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Abstract Let x ∈ R
p be an observation from a spherically symmetric distribution

with unknown location parameter θ ∈ R
p. For a general non-negative function c,

we consider the problem of estimating c(‖x − θ‖2) under the usual quadratic loss.
For p ≥ 5, we give sufficient conditions for improving on the unbiased estimator γ0
of c(‖x − θ‖2) by competing estimators γs = γ0 + s correcting γ0 with a suitable
function s. The main condition relies on a partial differential inequality of the form
k �s + s2 ≤ 0 for a certain constant k �= 0. Our approach unifies, in particular,
the two problems of quadratic loss estimation and confidence statement estimation
and allows to derive new results for these two specific cases. Note that we formally
establish our domination results (that is, with no recourse to simulation).

Keywords Loss estimation · Confidence statement · Spherically symmetric
distribution · Green integral formulas · Sobolev spaces · Differential inequations
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1 Introduction

Let X be a random vector in R
p from a spherically symmetric distribution around a

fixed vector θ ∈ R
p. More specifically, we assume that X has a generating function

f , that is, X has a density of the form x �→ f (‖x − θ‖2) where θ is the unknown
location parameter. In what follows, as an estimator δ of θ , we only consider the
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least square estimator δ(X) = X . For a given non-negative function c on R+, we
are interested in estimating the quantity c(‖x − θ‖2) when x has been observed
from X . This problem recovers both the usual case of estimating the quadratic
loss ‖x − θ‖2 (c is the identity function as in Johnstone, 1988; Lu and Berger,
1989; and Fourdrinier and Wells, 1995b) and the case of estimating the confidence
statement of the usual confidence set {θ ∈ R

p / ‖x − θ‖2 ≤ cα} with confidence
coefficient 1 − α (c is the indicator function 11[0,cα]; see Robert and Casella, 1994
for e.g.). This approach is in the framework of the theory of conditional inference
formalized by Robinson (1979a, b).

When Eθ [c(‖X − θ‖2)] < ∞ (where Eθ denotes the expectation with respect
to the density x �→ f (‖x − θ‖2)), a natural estimator is the unbiased estimator
γ0 = E0[c(‖X‖2)]. Since it is a constant estimator, it is natural to search other
estimators γ and a simple way of comparison is to use the quadratic risk defined
by

R(γ, θ) = Eθ

[
(γ − c

(‖X − θ‖2)
)2

]
. (1)

Then an estimator γ will be better than γ0 (or will dominate γ0) if, for any θ ∈ R
p,

R(γ, θ) ≤ R(γ0, θ)

with strict inequality for some θ . Of course, the last inequality makes only sense
when E0[c2(‖X‖2)] < ∞.

Note that, in lower dimension, γ0 is still a good estimator with respect to the
quadratic risk (1) since it can be shown that γ0 is admissible for p ≤ 4. Therefore,
in the following, we assume that p ≥ 5.

Any estimator γ can be written under the form γ = γs = γ0 + s for some
function s which can be viewed as a correction of γ0 (actually s = γ − γ0). Our
goal is then to yield conditions on s such that γs dominates γ0. Our approach con-
sists in developing an upper bound of the risk difference δθ = R(γs, θ)− R(γ0, θ)
between γs and γ0 in terms of the expectation of a differential expression of the
form k �s + s2 where k is a constant different from 0 and �s = ∑p

i=1 Dii s is

the Laplacian of s for Dii = ∂2

∂x2
i

. Although it is not originally present in the risk

difference δθ , the introduction of the Laplacian of the correction s is the main key
of our results. Its intervention relies on a Green formula type which implies the
consideration of Sobolev spaces.

Often, in the literature, the domination of γs over γ0 is tackled through Taylor
expansions of their risk difference δθ . The possible weakness of that technique is
that it may be difficult to control the sign of δθ , so that formal domination is only
obtained for θ around 0 and in a neighborhood of infinity (this is the case in Robert
and Casella (1994). The advantage of our approach is that it allows to give a formal
proof for all values of θ . A possible drawback is that we work with an upper bound
of δθ , which may be crude. However, under certain conditions, we are in a position
to provide an accurate upper bound.

In Sect. 2, we present the model and give a technical lemma useful to introduce
the Laplacian �s in the risk difference. Then we establish our main result of dom-
ination over γ0. This domination relies on the upper bound δθ = Eθ [k �s + s2]
of the risk difference δθ , for a specific value of k, and one expresses the fact that
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δθ ≤ 0, and hence δθ ≤ 0, through the differential inequality k �s(x)+ s2(x) ≤ 0
for any x ∈ R

p. In a second result, we exhibit a smaller upper bound δ̌θ for δθ corre-
sponding to a greater value of |k|. It is obtained at the price of additional conditions
on the functions f and c so that the differential inequation mentioned above allows
to yield a wider class of corrections s. Section 3 is devoted to several applications:
quadratic loss estimation, concave loss estimation and confidence statement esti-
mation. In Sect. 4, we give some conclusions and perspectives. Finally Sect. 5 is
an appendix containing technical lemmas with their proofs.

2 Improved estimators of c(‖x − θ‖2)

The goal is to determine conditions on the function s so that the risk difference δθ =
R(γs, θ)− R(γ0, θ) is non-positive for any θ ∈ R

p and negative for some θ ∈ R
p.

As previously noticed in Sect. 1, it is necessary to assume that Eθ [c2(‖X −θ‖2)] <
∞. Then it is easy to check through the Schwarz inequality that R(γs, θ) < ∞ if
and only if Eθ [s2] < ∞. In that case, it is clear that

δθ = Eθ [2 (γ0 − c(‖X − θ‖2)) s(X) + s2(X)]. (2)

Our approach consists in introducing the Laplacian of the correction function
s, say �s, under the expectation sign in the right-hand side of (2). We will see that
this can be done with the use of a Green formula type∫

Rp

u(x)�v(x) dx =
∫

Rp

v(x)�u(x) dx (3)

for suitable functions u and v. Conditions for Formula (3) to hold are specified in
Lemma 1 below. Note that (3) is fundamentally an integration by parts formula
which depends on the spaces where the functions u and v live; those are naturally
Sobolev spaces. More precisely, we need u to be in the space W 2,1

loc (Rp) of the
functions twice weakly differentiable from R

p into R. Recall that a function u
from R

p into R is said to be weakly differentiable if u is locally integrable and
if, for any i = 1, . . . , p, there exists a locally integrable function denoted by Di u
such that, for any function φ infinitely differentiable with compact support from
R

p into R, ∫

Rp

u(x) Diφ(x) dx = −
∫

Rp

Di u(x) φ(x) dx .

Although Formula (3) is symmetric in u and v, the assumptions on the function
u are not exactly the same as those on the function v. We require v to be in the
space W 2,∞(Rp) of the functions twice weakly differentiable from R

p into R and
essentially bounded (that is, bounded almost everywhere).

In the following, for any open set � in R
p, we denote by C2

b (�) the space of
the functions twice continuously differentiable and bounded on �. Furthermore,
for any l ∈ N and any r > 0, the set Sl,r (�) is the space of the functions l times
continuously differentiable v on � such that

sup
x∈� ; |α|≤l ;β≤r

‖x‖β |Dα v(x)| < ∞,
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where α = (α1, . . . , αp) denotes a multi-index (i.e. a p-tuple of non-negative
integers) such that its length satisfies |α| = α1 + · · · + αp ≤ l and Dα is the
corresponding partial derivative operator.

Lemma 1 Let u ∈ W 2,1
loc (Rp) and v ∈ W 2,∞(Rp). If there exist r > 0 such that

u ∈ C2
b (Rp \ Br ) and ε > 0 such that v ∈ S2,p+ε(Rp \ Br ) (where Br is the ball

{x ∈ R
p / ‖x‖ ≤ r} of radius r and centered at the origin), then the functions u �v

and v �u are integrable and the corresponding integrals on R
p are equal, that is,

∫

Rp

u(x)�v(x) dx =
∫

Rp

v(x)�u(x) dx .

Proof See Blouza et al. (2006).

We are now in a position to give a new expression for the risk difference δθ in
(2).

