld = φld, we get a sym-
metric geometric signature pattern. The relation al,h(l,d),d = bld corresponds
to peaks (or valleys) in the lth signature patterns appearing in the dth process.
When we have monotone signature patterns, the peaks or the valleys are the left
starting points of those signature patterns. The difference h(l, d) − h(l, d′) = m
means the starting time of the lth signature pattern in the d′th process is m time
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units—say days—ahead of the starting time of the lth signature pattern in the
dth process.

We assume that when a monotone geometric signature pattern appears the
corresponding parameter λld is equal to zero. This can be done by re-setting the
values of K1(l, d) and K2(l, d) accordingly. Examples of monotone geometri-
cally decreasing signature patterns can also be observed in Davis and Resnick’s
(1993) MARMA(1,q) processes.

In Sect. 2, we argued that the development of parameter estimators is through
bivariate joint distributions. In the literature, when r = 1 in (13) and (17), the
identifiability is shown by a simple case L = 2 , where λld �= φld, K1(l, d) > 0,
K2(l, d) > 0 in Zhang (2002). When we have pure symmetric or pure monotone
geometric moving patterns, we can set r = 1— see Zhang (2002). There is no
results for L > 2 and asymmetric cases. Fortunately, the identifiability of the
model can be shown when r is larger than 1. A natural choice would be to set
r = 2 which is used in this paper, and the proofs are all based on r = 2.

Notice that the number of parameters is now 3 × D × L. The model still has
many parameters when L, or D is large. Also notice that moving coefficients
al,k,d associated with the dth univariate process are not associated with any
other univariate processes, and hence we can estimate the parameters based on
univariate processes. This argument suggests we at least have two ways to esti-
mate parameters al,k,d. One way is to estimate them based on each univariate
observed process only, and then identify the co-movement patterns between
different processes to build the M4 model and study the joint distributions
across sections. Another way is to estimate them based on the multivariate
observed process. In fact, the most difficult part of identifying the model is its
sequential dependencies (moving patterns), i.e. from each univariate process.
We discuss the case D = 1 next.

4.1 The case D = 1

Since the values of h(l, d) have no effects when we consider the distribution func-
tions (7) for each d, and also notice that different h(l, d) values mean different
sample paths in model (4), therefore all h(l, d)s are set to zero in this section
for simplicity.
The function q(x) now can be written as:

q(x) =
L∑

l=1

bl

⎡

⎣
K2(l)∑

k=0

max(λ
K2(l)−k
l x, λK2(l)−k+2

l I(k>1)) + max(φlx, λl)

+
K1(l)+2∑

k=2

max(φk
l xI(k≤K1(l)), φ

k−2
l )

⎤

⎦ .

Since q(x) is a piecewise linear function of x, the jumping points of q′(x) are
1/φ2

1 , 1/φ2
2 , . . . , 1/φ2

L, λ2
1, λ2

2, . . . , λ2
L and λ1/φ1, . . . , λL/φL. We assume all non-

zero jumping points are distinct except when λl/φl = 1 for some ls which
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correspond to symmetric geometric signature patterns. The identifiability is
stated in the following lemma.

Lemma 4 Suppose that λi �= λj, λi �= φj, φi �= φj for all nonzero λi, λj, i �= j,
i, j = 1, . . . , L. Then there exist x1, . . . , xm such that q(x1), . . . , q(xm) uniquely
determine all bl, λl, φl, l = 1, . . . , L.

A proof is postponed to Sect. 8.
Now suppose that q̂(x1), q̂(x2), . . . , q̂(xm) are estimates of q(x1), q(x2), . . . , q(xm).
Then

(̂q(x1), q̂(x2), . . . , q̂(xm))
a.s.−→ (q(x1), q(x2), . . . , q(xm)), as n → ∞, (18)

where q̂(x) is defined by (15). The following theorem follows immediately.

Theorem 1 Suppose x1, . . . , xm are m points such that there are at least two points
falling into each interval between any two adjacent slope jumping points of q(x).
Let q̂(xi) be the estimation of q(xi), and b̂ = (̂b1, . . . , b̂L)T, λ̂ = (̂λ1, . . . , λ̂L)T,
φ̂ = (φ̂1, . . . , φ̂L)T be the solutions of

q̂(xi) =
L∑

l=1

b̂l

⎡

⎣
K2(l)∑

k=0

max(̂λ
K2(l)−k
l xi, λ̂

K2(l)−k+2
l I(k>1)) + max(̂λlx, φ̂)

+
K1(l)+2∑

k=2

max(φ̂k
l xiI(k≤K1(l)), φ̂

k−2
l )

⎤

⎦,

i = 1, . . . , m. (19)

Then (̂bT, λ̂
T, φ̂

T
)

a.s.−→ (bT, λT, φT), as n → ∞.

Proof By (18) and Lemma 4. �

As long as x is not a jumping point, and q(x) is viewed as a function of all
bl, λl and φl, then q(x) has all continuous first order partial derivatives in a
neighborhood of (bl, λl, φl), l = 1, . . . , L. As a consequence of Theorem 1,
Lemma 3 and the Mean Value Theorem, the following limiting distribution of
all parameter estimators is obtained.

Theorem 2 Under the same conditions as in Theorem 1. Let Q be a matrix whose
ith row is written as:

Qi =
(

∂q(xi)

∂b1
, . . . ,

∂q(xi)

∂bL
,
∂q(xi)

∂λ1
, . . . ,

∂q(xi)

∂λL
,
∂q(xi)

∂φ1
, . . . ,

∂q(xi)

∂φL

)
,

and

J = (QTQ)−1QT.
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Then

√
n

⎛

⎝

⎡

⎣
b̂
λ̂

φ̂

⎤

⎦−
⎡

⎣
b
λ

φ

⎤

⎦

⎞

⎠ L−→ N

⎛

⎝0, J�

⎡

⎣� +
K1+K2+1∑

k=1

{Wk + WT
k }
⎤

⎦�JT

⎞

⎠, as n → ∞,

where K1 = max1≤l≤L{K1(l)}, K2 = max1≤l≤L{K2(l)}, Wk, �, � are defined in
Lemma 3.

A proof is shown in Sect. 8.

4.2 The case D > 1

Although the solutions of (19) give consistent estimates of the parameters in
each component process, the model (4) is not identifiable by qd(x) only. For
example, the following two bivariate processes

{
Yi1 = max{a1,−1,1Z1,i+1, a1,0,1Z1,i, a1,1,1Z1,i−1, a2,−1,1Z2,i+1, a2,0,1Z2,i, a2,1,1Z2,i−1},
Yi2 = max{a1,−1,2Z1,i+1, a1,0,2Z1,i, a1,1,2Z1,i−1, a2,−1,2Z2,i+1, a2,0,2Z2,i, a2,1,2Z2,i−1}; (20)

{
Y′

i1 = max{a1,−1,1Z1,i+1, a1,0,1Z1,i, a1,1,1Z1,i−1, a2,−1,1Z2,i+1, a2,0,1Z2,i, a2,1,1Z2,i−1},
Y′

i2 = max{a1,−1,2Z1,i, a1,0,2Z1,i−1, a1,1,2Z1,i−2, a2,−1,2Z2,i, a2,0,2Z2,i−1, a2,1,2Z2,i−2} (21)

are obviously two different bivariate processes and all parameters can be esti-
mated using (19) for each univariate process under the asymmetric geometric
parameter structure assumptions. But the estimates do not tell which one of (20)
and (21) is the true model from which the observed data came. This problem
can be resolved after considering the joint distributions within each component
process and the joint distributions between any two component processes—see
the following theorems.

Lemma 5 Suppose the following conditions are satisfied

1. λid �= λjd, λid �= φjd, φid �= φjd for all nonzero λid, λjd, i �= j, i, j = 1, . . . , L,
d = 1, . . . , D.

2. all existing non-zero ratios al,k,1/al′,k′+h(l′,d′),d′ , l, l′ = 1, . . . , L k, k′ =
−K1, . . . , K2, for each d′ > 1 are distinct, where h(l, 1) = 0, l = 1, . . . , L,
K1 = max1≤d≤D,1≤l≤L{K1(l, d) − h(l, d)}, K2 = max1≤d≤D,1≤l≤L
{K2(l, d) + h(l, d)},

3. at least one of al,k,1/al,k+h(l,d′),d′ , k = −K1, . . . , K2, exists and is not zero
when both

∑K2
k=−K1

al,k,1 and
∑K2

k=−K1
al,k,d′ are greater than 0 for each d′,

4. qd(x), q1d′(x) are defined in (11) and (12) and their values are given.

Let

x1d, x2d, . . . , xmdd, d = 1, . . . , D,

y1d′ , y2d′ , . . . , yvd′ d′ , d′ = 2, . . . , D,
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be suitable choices of points such that at least two xid, xjd values are between any
two adjacent slope jumping points of qd(x), at least two yid, yjd values are between
any two adjacent slope jumping points of q1d(x). Then the following system of
nonlinear equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qd(xjd) = ∑L
l=1 bld

[
K2(l,d)∑

k=0
max(λ

K2(l,d)−k
ld xjd, λ

K2(l,d)−k+2
ld I(k>1)) + max(λldxjd, φld)

+
K1(l,d)+2∑

k=2
max(φk

ldxjdI(k≤K1(l,d)), φk−2
ld )

⎤

⎦ , d = 1, . . . , D, j = 1, . . . , md,

q1d′ (yj′d′ ) =
L∑

l=1

K2∑

k=−K1

max{al,k,1yj′d′ I−K1(l,1)≤k≤K2(l,1), al,k+h(l,d′),d′ I−K1(l,d′)≤k≤K2(l,d′)},

d′ = 2, . . . , D, j′ = 1, . . . , vd′ ,

(22)

gives the unique solutions which are the true values of the parameters in the
model.

A proof is postponed to Sect. 8.
The estimators of all parameters are the solutions of a system of nonlinear

estimating equations. The results are stated in the following theorem.

Theorem 3 Under the same conditions as in Lemma 5. Functions q̂d(x), q̂1d′(x)

are defined in (15), (16) respectively. Their values are given. Let Q be a matrix
whose rows are written as either

Q(xid) =
(

∂qd(xid)

∂b11
, . . . ,

∂qd(xid)

∂bLD
,
∂qd(xid)

∂λ11
, . . . ,

∂qd(xid)

∂λLD
,

∂qd(xid)

∂φ11
, . . . ,

∂qd(xid)

∂φLD

)
,

or

Q(yid) =
(

∂q1d′(yid)

∂b11
, . . . ,

∂q1d′(yid)

∂bLD
,
∂q1d′(yid)

∂λ11
, . . . ,

∂q1d′(yid)

∂λLD
,

∂q1d′(yid)

∂φ11
, . . . ,

∂q1d′(yid)

∂φLD

)
.