Theorem 1 Let s be a function from R
p into R such that Eθ [s2] < ∞. Assume

that there exists r > 0 such that s ∈ W 2,1
loc (Rp) ∩ C2

b (Rp \ Br ). Assume also that
the functions f and c are continuous on R

∗+, except possibly on a finite set T , and
there exists ε > 0 such that f and f c belong to S0,p/2+1+ε (R∗+ \ T ). Then

δθ = Eθ

[
K (‖X − θ‖2)

f (‖X − θ‖2)
�s(X) + s2(X)

]
, (4)

where K is the function depending on f and c defined, for any t > 0, by

K (t) = 1

p − 2

∞∫

t

[( y

t

)p/2−1 − 1

]
(γ0 − c(y)) f (y) dy. (5)

Proof According to Formula (2), the proof first relies on the fact that, in Lemma 2
of Appendix, it is shown that, for almost every x ∈ R

p,

�K (‖x − θ‖2) = 2(γ0 − c(‖x − θ‖2)) f (‖x − θ‖2)

and hence

Eθ [2 (γ0 − c(‖X − θ‖2)) s(X)] =
∫

Rp

�K (‖x − θ‖2) s(x) dx .

Now, by assumption, s ∈ W 2,1
loc (Rp) ∩ C2

b (Rp\Br ) for some r > 0 and Lem-
mas 5 and 6 (see Appendix) express that the function x �−→ K (‖x − θ‖2) is in
W 2,∞(Rp) ∩ S2, p+ε(Rp \ Br ) for some ε > 0. Therefore Lemma 1 applies and
gives

Eθ [2(γ0 − c(‖X − θ‖2)) s(X)] =
∫

Rp

K (‖x − θ‖2) �s(x) dx]

= Eθ

[
K (‖X − θ‖2)

f (‖X − θ‖2)
�s(X)

]
.
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Finally, as Eθ [s2] < ∞, the risk difference δθ exists and has the desired expression.
��

In order to obtain sufficient domination conditions of γ0 + s(X) over γ0 it is

needed to control the behavior of the coefficient K (‖x−θ‖2)

f (‖x−θ‖2)
in (4). Our approach

consists in giving conditions on the functions f , c, and s such that

Eθ

[
K (‖X − θ‖2)

f (‖X − θ‖2)
�s(X)

]
≤ Eθ [k �s(X)]

for some constant k different from 0. Before stating these conditions in the fol-
lowing theorem, note that the fact that f ∈ S0, p/2+1+ε(R∗+ \ T ) implies that f is
bounded from above by a constant M > 0.

Theorem 2 Under the conditions of Theorem 1, assume that the function γ0−c has
only one sign change. In the case where γ0 − c is first negative and then positive
(respectively first positive and then negative), assume that the Laplacian of s is
subharmonic (respectively superharmonic).

Then a sufficient condition for γs to dominate γ0 is that s satisfies the partial
differential inequality

k �s + s2 ≤ 0, (6)

where k is the constant defined by

k = 1

M
E0[K (‖X‖2)].

Proof Note that, in the case where the function γ0 − c is first negative and then
positive, the function K is positive according to Lemma 4 of Appendix and hence
k > 0. Then Inequality (6) imposes that �s ≤ 0 (that is, the function s is su-
perharmonic). Similarly, when γ0 − c is first positive and then negative, we have
k < 0 and consequently �s ≥ 0 (the function s is subharmonic). Therefore, in
both cases, for any x ∈ R

p, the product K (‖x − θ‖2)�s(x) is non-positive and,
as f ≤ M , we have

Eθ

[
K (‖X − θ‖2)

f (‖X − θ‖2)
�s(X)

]
≤ 1

M
Eθ [K (‖X − θ‖2)�s(X)]. (7)

Now the last expectation in (7) can be written as

Eθ [K (‖X − θ‖2) �s(X)] =
∫

Rp

K (‖x − θ‖2)�s(x) f (‖x − θ‖2) dx

=
∞∫

0

∫

Sr,θ

�s(x) dUr,θ (x) K (r2)
2π p/2

�(p/2)
r p−1f (r2) dr,

(8)
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where Ur,θ is the uniform distribution on the sphere Sr,θ = {x ∈ R
p/ ‖x −θ‖ = r}

of radius r and centered at θ . Note that the function r �→ 2π p/2

�(p/2)
r p−1 f (r2) is the

radial density, that is, the density of the radius R = ‖X − θ‖.
For simplicity, we only develop the case where γ0 − c is first negative and

then positive. By assumption, the superharmonic function s has its Laplacian �s
which is subharmonic (i.e. �(�s) ≥ 0). So the mean

∫
Sθ,r

�s(x) dUθ,r (x) is a
non-decreasing function of r (see e.g. Doob, 1984). Furthermore, as by Lemma 4
the function K is non-increasing, then, by covariance inequality, it follows from
(8) that

Eθ [K (‖X − θ‖2) �s(X)] ≤
∞∫

0

K (r2)
2π p/2

�(p/2)
r p−1 f (r2) dr

×
∞∫

0

∫

Sr,θ

�s(x) dUr,θ (x)
2π p/2

�(p/2)
r p−1 f (r2) dr

= M k Eθ [� s(X)]
by definition of k.

Now, returning to Inequality (7), we obtain that

Eθ

[
K (‖X − θ‖2)

f (‖X − θ‖2)
�s(X)

]
≤ Eθ [k �s(X)]

and finally that the risk difference in (4) satisfies

δθ ≤ Eθ [k �s(X) + s2(X)] ≤ 0

according to (6).
The second case (γ0 − c is first positive and then negative) can be tackled in

the same way. Thus γs dominates γ0. ��
The proof of Theorem 2 uses, through Inequality (7), the property that the gen-

erating function f is bounded by M . This fact leads to a constant k in (6) which may
be small and hence may reduce the scope of the possible corrections s generating
the improved estimators γs . We give, in the next theorem, an additional condition
which avoids the use of M ; that condition relies on the monotonicity of the ratio K

f .

Theorem 3 Under the conditions of Theorem 2, assume that the functions K and
K
f have the same monotonicity (both non-increasing or both non-decreasing).

Then a sufficient condition for γs to dominate γ0 is that s satisfies the partial
differential inequality

κ �s + s2 ≤ 0 (9)

with

κ = E0

[
K (‖X‖2)

f (‖X‖2)

]
.
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Proof We follow the proof of Theorem 2 in the case where γ0 − c is first negative
and then positive (hence �s is subharmonic). The main point is to treat the left
hand side of Inequality (7); it equals

∞∫

0

∫

Sr,θ

�s(x) dUr,θ (x)
K (r2)

f (r2)

2π p/2

�(p/2)
r p−1 f (r2) dr

≤
∞∫

0

∫

Sr,θ

�s(x) dUr,θ (x)
2π p/2

�(p/2)
r p−1 f (r2) dr

×
∞∫

0

K (r2)

f (r2)

2π p/2

�(p/2)
r p−1 f (r2) dr

by covariance inequality since K
f is non-increasing (K is non-increasing according

to Lemma 4) and r �→ ∫
Sr,θ

�s(x) dUr,θ (x) is non-decreasing by subharmonicity
of �s. Therefore we have obtained

Eθ

[
K (‖X − θ‖2)

f (‖X − θ‖2)
�s(X)

]
≤ E0

[
K (‖X‖2)

f (‖X‖2)

]
Eθ [�s(X)].

Finally, the result follows the same way as in the proof of Theorem 2 with

κ = Eθ

[
K (‖X − θ‖2)

f (‖X − θ‖2)

]
.

��
Remark Theorem 3 gives an improvement on Theorem 2 as far as the constant in
front of �s in (6) and (9) is concerned. Indeed, when K ≥ 0 (and hence k > 0 and
�s ≤ 0), we have

κ = E0

[
K (‖X‖2)

f (‖X‖2)

]
≥ 1

M
E0

[
K (‖X‖2)

] = k

and, when K ≤ 0 (and hence k < 0 and �s ≥ 0),

κ = E0

[
K (‖X‖2)

f (‖X‖2)

]
≤ 1

M
E0

[
K (‖X‖2)

] = k.