Then there exist

x1d, x2d, . . . , xmdd, d = 1, . . . , D,

and

y1d′ , y2d′ , . . . , yvd′ d′ , d′ = 2, . . . , D,
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such that the solutions of the following system of nonlinear estimating equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̂d(xjd) = ∑L
l=1 b̂ld

[
K2(l,d)∑

k=0
max(̂λ

K2(l,d)−k
ld xjd, λ̂K2(l,d)−k+2

ld I(k>1)) + max(̂λldx, φ̂ld)

+
K1(l,d)+2∑

k=2
max(φ̂k

ldxjdI(k≤K1(l,d)), φ̂
k−2
ld )

]
, d = 1, . . . , D, j = 1, . . . , md,

q̂1d′ (yj′d′ ) =
L∑

l=1

K2∑

k=−K1

max{̂al,k,1yj′d′ I−K1(l,1)≤k≤K2(l,1), âl,k+h(l,d′),d′ I−K1(l,d′)≤k≤K2(l,d′)},
d′ = 2, . . . , D, j′ = 1, . . . , vd′ ,

satisfy

√
n

⎛

⎝

⎡

⎣
b̂
λ̂

φ̂

⎤

⎦−
⎡

⎣
b
λ

φ

⎤

⎦

⎞

⎠ L−→ N
(

0, J�
[
� +

K1+K2+1∑

k=1

{Wk + WT
k }]�JT

)
, as n → ∞,

where q̂d(xjd), q̂1d′(yj′d′) are defined in (15) and (16), and

b = (b11, . . . , bL1, b12, . . . , b1D, . . . , bLD)T, b̂ = (̂b11, . . . , b̂L1, b̂12, . . . , b̂1D, . . . , b̂LD)T,

λ = (λ11, . . . , λL1, λ12, . . . , λ1D, . . . , λLD)T, λ̂ = (̂λ11, . . . , λ̂L1, λ̂12, . . . , λ̂1D, . . . , λ̂LD)T,

φ = (φ11, . . . , φL1, φ12, . . . , φ1D, . . . , φLD)T, φ̂ = (φ̂11, . . . , φ̂L1, φ̂12, . . . , φ̂1D, . . . , φ̂LD)T,

Q = [Q(xid)T, d = 1, . . . , D, i = 1, . . . , md, Q(yid′ )T, d′ = 2, . . . , D, i = 1, . . . , vd′ ]T,

J = (QTQ)−1QT, and �, �, Wk are defined the same as in Lemma 3.

A proof is shown in Sect. 8.
So far, we have not said anything about how to determine the values of the

order parameters L, K1(l, d), K2(l, d), d = 1, . . . , D, l = 1, . . . , L, and all tuning
parameters xid, yid. We propose to use nearest neighbor clustering methods to
determine these parameter values next.

5 Determining order parameter and tuning parameter values and simulation
example

We propose an empirical procedure to determine tuning parameters and the
order of moving ranges in this section. We first study some properties of ratios
Yi,d/Yi+2,d, i = 1, 2, ....

When we have exact Model (4), Zhang and Smith (2004) demonstrate there
are infinitely many clusters of extreme observations Yij,d, Yij+1,d, . . . , Yij+K,d,
j = 1, 2, . . . , where ij is the first location of the jth cluster, such that

Yij,d

Yij+2,d
= al,K2,dZl,ij−K2

al,K2−2,dZl,ij−K2

= al,K2,d

al,K2−2,d

conditioning on the very large Zl,ij−K2 values. The ratio al,K2,d/al,K2−2,d equals
one of the three values λ2

l , 1/φ2
l , or λl/φl.



138 Z. Zhang

In Model (5), suppose Nids are bounded random variables, then in the jth
cluster Ỹij,d, Ỹij+1,d, . . . , Ỹij+K,d, we have

Ỹij,d

Ỹij+2,d
= al,K2,dZl,ij−K2 + Nid

al,K2−2,dZl,ij−K2 + Nij+2,d
=

al,K2,d
al,K2−2,d

+ Nij ,d

al,K2−2,dZl,ij−K2

1 + Nij+2,d

al,K2−2,dZl,ij−K2

≈ al,K2,d

al,K2−2,d
.

This may be seen from scale transformed data. Bearing in mind that we use
{Yid} process to approximate {Ỹid} process, under geometric moving pattern
assumptions, the ratios of Yij+s−2,d/Yij+s,d in a cluster of extreme observations
approximately follow around one or two constant values depending on which
model –i.e. monotone or asymmetric – is the true model from which the clus-
ter of extreme observations is observed. This is related to a certain signature
pattern. In a different cluster of extreme observations, we may get two different
constant values which the computed ratios follow around. The property that
the ratios in each cluster of extreme observations follow one or two constant
values has been a main advantage of assuming geometric moving patterns since
they greatly reduce the complexity of parameter estimations. Of course, if the
computed ratios have large variations, it is better to apply general M4 process
models and the estimation procedures developed by Zhang and Smith (2002)
or other models if any.

The arguments above suggest that the slope jumping points of qd(x) are at
those constants followed by ratios of very large observations. A very naive
model may be to use each cluster of extreme observations as one signature
pattern, but it may not be the best modeling strategy and it is hard to make
statistical inference. In practice, clustering analysis method can be used to clus-
ter those very large observations (above certain thresholds) into groups based
on the consecutive ratios of Yij+s−2,d/Yij+s,d. Notice that when the value of Ld
increases by 1, the total number of parameters increases by 3. A parsimonious
model is to have Ld = 1. We propose the following procedure to determine
order parameter and tuning parameter values.

1. Start with d = 1.
2. Set up Ld = 1.
3. For each d and a high threshold u (e.g. use the 90th percentile of the sam-

ple), find the maximal length (K̃d) from all very large clustered extreme
observations over the threshold u. Suppose the total number of such clus-
ters is Jd. Within jth cluster, compute all ratios of Yij+s−2,d/Yij+s,d, s =
2, . . . , jl, where jl is the length of the jth cluster, and find the point s0 where
the moving pattern changes from increasing (deceasing) trend to decreas-
ing (increasing) trend. For monotone geometric moving patterns, s0 is 1.
For asymmetric geometric moving patterns, let rj = (Yij+s−2,d/Yij+s,d, s =
s0 − 2, s0 − 1, s0, s0 + 1, s0 + 2). For monotone geometric moving patterns,
let rj = (Yij+s−2,d/Yij+s,d, s = s0, s0 + 1, s0 + 2, , s0 + 3, s0 + 4).
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4. Use nearest neighbor clustering analysis method to cluster the ratio vectors
rj, j = 1, . . . , Jd into Ld groups.

5. Within each group, take the averages of the ratios as slope jumping points.
Between any two adjacent jumping points, arbitrarily choose two points
as xjd values. For example, suppose r1, r2 are two adjacent ratios, then a
natural choice would be xjd = r1 + .25(r2 − r1), xj+1,d = r1 + .75(r2 − r1).
This choice is used in our simulation data and real data analysis. The total
number of points xid is denoted as md.

6. Within the range of (1, K̃d), search best K1(l, d) and K2(l, d) such that the
fitted squared error

∑md
i=1

{
q̂d(xid) − q̃d(xid)

}2 is the smallest, where q̃d(x)

is the fitted function to qd(x), i.e. the true parameter value in qd(x) are
replaced by the estimated values. Denote the estimated bld values as b̂ld.

7. Let Ld = Ld + 1. Go to Step 3 until there is at least one b̂ld which is 10%
smaller than any estimated values of blds from the last estimation and less
than 0.001 (this number was suggested by simulation results).

8. Let Ld = Ld − 1 and use the values determined at Steps 5 and 6 for this
Ld value. Let d = d + 1. Go to Step 2 until d > D.

9. For all clustered groups, assign the same group number to large clustered
observations appearing simultaneously in different observed processes.

10. The choices of yj′d can be done from averaging the ratios of Yi1/Yid within
the same group numbers obtained in Step 4 between two processes. yj′d can
take the middle values of two adjacent ratios or take two values between
two adjacent ratios like the previous step. The former method is used in
this study.

11. After choosing xid and yj′d values, use them to estimate parameters based
on empirical functions q̂d(x) and q̂1d(x) such that the fitted squared error
in Step 6 is minimized and signature patterns are matched by minimizing
the fitted squared error:

∑md
j=1

{
q̂1d(yjd) − q̃1d(yjd)

}2, where q̃1d(x) is the
fitted function to q1d(x).

Remark 1 We have suggested several ad hoc choices of numbers such as .25,
.75, .001. In Step 2, we only keep five ratios which can be used to identify
two parameters λld and φld. One can use other numbers, especially when prior
information is available.

Remark 2 In some applications or simulations, some of order parameters, Ld,
K1(l, d), K2(l, d), can easily be determined either by the knowledge of the real
problem and time series plots over a high threshold values. As long as this
information is given, we may start a model using these parameter values.

Remark 3 In Steps 5 and 10, theoretically, we can choose as many points of xjd
and yj′d as possible, but it is not realistic due to the intensive computation and
the complexity of inferences. The goal is to choose moderate number of points
such that the estimated values of parameters are close to true parameter values.

Remark 4 In Step 6, we adopt a Monte Carlo simulation approach to find best
estimates which give best fit to q̂d(x) and q̂1d(x) functions based on the sum of
squared errors.
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Having established theories and proposed practically applicable methods, we
now turn to some simulation example. We have conducted extensive simula-
tion studies. Here we report one example which contains all kinds of geometric
moving patterns.

Example 1 This example is a trivariate maxima of moving maxima as defined in
(4). Let {Zl,i : l = 1, 2; i ≥ −11} be two sequences of independent unit-Fréchet
random variables. We define three sequences of coefficients:

{al,k,1 = bl1λ
|k|
l1 , k = 0, ±1, . . . , ±5},

{al,k,2 = bl2λ
k
l2, k = 0, 1, . . . , 4},

{al,k,3 = bl3λ
(k)+
l3 φ

(k)−
l3 , k = −3, . . . , 4},

and their values are:

(bld) =
[

.027065 .128536 1/6
1/6 1/9 .040737

]
, (λld) =

[
1.2 0 .5
.5 0 1.2

]
, (φld) =

[
1.2 1.1 .6
.5 .5 1.2

]
.

The process {Yi = (Yi1, Yi2, Yi3) : i ≥ 1} is generated by

Yid = max
(

max
k

a1,k,dZ1,i−k, max
k

a2,k,dZ2,i−k
)+ Nid, d = 1, 2, 3, (23)

where {Nid} is a white noise process with Nid ∼ N(0, .01).

Table 1 gives estimated values of all coefficients and standard deviations com-
puted from Theorem 3. All the estimates are very close to the true values and
the standard deviations are small. The simulation estimates show the efficiency
of the proposed estimating methods.

In the example, we use simulation sample size 10,000. The reason is to obtain
more observations over certain threshold value. In some real data analysis, the
data set usually contains more than 10,000 observations in each time series—for
example, there are huge amount of data in each observed ‘tick by tick’ stock
price time series; the number of points in our wave height data is about 11,000.
The wave height data modeling is studied next.