Theorems 1, 2 and 3 specify the spaces in which the correction function s
should belong and the question arises naturally as for the existence of such a func-
tion. Typically, functions s of the form s(x) = a

b+‖x‖2 where a and b are real
constants (with b ≥ 0) constitute the basis of possible corrections, the particular
case where b = 0 being of interest. It can be easily shown that, if s(x) = a

‖x‖2 , we

have s ∈ W 2,1
loc (Rp) for p ≥ 5 and s ∈ C2

b (Rp \ Br ) for any r > 0.

Now, for p ≥ 5, it is easy to see that, for any x �= 0, �s(x) = −2 a (p−4)

‖x‖4 and
hence that Inequality (6) is satisfied if and only if 0 ≤ a ≤ 2 k (p − 4) when k > 0
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(2 k (p − 4) ≤ a ≤ 0 when k < 0, respectively). Furthermore, for p ≥ 6, the
bi-Laplacian of s verifies, for any x �= 0, �(�s(x)) = 8 a (p−4) (p−6)

‖x‖6 . Note that
the function �s is subharmonic when a ≥ 0 and superharmonic when a ≤ 0.

Finally the finiteness risk condition Eθ [s2] < ∞ reduces to the existence of
the second inverse moment for the density x �→ f (‖x − θ‖2).

3 Applications

3.1 Estimating a loss

Estimating the quadratic loss ‖x − θ‖2 is a natural first application of the previous
theory; in that case, the function c is the identity function (c(t) = t). Johnstone
(1988) treats this problem under the usual normal distribution Np(θ, Ip)( f (t)
= 1

(2 π)p/2 e−t/2) through a two fold application of Stein’s identity. Our approach
allows to obtain directly his expression of the risk difference, say

δθ = Eθ [−2 �s(X) + s2(X)]. (10)

Indeed, according to (2), the risk difference is

δθ = Eθ [2 (p − ‖X − θ‖2) s(X) + s2(X)]
and it is easy to check that, for any x ∈ R

p,

(p − ‖x − θ‖2) exp

(
−1

2
‖x − θ‖2

)
= −� exp

(
−1

2
‖x − θ‖2

)

so that a straightforward application of Lemma 1 gives (10).
Fourdrinier and Wells (1995a) address this loss estimation problem in the more

general context of spherically symmetric distributions and give a sufficient con-
dition of domination of γ0 by γs of the form (6). Their distributional conditions
on f are more technical than ours and it is worth noting that their two examples
satisfy the conditions of Theorem 2. However we need here an extra condition on
the correction s, that is, �s is a superharmonic function (nevertheless note that
they use the same correction s(x) = a

‖x‖2 as us, and hence this superharmonicity

condition is satisfied as above).
Our method typically applies to estimating a loss given through a function of

the usual quadratic loss. Brandwein and Strawderman (1980, 1991a, b) and Bock
(1985) consider a non-decreasing and concave function c of ‖x − θ‖2 in order to
compare various estimators δ of θ . As in the case tackled by Johnstone (1988) and
Fourdrinier and Wells (1995b), it is still of interest to assess the loss of δ(X) = X ,
that is, to estimate c

(‖x − θ‖2
)
. When c is non-decreasing, as in Brandwein and

Strawderman (1980, 1991a, b) and also in Bock (1985), we are in the case where
the function γ0 − c is first positive and then negative; Theorem 2 directly applies
and note that concavity of c plays no role. We illustrate that fact with the following
examples.
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Assume that c(t) = tβ with 0 < β. Consider the Kotz distribution with gener-
ating function

f (t) = Nm tm e−t/2 with Nm = �(p/2)

2m �(p/2 + m)

1

(2 π)p/2 m ≥ 0. (11)

A simple calculation shows that the unbiased estimator γ0 = E[c(‖X‖2)] equals

γ0 = 2β �(p/2 + m + β)

�(p/2 + m)
. (12)

It is also clear that E0[c2(‖X‖2)] < ∞ (actually it is easy to check that this finite-
ness condition is obtained for p + 2 m + 4 β > 0). Conditions on f and c in
Theorem 1 are satisfied since f ∈ C0(R∗+) and c ∈ C0(R∗+); moreover, due to the
form of f , we have f ∈ S0,p/2+ε+1(R∗+) if and only if supt∈R

∗+ f (t) < ∞, which

is satisfied since m ≥ 0. Then it is clear that f c ∈ S0,p/2+ε+1(R∗+). Finally, the
function γ0 − c is non-increasing and hence has only one sign change.

As for the moment condition of s, that is Eθ [s2] < ∞, it is satisfied for
s(x) = a

b+‖x‖2 since such functions are bounded for b > 0. When b = 0, that

condition reduces to

∫

Rp

‖x − θ‖2m

‖x‖4 exp

(
−1

2
‖x − θ‖2

)
dx < ∞.

If θ �= 0, we have to check that, for any R > 0,

∫

BR

1

‖x‖4 dx < ∞

which is satisfied since p ≥ 5. If θ = 0, the corresponding condition is

∫

BR

1

‖x‖4−2m dx < ∞

which imposes p + 2m > 4 and is satisfied since m ≥ 0 and p ≥ 5.
We can now calculate the constant k in Theorem 3. First it is easy to check that

the constant M equals

M = �(p/2)

�(p/2 + m)

1

(2 π)p/2

(m

e

)m
. (13)

Secondly, through the expression of K given by (5), we show in Lemma 7 (see
Appendix) that E0[K (‖X‖2)] is expressed in terms of hypergeometric functions
and finally that
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k = 2−p/2−2 m

(p − 2) �(p/2 + m)

( e

m

)m

×
(

�(p/2+2 m+1) 2β �(p/2+m + β)

(m + 1) �(p/2 + m)
2 F1(1, p/2+2 m+1; m+2, 1/2)

−�(p/2 + 2 m + 1) 2β �(p/2 + m + β)

�(p/2 + m + 1)

×2 F1(1, p/2 + 2 m + 1; p/2 + m + 1, 1/2)

−�(p/2 + 2 m + β + 1)

m + 1
2 F1(1, p/2 + 2 m + β + 1; m + 2, 1/2)

+�(p/2 + 2 m + β + 1)

p/2 + m
2 F1(1, p/2 + 2 m + β + 1; p/2 + m + 1, 1/2)

)
.

This constant k reduces to a simple form when β = 1 (that is, we estimate the qua-
dratic loss ‖x − θ‖2) since it can be shown, through Formula 9.137 8. page 1,044
of Gradshteyn and Ryzhik (1980) with α = 0, β = p/2 + 2 m + 1, γ = m + 1
and z = 1/2, that

(m + 1) + (p/2 + m) 2 F1(1, p/2 + 2 m + 1; m + 2, 1/2)

= (p/2 + 2 m + 1)
1

2
2 F1(1, p/2 + 2 m + 2; m + 2, 1/2).

According to the same formula with α = 0, β = p/2 + 2 m + 1, γ = p/2 + m
and z = 1/2, we have

(p/2 + m) + (m + 1) 2 F1(1, p/2 + 2 m + 1; p/2 + m + 1, 1/2)

= (p/2 + 2 m + 1)
1

2
2 F1(1, p/2 + 2 m + 2; p/2 + m + 1, 1/2).

Then, after simplification, we obtain

k = −2−p/2−2 m
( e

m

)m �(p/2 + 2 m + 1)

�(p/2 + m + 1)

×2 F1(1, p/2 + 2 m + 1; p/2 + m + 1, 1/2).

In particular, for m = 1,

k = −2−2−p/2 e (p + 6) (14)

and, when m goes to 0, by a continuity argument we obtain the Gaussian case with

k = −21−p/2.

Note that this constant k is much smaller in absolute value than the constant 2
exhibited by Johnstone (1988). So it is interesting to seek a better constant turning
our attention to Theorem 3 in the case where β = 1 and m ≥ 0. It is shown in
Lemma 8 (see Appendix) that, for any t > 0,

K (t) = −Nm

∞∫

t

ym e−y/2 dy = −Nm 2m+1 �

(
m + 1,

t

2

)
, (15)
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where �(a, x) denotes the incomplete gamma function

�(a, x) =
∞∫

x

ta−1 e−t dt.