6 Modeling wave height extremes on North Sea

6.1 The problem

Extreme wave heights have severe consequences for coastal structures and
adverse effects on shipping and other marine operations. There are numerous
studies regarding wave height distributions, regional failure probabilities such
as de Haan and de Ronde (1998), Van Gelder et al. (2000), and references
therein. However, studies regarding extreme wave height co-movements can
hardly be found in the literature. This study aims to model extreme wave height
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Table 1 Estimations of coefficients in Example 1

Para. True Estimated Para. True Estimated Para. True Estimated
value value value value Para. value value

b11 0.0271 0.0305 λ11 1.2000 1.1996 φ11 1.2000 1.1995
(0.0253) (0.2818) (0.0805)

b21 0.1667 0.1355 λ21 0.5000 0.5265 φ21 0.5000 0.5265
(0.0820) (0.2028) (0.0786)

b12 0.1285 0.1339 φ12 1.1000 1.1000
(0.0397) (0.0646)

b22 0.1111 0.0942 φ22 0.5000 0.5000
(0.0424) (0.2577)

b13 0.1667 0.1493 λ13 0.5000 0.5000 φ13 0.6000 0.6000
(0.0863) (0.0592) (0.1208)

b23 0.0407 0.0454 λ23 1.2000 1.1991 φ23 1.2000 1.1983
(0.0080) (0.0701) (0.3507)

Estimations and standard deviations—in the parentheses—are computed by using Theorem 3. The
values of q̂d(xjd), q̂1d(yjd) are computed from 10,000 simulated observations. The tuning parameter
values used are: {0.2079, 0.3816, 0.5905, 0.7712, 0.9237, 1.000, 1.1097, 1.3292, 1.9811, 3.0653, 4.5093}
(in the first process); {0.6198, 1.6198, 3.2066, 5.0000 } (in the second process); {0.1875, 0.3616, 0.5848,
0.7306, 0.7991, 0.8752, 0.9588, 1.1099, 1.3285, 1.7728, 2.4428, 3.4722 } (in the third process); {0.0432,
0.0903, 0.1886, 0.3218, 0.4607, 0.7325, 1.5843, 3.8008, 9.1183 } (between the first process and the
second process); {0.3455, 0.3937, 0.4487, 0.5194, 0.5609, 0.5611, 0.5613, 0.6840, 0.8070, 0.8078 0.8086,
1.3123, 1.8636, 1.9622, 2.0660} (between the first process and the third process)

co-movements at two different locations on the North Sea. Data (hourly) was
made available by the Dutch Ministry of Transport, Public Works and Water
Management (RIKZ). Data was recorded from January 11, 1979 to October
28, 2002. In Fig. 2, time series plots of observations at two different locations,
Station Eierlandse gat (Wadden) (ELD) and Station Europlatform (EUR), are
in the upper panel and in the middle panel respectively, and a bivariate scatter
plot of ELD against EUR is shown in the lower panel. Both time series look
stationary. The lower panel suggests that there exist extreme dependencies (in
the upper right corner) between these two series.

Figure 3 shows time series plots within certain time periods (in hour). In
each plot, the solid line curve is for data observed at ELD, and the dashed
dotted curve is for data observed at EUR. In the upper-left panel in Fig. 3,
we plot observations within a 100-hour time period from each station. These
observations were recorded at different starting time from ELD and EUR. The
curve for EUR was observed 10 h later than the curve for ELD. Curves in the
upper-right panel were observed at the same time period at both stations. So
were curves in the lower-left panel. We can clearly see that wave height moving
patterns are very similar between these two stations. It may be appropriate
to suggest that there exist extreme height co-movements between waves at
different locations on North Sea. Also notice that in the lower-right panel, the
curves for lower height waves show different moving patterns between the two
locations. These phenomena suggest that an M4 process model may be a good
choice to model data like this kind after certain data transformation.
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Fig. 2 The upper panel time series plot is for observations at ELD. The middle panel time series
plot is for observations at EUR. The lower panel is a scatter plot of ELD against EUR

6.2 Data transformation

As mentioned in the previous sections, in order to model real data by an M4
process, the data must be transformed to have exact unit Fréchet distribution
or to asymptotically be unit Fréchet distributed. In the literature, GEV or GPD
is often used to fit the original data first, and the data is then transformed based
on the fitted distribution functions. Here, we simply apply a rank based trans-
formation procedure. Suppose the rank of Ui is ri, then the transformed data
value is Xi = −1/ log

(
ri/(n + 1)

)
. We plot transformed data in Fig. 4. Now the

transformed moving patterns and those in Fig. 1 look alike, and hence an M4
model with geometric moving patterns to approximate these transformed data
seems acceptable.

6.3 Modeling the transformed data

As mentioned in Sect. 4, parameters alkd, tuning parameters Ld, K1(l, d) and
K2(l, d) can be estimated by using the dth observed process only. The idea
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Fig. 3 The upper-left panel plots observations within a 100-hour time period. The dashed dotted
curve (EUR) was observed 10 hours later than the solid curve (ELD). The upper-right panel, the
lower-left panel, and the lower-right panel, each plots observations within a 35-hour time period.
Observations in these three plots are recorded at the same time at both stations

of using functions q1d(x), d = 2, . . . , D, is to match extreme co-movement
signature patterns between different processes. Here we first estimate para-
meter values based on qd(x) and q̂d(x) functions and the procedure proposed in
Sect. 5.

For both ELD transformed data and EUR transformed data, after apply-
ing the procedure proposed in Sect. 5, we find that both processes are best
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Fig. 4 Plots of transformed data which is asymptotically unit Fréchet distributed. The upper-left
panel plots observations within a 100-hour time period. The dashed dotted curve (EUR) was
observed 10 hours later than the solid curve (ELD). The upper-right panel, the lower-left panel,
and the lower-right panel, each plots observations within a 35-hour time period. Observations in
these three plots are recorded at the same time at both stations

Table 2 Estimations of coefficients in ELD transformed data model and EUR transformed data
model separately

Estimated value Estimated value Estimated value

ELD b11 0.1226 λ11 0.9184 φ11 0.9397
(0.0158) (0.0356) (0.0421)

EUR b12 0.1416 λ12 0.8646 φ12 0.8815
(0.0201) (0.0385) (0.0528)

Estimations and standard deviations—in the parentheses—are computed by using Theorem 3

fitted with one signature pattern, i.e. Ld = 1, and K1 = 3, K2 = 6, and so
K = K1 + K2 + 1 = 10 (hours) which matches the upper-left panels in Figs. 3
and 4. The tuning parameter values xid used in ELD are 0.6326, 0.8770, 0.9439,
1.0161, 1.0936, 1.4155; and the tuning parameter values xid used in EUR are
0.5606, 0.8058, 0.9225, 1.0573, 1.2104, 1.6087. These values are automatically
computed using the procedure in Sect. 5. The estimated parameter value and
their standard errors are reported in Table 2.

As illustrated in (20) and (21), the joint distributions between two univariate
processes depend on the starting locations of signature patterns in each pro-
cesses. We use functions q1d(x) (or their empirical counterparts q̂1d(x)) to form
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Table 3 Estimations of coefficients in ELD transformed data and EUR transformed data jointly

Estimated Estimated Estimated
d l value (̂bld) value (̂λld) value (φ̂ld) (h(l, d))

1 1 0.0164 0.9184 0.9397 0
(0.0021) (0.0356) (0.0421)

1 2 0 0.9184 0.9397 0
0 (0.0356) (0.0421)

1 3 0.0320 0.9184 0.9397 0
(0.0041) (0.0356) (0.0421)

1 4 0.0107 0.9184 0.9397 0
(0.0014) (0.0356) (0.0421)

1 5 0.0289 0.9184 0.9397 0
(0.0037) (0.0356) (0.0421)

1 6 0.0347 0.9184 0.9397 0
(0.0045) (0.0356) (0.0421)

2 1 0 0.8646 0.8815 0
0 (0.0385) (0.0528)

2 2 0.0638 0.8646 0.8815 0
(0.0091) (0.0385) (0.0528)

2 3 0.0216 0.8646 0.8815 0
(0.0031) (0.0385) (0.0528)

2 4 0.0264 0.8646 0.8815 0
(0.0037) (0.0385) (0.0528)

2 5 0.0128 0.8646 0.8815 2
(0.0018) (0.0385) (0.0528)

2 6 0.0170 0.8646 0.8815 2
(0.0024) (0.0385) (0.0528)

Estimations and standard deviations—in the parentheses—are computed by using Theorem 3

an M4 process model for both ELD and EUR transformed data. We first give
a fact that the following two processes are identical in distribution:

Yi = max
k=−K1,...,K2

bλ(k)+φ(k)−Zi−k,

and

Y ′
i = max

l=1,...,L;
max

k=−K1,...,K2
blλ

(k)+φ(k)−Zl,i−k,

where b = b1 + · · · + bL, bl > 0, Zi−k, Zl,i−k are independent unit Fréchet
random variables. In this analysis, if we let Ld > 1, then we have λid = λjd, φid =
φjd, i �= j which do not satisfy the conditions in Lemma 5. This is not a problem
since the values of λid = λjd, φid = φjd, i �= j can be uniquely determined
by functions qd(x), while the values of blds can be uniquely determined by
functions q1d(x), d = 1, . . . , D in this study.

We now let d = 1 correspond to ELD, and d = 2 correspond to EUR. In
order to use Step 11 of Sect. 5, we have tried different values of Ld, d = 1, 2.
The values vary from 1 to 20. Using tuning parameter yj values 0.4177, 0.5320,
1.7039, 1.9749, 2.2374, the fitted squared error is 2.4158 when L1 = L2 = 1,
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while the fitted squared error is 7.8×10−4 when L1 = 6 and L2 = 6. This is the
smallest fitted squared error. Summarizing these results, we obtain Table 3.

In Table 3, b̂21 = 0 means that the extreme values generated from {Z2i} pro-
cesses only affect wave heights at EUR, not at ELD; similarly, the extreme val-
ues generated from {Z1i} processes only affect wave heights at ELD, not at EUR.
Except these two cases, the extreme values generated from {Zli}, l = 3, . . . , 6,
have effects at both locations. Numbers 2 in the last column show that some peak
values of extreme heights at EUR are two hours later than those at ELD. λ̂ld
values are repeated in Column 4 due to the estimates are based on a univariate
process. So are the φ̂ld values.

After a joint model has been established for wave heights at two different
locations, we can study various statistical inference problems regarding coastal
engineering and marine operations, etc. However these inference problems are
beyond the scope of this current study. We put them as our future research
directions.

7 Conclusions

M4 processes are built for modeling the extremes of multivariate stationary
processes. There are potential applications in finance, insurance and environ-
mental science. Some preliminary financial applications have been conducted
in Zhang (2002, 2005), Zhang and Smith (2001, 2002), and Smith (2003). The
results of Sect. 3, especially Lemma 3, are very general and can be used in any
other case where the asymptotic covariance matrix needs to be obtained. In
this paper, we have developed estimating procedures for M4 processes with
asymmetric geometric moving patterns of extremes. We have shown the model
identifiability (Lemmas 4, 5). The asymptotic properties are proved for all the
proposed estimators (Theorems 1, 2, 3).

We have restricted our attention to the asymmetric geometric structures
which are also commonly considered in other research areas. We have suc-
cessfully applied M4 models to wave height data. There is no doubt that other
structures are possible. Directions for future research include: M4 models with
missing data, and selecting models under the M4 model settings.

8 Proofs

Proof of Theorem 2 For simplicity, we prove the results for L = 1. The proof
for L > 1 is a direct generalization of this proof. Since q̂(x)

a.s.−→ q(x), by
continuous mapping theorem,

b̂
a.s.−→ b, λ̂

a.s.−→ λ, φ̂
a.s.−→ φ, as n → ∞.
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Notice that for each i, q̂(xi) is a function of (̂b, λ̂, φ̂). When (̂b, λ̂, φ̂) are in a
neighborhood of (b, λ, φ), q̂(xi) can be written as

q̂(xi) = q(xi) + Q̂i(xi)

⎛

⎝

⎡

⎣
b̂
λ̂

φ̂

⎤

⎦−
⎡

⎣
b
λ

φ

⎤

⎦

⎞

⎠,

where Q̂i(xi) is a row vector

Q̂i(xi) =
(

∂q̂(xi)

∂b̂
,
∂q̂(xi)

∂λ̂
,
∂q̂(xi)

∂φ̂

)
.