It follows that

K (t)

f (t)
=−

∫ ∞
t ym e−y/2 dy

tm e−t/2 =−
∞∫

t

( y

t

)m
e−(y−t)/2 dy =−

∞∫

0

(
1 + z

t

)m
e−z/2 dy

using the change of variable y = z + t .
Thus the function K

f is non-decreasing and has the same monotonicity as K
(see (15)). Hence Theorem 3 applies with

κ = −4
p/2 + m

p
(16)

according to Lemma 8. It is worth noting that Theorem 3 leads exactly to the
constant given by Johnstone (1988) in the Gaussian case.

We pursue comparing the constants k and κ for any m. Since K ≤ 0, we know
that κ ≤ k < 0 (see remarks after Theorem 3). More precisely the relative gain
using κ instead of k is

τ = |κ| − |k|
|κ|

=1− 2−p/2−2 m
( e

m

)m �(p/2+2 m+1)
�(p/2+m+1) 2 F1(1, p/2 + 2 m + 1; p/2 + m + 1, 1/2)

4 p/2+m
p

.

In particular, for m = 1,

τ = 1 − e p (p + 6)

2p/2+3 (p + 2)

and, when m = 0 (that is the normal case),

τ = 1 − 2−p/2.

Note that the gain increases with the dimension p.
Although our results are formally established, we illustrate them through sim-

ulations. Figure 1 yields, for the Kotz distribution (11) with m = 1 and p = 8,
what brings Theorem 3 with respect to Theorem 2, and also, what is lost in using
the upper bounds δθ = Eθ [k �s + s2] and δ̌θ = Eθ [κ �s + s2] instead of the
risk difference δθ = R(γ0 + s, θ) − R(γ0, θ). According to (14) and to (16),
k = −2−2−p/2 e (p + 6) and κ = − 4

p (
p
2 + m) respectively, and the correction

s is choosen of the form s(x) = a
‖x‖2 with a = k(p − 4), since this value of a

minimizes

k �s(x) + s2(x) = [−2 k a (p − 4) + a2] ‖x‖−4.
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Fig. 1 Estimation of ‖x − θ‖2 when p = 8 under Kotz distribution with m = 1: risk difference
δθ (dashes) and its bounds δθ (solid) and δ̌θ (crosses) plotted against ‖θ‖2 (Calculations based
on 1,000,000 simulations)

All quantities δθ , δθ and δ̌θ are plotted against ‖θ‖2. Note that the values at
θ = 0 can be easily checked since, from (2), it can be shown that

δ0 = a

p

(
a

p − 2
+ 4

)
.

Now

δ0 = [−2 k a (p − 4) + a2] E0
[‖X‖−4] = a

p

(
a

p − 2
− 2 k

p − 4

p − 2

)

and also

δ0 = [−2 κ a (p − 4) + a2] E0
[‖X‖−4] = a

p

(
a

p − 2
− 2 κ

p − 4

p − 2

)
.

For the value of a, k and κ mentioned above, with p = 8, we finally obtain

δ0 = −1.07, δ0 = −0.118 and δ̌0 = −0.873.
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The upper bound δ̌θ is significatively below the upper bound δθ , so that there is a
noticeable improvement in using Theorem 3 instead of Theorem 2. While δθ is far
from δθ , it is worth noting that δ̌θ is very close to δθ , indicating that Theorem 3
yields an accurate upper bound for δθ .

3.2 Estimating a confidence statement

Another context for estimating a function of the squared norm c(‖x − θ‖2) is the
confidence statement estimation problem. Consider, for fixed α ∈ [0, 1], the usual
confidence region for the unknown parameter θ ∈ R

p which is given by

Cα(X) = {θ ∈ R
p / ‖X − θ‖2 ≤ cα},

where cα is the constant which guarantees that Cα(X) has confidence coefficient
1 − α. Robert and Casella (1994) recall the defect of using 1 − α as a report con-
fidence statement for Cα(X). They develop, in the normal case, the conditional
approach suggested first by Kiefer (1977) and formalized by Robinson (1979a, b).
Thus they propose, as a confidence procedure, the couple (Cα(X), γ (X)) where,
if X = x is observed, γ (x) is a reported confidence statement for the set Cα(x).
In this framework, γ (x) is an estimate of the indicator function 1lCα(x) and thus
we are reduced to estimate c

(‖x − θ‖2
)

with c = 11[0, cα]. Note that the standard
estimator γ0 here is γ0 = 1 − α.

We follow first Robert and Casella (1994) in considering the normal case, that
is, the case where the generating function f is of the form f (t) = (2 π)−p/2 e−t/2.
Note that these authors give only formal proof of an improvement γs = 1 − α + s
(with s(x) = a

‖x‖2 ) over γ0 = 1−α in the case where θ is close to 0 and ‖θ‖ is close
to infinity. In the other cases, they show improvement of γs through simulations.
We will see that Theorem 2 applies in this context with a completely specified con-
stant k and gives rise to a formal proof that γs dominates 1 − α for any value of θ .
Actually, Fourdrinier and Lepelletier (2003) yield a theorem, specifically adapted
to the confidence statement estimation problem, which guarantees the domination
of γs over γ0 through a partial differential inequation k1 �s + s2 ≤ 0. However,
in addition to the specificity of their theorem, their constant k1 is smaller than the
constant k in (6).

First it is clear that the functions f and c satisfy the assumptions of Theorem
1 and that 1 − α − 11[0, cα] has only one change sign (being first negative and then
positive). Note that the condition E0[c2(‖X‖2)] < ∞ is clearly satisfied since
E0[c2(‖X‖2)] = E0[c(‖X‖2)] = γ0.

So, according to Theorem 2, any function s ∈ W 2,1
loc (Rp) ∩ C2

b (Rp\ Br ) (for
some r > 0) such that Eθ [s2] < ∞ and such that its Laplacian �s is subharmonic
gives rise to an improved estimator γs = 1 − α + s as soon as Inequality (6) is
satisfied. As recalled in Section 2, a typical correction s is s(x) = a

‖x‖2 . Thus, for
such a function, straightforward calculations of the left hand side of Inequality (6)
show that an improvement is guaranteed if 0 ≤ a ≤ 2 k (p − 4). According to
Lemma 9 and denoting by γ (a, x) the incomplete gamma function
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γ (a, x) =
x∫

0

ta−1 e−t dt,

we have

k = γ (p/2, cα) − γ (p/2, cα/2) − 2p/2−1 e−cα/2 γ (p/2, cα/2)

(p − 2) �(p/2) 2p/2−2

and thus the range of values of a is completely specified. Note that, in the neigh-
borhood of 0 for θ , this range can be wider. Indeed Robert and Casella (1994) show
that, when θ = 0, γs dominates γ0 if and only if 0 ≤ a ≤ 2 (p − 4) (α − ν) where
ν satisfies P[χ2

p−2 ≤ cα] = 1 − ν. Therefore k ≤ α − ν.
For a Kotz distribution with parameter m (see (11)), improvement of γs is still

valid with the same type of range for the constant a (0 ≤ a ≤ 2 k (p − 4)). An
explicit expression of k is more involved. However, for specific values of m, the
corresponding calculation can be made; thus, for m = 1, it can be shown that

k = e
(
4 γ (p/2 + 1, cα) + 2 γ (p/2 + 2, cα) − (p + 6 + 2p/2+2 �(2, cα/2)) γ (p/2 + 1, cα/2)

)

(p − 2) p �(p/2) 2p/2 .

As in Robert and Casella (1994), simulations are made for the normal distri-
bution Np(θ, Ip); here p = 8 and s is given by s(x) = a

‖x‖2 with a = k (p − 4).

In Fig. 2, the risk difference δθ = R(1 − α + s, θ) − R(1 − α, θ) and its bound
δθ = Eθ [k �s + s2] given by Theorem 2 are plotted against ‖θ‖2.

Values at θ = 0 are, respectively,

δ0 = a

p − 2

(
2 (1 − α) − 2

γ (p/2 − 1, cα/2)

�(p/2 − 1)
+ a

p − 4

)

and

δ0 = [−2 k a (p − 4) + a2] E0
[‖X‖−4] = a

p

(
a

p − 2
− 2 k

p − 4

p − 2

)
,

that is, for the value of a and k mentioned above with p = 8,

δ0 = −8.38 × 10−5 and δ0 = −0.25 × 10−5.

Clearly the upper bound δθ is crude. Since Theorem 3 does not apply, an alter-
native would consist in a combination of the two approaches in Theorems 2 and 3,
that is, to find a sub-interval on which K and K

f have the same monotonicity and
to bound f on the complementary of this interval.
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Fig. 2 Estimation of a confidence statement when p = 8 under normal distribution: risk differ-
ence δθ (dashes) and its bound δθ (solid) plotted against ‖θ‖2 (Calculations based on 1,000,000
simulations)

4 Concluding remarks

We have seen that, in the general estimation problem of a function c of a quadratic
function ‖x − θ‖2, improvements of the form γs = γ0 + s on the unbiased estima-
tor γ0 = E0[c(‖X‖2)] can be obtained through a unified approach and via solutions
of partial differential inequations of the form k �s + s2 ≤ 0. This method applies
to various setting (in particular to the confidence statement estimation problem, to
the loss estimation problem (with c(t) = t and, more generally, c(t) = tβ with
β > 0) and to a wide class of sampling distributions (included in the class of the
spherically symmetric distributions). This approach is very efficient in the sense
that, for a few classical estimation problems, such as the confidence statement esti-
mation problem in the normal case, it brings a formal solution. Recall that, for that
problem, Robert and Casella (1994) yield formal proofs in the only cases where
θ = 0 and ‖θ‖ in a neighbourhood of infinity while, in the other case, they illustrate
the improvements of γs through simulations.

At first sight, the role of the Laplacian of the correction s is non explicit in the
derivation of the risk calculation of γs (except in the case where c(t) = t and we
estimate ‖x − θ‖2 since �s appears through repeated uses of Stein’s identity as it
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is shown in Johnstone (1988). However �s turns out to be crucial in the solution
of the problem of finding improvements on γ0 (even in the case where we estimate
a confidence statement with c(t) = 1l[0 ; cα](t)).

Our idea was first to introduce the Laplacian in the risk difference δθ in (2) in
expressing the cross product term as the Laplacian of a function. Then the Lapla-
cian of s can be exhibited through a Green formula type (see Lemma 1). Note that
the conditions we need in using such a formula are quite general (and non standard)
since the conditions on the function c (such as the indicator function) and on the
correction s of the form s(x) = a

‖x‖2 impose a lack of regularity.

Before giving a few perspectives, note that a possible problem with the im-
proved estimators γs is that they can take values outside the range of the func-
tion c. To avoid such a problem, instead of an estimator γs , the use of γ ∗

s =
max{min{supt∈R+ c(t), γs(x)}, 0} leads to an improved estimator over γs as it can
be shown through straightforward calculations of their loss difference.

Our examples are centered around the Kotz distributions. However numerous
spherically symmetric distributions satisfy the conditions of Theorem 1. Thus it is
easy to show that this is the case for the logistic type distribution with generating
function f (t) ∝ e−t

(1+e−t )2 . More generally generating functions f converging fast

enough to infinity are good candidates. It is worth noting that the Student t-distribu-
tion with ν degrees of freedom is suitable (as soon as ν > 2 when c(t) = 1l[0 ; cα](t),
as soon as ν > max{4 β , 2 β + 2} when c(t) = tβ).

Other extensions are conceivable. Thus, when a residual vector U is available
(that is, when the density is of the form f (‖x − θ‖2 +‖u‖2)), improved estimation
of θ is classical [see Brandwein and Strawderman (1991a) and improved estima-
tors of the quadratic function ‖x − θ‖2 are given in Fourdrinier and Wells (1995a).
In this context, estimation of a function of the type c(‖x − θ‖2 + ‖u‖2] used in
Brandwein and Strawderman (1991b) is a natural perspective.

Finally, as it is clear that our improved estimators are not admissible, a natural
question is how to determine Bayesian (formal) estimators γ = γ0 + s where the
corresponding correcting function s satisfies a differential inequality of the type
(6)? We will consider finding prior distributions which lead to such estimators.

Appendix

Most of this appendix is devoted to the properties of the function K defined in (5).
It will be convenient to write K under the form

K (t) = −1

p − 2

⎛
⎝H(t) +

∞∫

t

G(y) dy

⎞
⎠ , (17)

where

H(t) =
t∫

0

( y

t

)p/2−1
G(y) dy (18)
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and

G(y) = (γ0 − c(y)) f (y). (19)

Note that H(t) is perfectly defined for any t > 0 since, through a change of variable
in polar coordinates, it can be easily shown that

H(t) = �(p/2)

π p/2 t1−p/2 Eθ

[
(γ0 − c(‖X − θ‖2)) 1l[0,t](‖X − θ‖2)

]

the existence of the last expectation being guaranteed since Eθ

[
c(‖X − θ‖2)

]
<

∞. Note also that, by definition,

γ0 = π p/2

�(p/2)

∞∫

0

y p/2−1 c(y) f (y) dy

and, as f is the generating function of a spherically symmetric distribution,

1 =
∞∫

0

π p/2

�(p/2)
y p/2−1 f (y) dy

and hence it follows from (19) that

∞∫

0

y p/2−1 G(y) dy = 0. (20)

Furthermore H can be extended at 0 by limt→0 H(t) = 0. Indeed, according to the
assumptions of Theorem 1, |G| = |γ0 − c| f is bounded on R

∗+\T by a constant
ν > 0 since the functions f and f c belong to S0,p/2+1+ε(R∗+\T ). Then, for any
t > 0,

H(t) ≤ ν

t p/2−1

t∫

0

y p/2−1 dy = 2 ν

p
t

and hence limt→0 H(t) = 0.
In the following, setting T = {t1, . . . , tm} ⊂ R

∗+ with t1 < · · · < tm , for
any θ ∈ R

p, we denote by Tθ = ∪m
i=1S√

ti ,θ where S√
ti ,θ is the sphere {x ∈

R
p/ ‖x − θ‖2 = ti } of radius

√
ti and centered at θ .

Lemma 2 If the functions f and c are continuous (except possibly on T ) then the
function H is derivable on R

∗+\ T and, for any t ∈ R
∗+\ T , we have

H ′(t) = G(t) − p − 2

2 t
H(t) . (21)

Furthermore the function K is twice derivable on R
∗+\ T and, for any t ∈ R

∗+\ T ,

K ′(t) = H(t)

2 t
(22)
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and

K ′′(t) = G(t)

2 t
− p

4 t2 H(t). (23)

Finally, for any θ ∈ R
p and any x ∈ R

p\ Tθ , we have

�K (‖x − θ‖2) = 2 G(‖x − θ‖2). (24)

Proof According to (18), setting, for any y ∈ R
∗+\ T , g(y) = y p/2−1 G(y) we can

define, for any t ∈ R
∗+, ϕ(t) = ∫ t

0 g(y) dy. Then, for fixed z ∈ R
∗+, the function

gz = g 1l]0 , z[ is in L1(R∗+) since

∞∫

0

|gz(y)| dy =
z∫

0

|g(y)| dy ≤ ν

z∫

0

y p/2−1 dy = 2 ν

p
z p/2 < ∞

using the upper bound ν of |G|. Therefore the function ϕz defined, for any t ∈
R

∗+, by ϕz(t) = ∫ t
0 gz(y) dy is absolutely continuous and ϕ′

z(t) = gz(t) =
g(t) 1l]0 , z[(t) a.e. As z has been arbitrarily chosen, we have in fact ϕ′(t) = g(t)
a.e. (choose t < z).

Now, the function g being continuous on each interval ]0 , t1[, ]t1 , t2[,…,]tn−1 ,
tn[, the function ϕ is derivable on R

∗+\ T and ϕ′(t) = g(t) for any t ∈ R
∗+\ T .

Finally, as H(t) = t1−p/2 ϕ(t), the usual rules of derivation give the stated expres-
sion of H ′(t).

We turn now our attention to the function K . The integral term in (17) satisfies
∣∣∣∣∣∣

∞∫

t

G(y) dy

∣∣∣∣∣∣
≤

∞∫

t

|γ0 − c(y)| f (y) dy

≤
∞∫

t

γ0 f (y) dy +
∞∫

t

c(y) f (y) dy

≤
∞∫

t

( y

t

)p/2−1
γ0 f (y) dy +

∞∫

t

( y

t

)p/2−1
c(y) f (y) dy

< ∞
since Eθ [c(‖X − θ‖2)] < ∞. Thus K is well defined on R

∗+ and it is clear from
(17) that K is derivable at any t ∈ R

∗+\ T and

K ′(t) = − 1

p − 2
(H ′(t) − G(t)) = H(t)

2 t

according to (21).
Formulas (22) and (21) insure in fact that K is twice derivable and give, for

any t ∈ R
∗+\ T ,

K ′′(t)= 2 t H ′(t)−2 H(t)

4 t2 = 2 t (G(t) − p−2
2 t H(t)) − 2H(t)

4 t2 = G(t)

2 t
− p H(t)

4 t2 .
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Finally, the calculation of the Laplacian of K (‖x − θ‖2) can be done as follows.
Let 1 ≤ i ≤ p and let x ∈ R

p\ Tθ . We have

∂i K (‖x − θ‖2) = 2 (xi − θi ) K ′(‖x − θ‖2) (25)

and

∂i i K (‖x − θ‖2) = 2 K ′(‖x − θ‖2) + 4 (xi − θi )
2 K ′′(‖x − θ‖2). (26)

Using (26), (22) and (23), we obtain

�K (‖x − θ‖2) = 2 p K ′(‖x − θ‖2) + 4 ‖x − θ‖2 K ′′(‖x − θ‖2)

= 2 p H(‖x − θ‖2)

2 ‖x − θ‖2 + 4 ‖x − θ‖2 G(‖x − θ‖2)

2 ‖x − θ‖2

−4 ‖x − θ‖2 p H(‖x − θ‖2)

4 ‖x − θ‖4

= 2 G(‖x − θ‖2).

��
We now give conditions for which the function x �→ K (‖x − θ‖2) belongs to

the space S2,p+η(Rp \ BR0), for some η > 0 and some R0 > 0, and to the space
W 2,∞(Rp). To this end, we recall a few inequalities about the quadratic norm. Let
(x, θ) ∈ R

p × R
p and 1 ≤ i < j ≤ p. We have

2 (xi − θ) (x j − θ j ) ≤ ‖x − θ‖2, (27)

(xi − θi )
2 ≤ ‖x − θ‖2, (28)

|xi − θi | ≤ max{‖x − θ‖2 ; 1}. (29)

Furthermore, if 2 ‖θ‖ ≤ r and x /∈ Br , then

‖x‖ < 2 ‖x − θ‖. (30)

Lemma 3 If the functions f and f c belong to S0,p/2+1+ε(R∗+\ T ) for some ε > 0
then

sup
t∈R

∗+

∣∣∣∣
H(t)

t

∣∣∣∣ < ∞

and H ∈ S0,p/2+ε(R∗+).

Proof By assumption, the functions f and f c are bounded from above by a con-
stant M0. Thus, according to (18) and (19), for any t > 0,

∣∣∣∣
H(t)

t

∣∣∣∣ ≤ 1

t p/2

t∫

0

y p/2−1 |γ0 − c(y)| f (y) dy

≤ (γ0 + 1) M0

t p/2

t∫

0

y p/2−1 dy = 2 (γ0 + 1) M0

p
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which gives the first result.
For 0 ≤ r ≤ p

2 + ε, note that, if 0 ≤ t ≤ tm ∨ 1, then

tr |H(t)| = tr+1 |H(t)|
t

≤ (tm ∨ 1)p/2+ε+1 × 2 (γ0 + 1) M0

p
.

Now assume that t > tm ∨1. Since the functions f and f c belong to S0,p/2+1+ε

(R∗+\ T ), there exists a constant M1 such that, for any y > tm ∨ 1,

y p/2+1+ε f (y) < M1, y p/2+1+ε f (y) c(y) < M1

and hence

y p/2+1+ε |G(y)| < (γ0 + 1) M1. (31)

Now note that, according to (18) and (20), we have

H(t) =
∞∫

t

( y

t

)p/2−1
G(y) dy.

Hence

∣∣tr H(t)
∣∣ ≤ tr

∞∫

t

( y

t

)p/2−1 |G(y)| dy

≤ (γ0 + 1) M1 tr+1−p/2

∞∫

t

y−2−ε dy

= (γ0 + 1) M1

1 + ε
tr−p/2−ε,

where (31) was used in the second inequality. As t > 1 and 0 ≤ r ≤ p
2 + ε, it

follows that

|tr H(t)| ≤ (γ0 + 1) M1

1 + ε

which gives the fact that H ∈ S0,p/2+ε(R∗+). ��

Lemma 4 Assume that the functions f and f c belong to S0,p/2+1+ε(R∗+\ T ) for
some ε > 0 and that the function γ0 − c has only one sign change. If γ0 − c is
first negative and then positive (respectively first positive and then negative) then
the function K is non-negative and non-increasing (respectively non-positive and
non-decreasing).
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Proof First note that the function H defined in (18) is such that limt→∞ H(t) = 0
since, according to Lemma 3, we have H ∈ S0,p/2+ε(]tm ∨1 ;∞[) for some ε > 0.
Furthermore, as f ∈ S0,p/2+1+ε(R∗+\ T ) and f c ∈ S0,p/2+1+ε(R∗+\ T ), for any
β ≤ p/2 + 1 + ε, the function yβ |G(y)| is bounded from above. In particu-
lar, for β = 1 + ε, there exists a constant M2 > 0 such that, for any y > 0,
y1+ε |G(y)| ≤ M2. Thus we have

∣∣∣∣∣∣

∞∫

t

G(y) dy

∣∣∣∣∣∣
≤ M2

∞∫

t

1

y1+ε
dy = M2

ε tε
.

Consequently, according to (17), we obtain

lim
t→∞K (t) = 0.

Now assume, for example, that there exists y0 > 0 such that γ0 − c(y) ≤ 0 for
y ≤ y0 and γ0 − c(y) ≥ 0 for y ≥ y0. Then it is clear according to (18) that, for
t ≤ y0, H(t) ≤ 0. When t > y0, we can write

H(t) =
yo∫

0

( y

t

)p/2−1
G(y) dy +

t∫

y0

( y

t

)p/2−1
G(y) dy

≤
yo∫

0

( y

t

)p/2−1
G(y) dy +

∞∫

y0

( y

t

)p/2−1
G(y) dy

= 0

by (20).
Thus the function H is non-positive and hence, according to Lemma 2, we have

K ′ ≤ 0. Finally the function K is non-increasing and vanishes at infinity; therefore
K is non-negative.

The case where the function γ0 − c is first positive and then negative can be
treated similarly. ��
Lemma 5 Assume that the functions f and f c belong to S0,p/2+1+ε(R∗+\ T ) for
some ε > 0. For any fixed θ ∈ R

p and for R0 = max{2 ; 2 ‖θ‖ ; 2
√

tm}, the
function x �→ K (‖x − θ‖2) belongs to S2, p+2ε(Rp \ BR0).

Proof Let 0 ≤ β ≤ p + 2ε. The first step consists in showing that

sup
x /∈BR0

{‖x‖β
∣∣K (‖x − θ‖2)

∣∣} < ∞. (32)

According to (30), as R0 ≥ 2 ‖θ‖, it suffices to show that

sup
x /∈BR0

{‖x − θ‖β
∣∣K (‖x − θ‖2)

∣∣} < ∞. (33)

Now, for any x /∈ BR0 , we have

‖x − θ‖ >
‖x‖

2
>

R0

2
≥ √

tm ∨ 1. (34)
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Thus

sup
x /∈BR0

{‖x − θ‖β |K (‖x − θ‖2)|} ≤ sup
t>

√
tm∨1

{
tβ

∣∣K (t2)
∣∣}

and to obtain (33) it suffices to show that

sup
t>tm∨1

{tr |K (t)|} < ∞ (35)

for 0 ≤ r ≤ p/2 + ε.
Fix t > tm ∨ 1 and consider the integral term intervening in the expression of

K (t) given in (17). Note that, as f and f c belong to S0,p/2+1+ε(R∗+\ T ), it is clear
from (19) that G ∈ S0,p/2+1+ε(R∗+\ T ) and hence there exists a constant µ such
that, for any y ∈ R

∗+\ T ,

|G(y)| y p/2+1+ε ≤ µ.

Then

tr

∣∣∣∣∣∣

∞∫

t

G(y) dy

∣∣∣∣∣∣
≤ µ tr

∞∫

t

y−p/2−1−ε dy = µ tr−p/2−ε

p/2 + ε
≤ µ

p/2 + ε

since r ≤ p/2 + ε and t > 1. Hence, coming back to (17), we have

sup
t>tm∨1

∣∣tr K (t)
∣∣ ≤ 1

p − 2

⎛
⎝ sup

t>1∨tm

∣∣tr H(t)
∣∣ + sup

t>1∨tm

∣∣∣∣∣∣
tr

∞∫

t

G(y) dy

∣∣∣∣∣∣

⎞
⎠ < ∞

according to Lemma 3. This gives (35) and finally (32) is satisfied.
As a second step, we need to show that, for 1 ≤ i ≤ p,

sup
x /∈BR0

{‖x‖β
∣∣∂i K (‖x − θ‖2)

∣∣} < ∞. (36)

Fix 1 ≤ i ≤ p and x /∈ BR0 . According successively to (25), (29), (34) and (30),
we have

‖x‖β
∣∣∂i K (‖x − θ‖2)

∣∣ = ‖x‖β 2
∣∣(xi − θi ) K ′(‖x − θ‖2)

∣∣
≤ 2 ‖x‖β max

{
1 ; ‖x − θ‖2} ∣∣K ′(‖x − θ‖2)

∣∣
≤ 2 ‖x‖β ‖x − θ‖2

∣∣K ′(‖x − θ‖2)
∣∣

< 2β+1 ‖x − θ‖β+2
∣∣K ′(‖x − θ‖2)

∣∣ . (37)

Therefore, using again (34), it suffices to show that

sup
t>1∨tm

{
tβ/2+1 |K ′(t)|} < ∞ (38)

which is easily checked according to the expression of K ′ in (22) and the fact that
H ∈ S0,p/2+ε(]tm ∨ 1 ;∞[) (see Lemma 3).
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Finally we turn our attention to the second derivatives of K . Fix 1 ≤ i, j ≤ p
and x /∈ BR0 . For i �= j , we have

∂i j K (‖x − θ‖2) = 4 (xi − θi ) (x j − θ j ) K ′′(‖x − θ‖2) (39)

so that, according to (27) and (30),

‖x‖β ∂i j K (‖x − θ‖2) ≤ 2β+1 ‖x − θ‖β+2 |K ′′(‖x − θ‖)|. (40)

Therefore, using (34) and the expression of K ′′ given in (23) we obtain

sup
x /∈BR0

{‖x‖β
∣∣∂i j K (‖x − θ‖2)

∣∣}

≤ 2β+1 sup
t>1∨tm

{
tβ/2+1

∣∣∣∣
G(t)

2 t
− p

4 t2 H(t)

∣∣∣∣
}

≤ 2β sup
t>1∨tm

|tβ/2 G(t)| + p 2β−1 sup
t>1∨tm

|tβ/2−1 H(t)|. (41)

As previously noticed, G ∈ S0,p/2+1+ε(R∗+\ T ) and hence G ∈ S0,p/2+ε(R∗+\ T ).
Furthermore, according to Lemma 3, H ∈ S0,p/2+ε(R∗+\ T ), and hence the right
hand side of Inequality (41) is finite.

For i = j , we need to show that

sup
x /∈BR0

{‖x‖β
∣∣∂i i K (‖x − θ‖2)

∣∣} < ∞. (42)

According to (26), it suffices that

sup
x /∈BR0

{‖x‖β
∣∣2 K ′(‖x − θ‖2)

∣∣} < ∞ (43)

and

sup
x /∈BR0

{‖x‖β
∣∣4 (xi − θi )

2 K ′′(‖x − θ‖2)
∣∣} < ∞. (44)

Using (30) and (34), we have

sup
x /∈BR0

{‖x‖β
∣∣2 K ′(‖x − θ‖2)

∣∣} ≤ sup
x /∈BR0

{
2β ‖x − θ‖β |2 K ′(‖x − θ‖2)|}

≤ sup
x /∈BR0

{
2β+1 ‖x − θ‖β+2 |K ′(‖x − θ‖2)|}

≤ 2β+1 sup
t>1∨tm

{
tβ/2+1 |K ′(t)|} . (45)

We already showed in (38) that the last term in (45) is finite and hence (43) is
satisfied. Now it is clear from Inequalities (28) and (30) that, for obtaining (44),
it suffices to show that the upper bound, on the complement of BR0 , of the right
hand side of Inequality (40) is finite. This has been already treated above where
we proved that the right hand side of (41) is finite.

The finiteness of the left hand side of (40) in addition to (32), (36) and (42)
give, finally, that the function x �→ K (‖x − θ‖2) belongs to S2,p+2ε(Rp\ BR0),
which is the desired result. ��
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Lemma 6 Assume the functions f and f c belong to S0, p/2+1+ε(R∗+ \ T ) for
some ε > 0. For any fixed θ ∈ R

p the function x �→ K (‖x − θ‖2) belongs to
W 2,∞(Rp).

Proof First, Lemma 5 insures that, for some ε > 0, the function x �→ K (‖x − θ‖2)
belongs to S2, p+2ε

(
R p

∖
BR0

)
; hence it belongs to S2, 0

(
R p

∖
BR0

)
and, finally,

to W 2,∞(
R p

∖
BR0

)
. Therefore it suffices to show that it belongs to W 2,∞(BR)

for R > R0.
Fix R > R0. The goal is to show that

sup
x∈BR ; x �=θ

∣∣K (‖x − θ‖2)
∣∣ < ∞ (46)

and, for 1 ≤ i, j ≤ p, that

sup
x∈BR\Tθ ; x �=θ

∣∣∂i K (‖x − θ‖2)
∣∣ < ∞ (47)

and

sup
x∈BR\Tθ ; x �=θ

∣∣∂i j K (‖x − θ‖2)
∣∣ < ∞. (48)

As, for any x ∈ BR\{θ},
∣∣H(‖x − θ‖2)

∣∣ ≤ (R + ‖θ‖)2

∣∣H(‖x − θ‖2)
∣∣

‖x − θ‖2

we have

sup
x∈BR\{θ}

∣∣H(‖x − θ‖2)
∣∣ ≤ (R + ‖θ‖)2 sup

x∈BR\{θ}

∣∣H(‖x − θ‖2)
∣∣

‖x − θ‖2 < ∞

according to Lemma 3. Now, as G ∈ S0,p/2+1+ε(R∗+\T ) (see the proof of Lemma
5), there exists M3 > 0 such that, for any y ∈ R

∗+\ T ,

|G(y)| ≤ M3,
∣∣y1+ε G(y)

∣∣ ≤ M3.

Then
∣∣∣∣∣∣∣

∞∫

‖x−θ‖2

G(y) dy

∣∣∣∣∣∣∣
≤

1∫

0

|G(y)| dy +
∞∫

1

|G(y)| dy

≤ M3 +
∞∫

1

M3

y1+ε
dy = M3

(
1 + 1

ε

)
.

Hence it follows from (17) that (46) is satisfied.
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As for (47), we can write

sup
x∈BR\Tθ ; x �=θ

∣∣∂i K (‖x − θ‖2)
∣∣ = sup

x∈BR\Tθ ; x �=θ

∣∣2 (xi − θi ) K ′(‖x − θ‖2)
∣∣

≤ (R + ‖θ‖) sup
0<t<(R+‖θ‖)2 ; t∈T

∣∣∣∣
H(t)

t

∣∣∣∣
< ∞

according to (22) and Lemma 3.
Now consider (48). For i = j , we have, according to (22) and (23),

sup
x∈BR\Tθ ; x �=θ

∣∣∂i i K (‖x − θ‖2)
∣∣

= sup
x∈BR\Tθ ; x �=θ

∣∣2 K ′(‖x − θ‖2) + 4 (xi − θi )
2 K ′′(‖x − θ‖2)

∣∣

≤ sup
x∈BR\Tθ ; x �=θ

∣∣2 K ′(‖x − θ‖2) + 4 ‖x − θ‖2 K ′′(‖x − θ‖2)
∣∣

≤ sup
0<t≤(R+‖θ‖)2 ; t /∈T

∣∣∣∣
H(t)

t
+ 2 G(t) − p H(t)

t

∣∣∣∣
< ∞ (49)

according to Lemma 3 and since G ∈ S p/2+1+ε(R∗+\ T ). For i �= j , according to
(39) and (27), we can write

sup
x∈BR\Tθ ; x �=θ

∣∣∂i j K (‖x − θ‖2)
∣∣

= sup
x∈BR\Tθ ; x �=θ

∣∣4 (xi − θi )
(
x j − θ j

)
K ′′(‖x − θ‖2)

∣∣

≤ sup
x∈BR\Tθ ; x �=θ

∣∣2 ‖x − θ‖2 K ′′(‖x − θ‖2)
∣∣

≤ sup
0<t≤(R+‖θ‖)2 ; t /∈T

∣∣∣∣G(t) − p H(t)

2 t

∣∣∣∣
< ∞ (50)

by similar arguments to these used for (49).
Finally we have shown that the function x �→ K (‖x − θ‖2) and its partial

derivatives are essentially bounded; it remains to prove that it is a twice weakly
differentiable function.

First we show that its first partial derivatives exist at θ and on Tθ (see Lemma
2). Fix 1 ≤ i ≤ p. For any y = (y1, . . . , yp) ∈ R

p and for any h ∈ R, we denote
by yi,h the vector yi,h = (y1, . . . , yi−1, yi + h, yi+1, . . . , yp). Then, for h �= 0,
we have∣∣∣∣

K (‖θi,h − θ‖2) − K (0)

h

∣∣∣∣ =
∣∣∣∣

K (h2) − K (0)

h

∣∣∣∣

= 1

p − 2

∣∣∣∣∣∣∣
H(h2)

h
+ 1

h

∞∫

h2

G(y) dy − 1

h

∞∫

0

G(y) dy

∣∣∣∣∣∣∣
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by definition of K and reminding that H(0) = 0. Now, using the upper bound ν of
|G|, we have

∣∣∣∣
H(h2)

h

∣∣∣∣ ≤ 1

|h|
h2∫

0

( y

h2

)p/2−1|G(y)| dy ≤ ν

|h|p−1

h2∫

0

y p/2−1 dy = 2 ν |h|
p

.

Hence

∣∣∣∣
K (‖θi,h − θ‖2) − K (0)

h

∣∣∣∣ ≤ 1

p − 2

⎛
⎜⎝2 ν |h|

p
+ 1

|h|
h2∫

0

|G(y)| dy

⎞
⎟⎠

≤ ν |h|
p − 2

(
2

p
+ 1

)

and finally

lim
h→0

∣∣∣∣
K (‖θi,h − θ‖2) − K (0)

h

∣∣∣∣ = 0

which proves that the i-th partial derivative of x �→ K (‖x − θ‖2) at θ exists and
equals 0.

As for its continuity, we have, according to (22),

lim
x→θ

|2 (xi − θi ) K ′(‖x − θ‖2)| = lim
x→θ

∣∣∣∣2 (xi − θi )
H(‖x − θ‖2)

2 ‖x − θ‖2

∣∣∣∣

≤ sup
t∈R

∗+

∣∣∣∣
H(t)

t

∣∣∣∣ lim
x→θ

|xi − θi | = 0

where Lemma 3 insures the finiteness of the above supremum.
We have already seen, in Lemma 2, that the function x �→ K (‖x − θ‖2) has a

i th partial derivative at x ∈ R
p\(Tθ ∪ {θ}) which equals (xi − θi )

H(‖x−θ‖2)

(‖x−θ‖2)
. We

now show its existence on Tθ as well with the same expression.
Fix a point x ∈ Tθ such that ‖x − θ‖2 = tk . According to (17), we have

K (‖xi,h − θ‖2) − K (‖x − θ‖2)

= −
H(‖xi,h − θ‖2) − H(‖x − θ‖2) + ∫ ∞

‖xi,h−θ‖2 G(y) dy − ∫ ∞
‖x−θ‖2 G(y) dy

p − 2
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Now, through (18), we can write

H(‖xi,h − θ‖2)

=
‖xi,h−θ‖2∫

0

y p/2−1

‖xi,h − θ‖p−2 G(y) dy

=
‖x−θ‖2∫

0

y p/2−1

‖xi,h − θ‖p−2 G(y) dy +
‖xi,h−θ‖2∫

‖x−θ‖2

y p/2−1

‖xi,h − θ‖p−2 G(y) dy

= ‖x − θ‖p−2

‖xi,h − θ‖p−2 H(‖x − θ‖2) +
‖xi,h−θ‖2∫

‖x−θ‖2

y p/2−1

‖xi,h − θ‖p−2 G(y) dy.

Hence

K (‖xi,h − θ‖2) − K (‖x − θ‖2)

= −
( ‖x−θ‖p−2

‖xi,h−θ‖p−2 − 1
)

H(‖x − θ‖2) + ∫ ‖xi,h−θ‖2

‖x−θ‖2

(
y p/2−1

‖xi,h−θ‖p−2 − 1
)

G(y) dy

p − 2
.

Then we can write
∣∣∣∣

K (‖xi,h − θ‖2) − K (‖x − θ‖2)

h
− (xi − θi )

H(‖x − θ‖2)

‖x − θ‖2

∣∣∣∣ ≤ A(h) + B(h),

where

A(h) = 1

p − 2

∣∣∣∣∣∣∣
1

h

‖xi,h−θ‖2∫

‖x−θ‖2

(
y p/2−1

‖xi,h − θ‖p−2 − 1

)
G(y) dy

∣∣∣∣∣∣∣

and

B(h) = |H(‖x − θ‖2)|
p − 2

∣∣∣∣
1

h

( ‖x − θ‖p−2

‖xi,h − θ‖p−2 − 1 + (p − 2) h
xi − θi

‖x − θ‖2

)∣∣∣∣ .

Reminding that the function |G| is bounded by ν, we can bound from above A(h)
as follows: in the case where ‖x − θ‖ ≤ ‖xi,h − θ‖, it is easy to check that

A(h) ≤ ν

p − 2

1

|h|

‖xi,h−θ‖2∫

‖x−θ‖2

∣∣∣∣
‖x − θ‖p−2

‖xi,h − θ‖p−2 − 1

∣∣∣∣ dy

≤ ν

p − 2

∣∣∣∣
‖x − θ‖p−2

‖xi,h − θ‖p−2 − 1

∣∣∣∣
∣∣∣∣
‖xi,h − θ‖2 − ‖x − θ‖2

h

∣∣∣∣ ,
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the other case ‖x − θ‖ ≥ ‖xi,h − θ‖ can be treated in the same way. Note that
the limit of the right hand side of this last inequality, when h tends to 0, exists and
equals 0 since

lim
h→0

∣∣∣∣
‖x − θ‖p−2

‖xi,h − θ‖p−2 − 1

∣∣∣∣ = 0

and since

lim
h→0

1

h

(‖xi,h − θ‖2 − ‖x − θ‖2) = 2 (xi − θi ).

As for the limit of B(h), it relies on

‖x − θ‖p−2

‖xi,h − θ‖p−2 = 1 − (p − 2) h
xi − θi

‖x − θ‖2 + ‖x − θ‖p−2 o(h2)

and gives

lim
h→0

B(h) = 0.

Finally we have shown that

lim
h→0

∣∣∣∣
K (‖xi,h − θ‖2) − K (‖x − θ‖2)

h
− (xi − θi )

H(‖x − θ‖2)

‖x − θ‖2

∣∣∣∣ = 0

which implies that the i th partial derivative of x �→ K (‖x − θ‖2) exists on Tθ and

equals (xi − θi )
H(‖x−θ‖2)

‖x−θ‖2

To prove the continuity of this derivative, it suffices to show that the function
H is continuous at tk . Using the fact that |G| ≤