The values of the vector are evaluated at the points where each b̂ is replaced by
b̂ + θn(̂b − b), λ̂ is replaced by λ̂ + θn(̂λ − λ), and φ̂ is replaced by φ̂ + θn(φ̂ − φ),
where θn is in (0,1). Putting all Q̂i(xi), i = 1, . . . , m, row by row, we then have

q̂ − q = Q̂

⎛

⎝

⎡

⎣
b̂
λ̂

φ̂

⎤

⎦−
⎡

⎣
b
λ

φ

⎤

⎦

⎞

⎠,

where the ith row of matrix Q̂ is Q̂i(xi). The proof is completed by applying
Lemma 3, the Mean Value Theorem and Slutsky theorem. 
�

Proof of Lemma 4 Since q(x) is a piecewise linear function, as long as there are
at least two points—say xi and xi+1—between any two adjacent slope changing
points, then points (xi, q(xi)), i = 1, . . . , m uniquely determine all the values
of slope change points. Since λi �= λj, λi �= φj, φi �= φj, i �= j, i, j = 1, . . . , L,
any permutations among φj and λl will result in different values of λl/φl which
are the true changing points, therefore the values of λl and φl are uniquely
determined. To show the uniqueness of bl, we rewrite q(x) as

q(x) =
L∑

l=1

xel

2+K1(l)∑

m=1−K2(l)

max

(
cl,1−m,

cl,2−m

x

)
. (24)

where el = bl ∗
(∑K1(l)

k=1 φk
l + 1 +∑K2(l)

k=1 λk
l

)
,
∑

j
cl,j = 1 for each l and all cl,j are

uniquely determine by the ratios which are the slope change points of q(x).
Suppose now q(x) has a different representation, say

q(x) =
L∑

l=1

xe′
l

2+K1(l)∑

m=1−K2(l)

max

(
cl,1−m,

cl,2−m

x

)
(25)
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then

L∑

l=1

(el − e′
l)

2+K1(l)∑

m=1−K2(l)

max

(
cl,1−m,

cl,2−m

x

)
= 0 (26)

for all x > 0.
Suppose we have chosen x1, x2, . . . , xL−1 and formed the matrix

� =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2+K1(l)∑
m=1−K2(l)

max
(

c1,1−m, c1,2−m
x1

)
· · ·

2+K1(l)∑
m=1−K2(l)

max
(

cL,1−m, cL,2−m
x1

)

...
. . .

...
2+K1(l)∑

m=1−K2(l)
max

(
c1,1−m, c1,2−m

xL−1

)
· · ·

2+K1(l)∑
m=1−K2(l)

max
(

cL,1−m, cL,2−m
xL−1

)

1 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and set

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2+K1(l)∑

m=1−K2(l)
max

(
c1,1−m,

c1,2−m
x1

)
· · ·

2+K1(l)∑

m=1−K2(l)
max

(
cL,1−m, cL,2−m

x1

)

...
. . .

...
2+K1(l)∑

m=1−K2(l)
max

(
c1,1−m,

c1,2−m
xL−1

)
· · ·

2+K1(l)∑

m=1−K2(l)
max

(
cL,1−m, cL,2−m

xL−1

)

1 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎝

b1 − b′
1

...

...
bL − b′

L

⎞

⎟⎟⎟⎟⎟⎠
= 0.

Let |�| be the determinant of the system of linear equations. Assume now the
L determinants of the (L − 1)× (L − 1) matrices formed from the bottom L − 1
rows are not all zero. Since cl,k are known and

∑2+K1(l)
m=1−K2(l)

cl,i−m = 1, i = 1, 2,
then there exist xmin and xmax such that when x1 < xmin or x1 > xmax, all ele-
ments of first row in � are 1

x1
or 1, respectively. This will give two constant rows

in |�|, so when x1 < xmin or x1 > xmax, we have |�| = 0. When x1 varies in
[xmin, xmax], denoting � by �(x1), then

|�(x1)| = 1
x1

∑
ci,j|�|1j +

∑
ci′,j′ |�|1j′ (27)

where |�|1j �= 0, |�|1j′ �= 0 are the (1, j) or (1, j′) minors of �. Both
summations in the right hand side of (27) are over all non-zero minors of
the first row of � and the corresponding

ci,j
x1

or ci′,j′ . If |�(x1)| = 0, by varying x1

in [xmin, xmax], at some point x, some 1
x1

ci,j|�|1j of the summation 1
x1

∑
ci,j|�|1j

change to ci′,j′ |�|1j′ and add to
∑

ci′,j′ |�|1j′ , or vice versa, and this change results
in |�(x)| �= 0. Hence it cannot be true that |�| = 0 for all x1. This argument can
be applied to lower dimension matrices. On the other hand, we can start from
a 2 × 2 matrix and extend it to L × L matrix such that the determinant is not
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zero as required. Therefore, there exist constants x1, , . . . , xL−1 such that each
system of linear equations has a unique solution. We then conclude el = e′

l, for
all l. So q(x) uniquely determine all bl, λl and φl. 
�
Proof of Lemma 5 By Lemma 4, qd(x), d = 1, . . . , D uniquely determine all val-
ues of parameters λld, bld, φld. Since ratios al,k,1/al′,k′+h(l′,d′),d′ , l, l′ = 1, . . . , L,
k, k′ = −K1, . . . , K2, for each d′ are distinct, any permutation of index l in
bld′λ(k)+

ld′ φ
(k)−
ld′ will result in different ratios or jump points on the right hand side

of (22), so q1d′(x) uniquely determines al,k,1/al,k+h(l,d′),d′ , d′ = 2, . . . , D for all l
and k. So (22) eventually uniquely determines all the true values of all param-
eters λld, bld, φld and identifies the model. The reason why x1d, x2d, . . . , xmdd,
y1d′ , y2d′ , . . . , yvd′ d′ uniquely determine all values of λld, bld, φld is because qd(x),
q1d′(x) are piecewise linear functions which can be uniquely determined by a
finite number of points as long as there are at least two points between any two
jump points. 
�
Proof of Theorem 3 Simply notice that as n → ∞,

q̂d(xjd)
a.s.−→ qd(xjd), j = 1, . . . , md, d = 1, . . . , D,

q̂1d′(yj′d′)
a.s.−→ q1d′(yj′d′), j′ = 1, . . . , vd′ , d′ = 2, . . . , D,

and apply Lemma 5. Then follow the arguments before Theorem 2. 
�
Acknowledgments This work was supported in part by NSF Grants DMS-0443048, DMS-0505528,
and DMS-0630210, and the Wisconsin Alumni Research Foundation. The author thanks John de
Ronde of Ministry of Water Management, RIKZ, Netherlands for permitting the author to analyze
North Sea wave height data, and three referees for their many comments, suggestions which have
greatly improved the quality of the paper.

References

Billingsley, P. (1995). Probability and measure (3rd ed.). New York: Wiley.
Coles, S. G., Tawn, J. A. (1991). Modeling extreme multivariate events. Journal of Royal Statistical

Society, Series B, 53, 377–392.
Coles, S. G., Tawn, J. A. (1994). Statistical methods for multivariate extrems: an application to

structural design (with discussion). Applied Statistics, 43(1), 1–48.
Davis, R. A., Resnick, S. I. (1989). Basic properties and prediction of Max-ARMA processes.

Advances in Applied Probability, 21, 781–803.
Davis, R. A., Resnick, S. I. (1993). Prediction of stationary Max-stable processes. Annals of Applied

Probability, 3(2), 497–525.
Deheuvels, P. (1983). Point processes and multivariate extreme values. Journal of Multivariate

Analysis, 13, 257–272.
Embrechts, P., Klüppelberg, C., Mikosch, T. (1997). Modelling extremal events for insurance and

finance, Berlin Heidelberg New York: Springer.
Galambos, J. (1987). Asymptotic theory of extreme order statistics (2nd ed.). Malabar: Krieger.
de Haan, L. (1984). A Spectral Representation for Max-stable processes. Annals of Probability

12(4), 1194–1204.
de Haan, L. (1985). Extremes in higher dimensions: the model and some statistics. In Proceedings

of 45th session international statistics institute, (paper 26.3). The Hague: International Statistical
Institute.



150 Z. Zhang

de Haan, L., Resnick, S. I. (1977). Limit theory for multivariate sample extremes.
Z. Wahrscheinlichkeitstheorie verw Gebiete, 40, 317–337.

de Haan, L., de Ronde, J. (1998). Sea and wind: multivariate extremes at work. Extremes, 1(1),
7–45.

Hall, P., Peng, L., Yao. Q. (2002). Moving-maximum models for extrema of time series. Journal of
Statistical Planning and Inference, 103, 51–63.

Leadbetter, M. R., Lindgren, G., Rootzén, H. (1983). Extremes and related properties of random
sequences and processes. Berlin Heidelberg New York:Springer.

Pickands, J. III (1975). Statistical inference using extreme order statistics. The Annals of Statistics,
3(1), 119–131.

Pickands, J. III (1981). Multivariate Extreme Value distributions. In Proceedings of 43rd session
international statistics institute, pp. (859–878). Buenos Aires.

Resnick, S. I. (1987). Extreme values, regular variation, and point processes. Berlin Heidelberg New
York:Springer.

Smith, R. L. (1990). Extreme value theory. In W. Ledermann (Ed.), Handbook of applicable
mathematics (Supplement), Chichester:Wiley.

Smith, R. L. (2003). Statistics of extremes, with applications in the environment, insurance and
finance. In B. Finkenstadt, H. Rootzén, (Eds.) Extreme value in finance, telecommunications
and the environment, to be published by Chapman and Hall/CRC.

Smith, R. L., Weissman, I. (1996). Characterization and estimation of the multivariate extremal
index. Manuscript, UNC.

Van Gelder, P. H. A. J. M., de Ronde, J. G., Neykov, N. M., Neytchev, P. (2000). Regional frequency
analysis of extreme wave heights: Trading space for time. In Proceedings of the 27th ICCE
(pp. 1099-1112, Vol. 2,) Coastal Engineering 2000, Sydney.

Zhang, Z. (2002). Multivariate extremes, Max-stable process estimation and dynamic financial mod-
eling. PhD Dissertation, Department of Statistics, University of North Carolina.

Zhang, Z. (2005). A new class of tail-dependent time series models and its applications in financial
time series. Advances in Econometrics, 20(B), 323–358.

Zhang, Z., Smith, R. L. (2001). Modeling financial time series data as moving maxima processes.
Technical Report, Department of Statistics, University of North Carolina. Submitted to 2001
NBER/NSF time series conference.

Zhang, Z., Smith, R. L. (2002). On the estimation and application of Max-stable processes. Man-
uscript, Washington University.

Zhang, Z., Smith, R. L. (2004). The behavior of multivariate maxima of moving maxima processes.
Journal of Applied Probability, 41, 1113–1123.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


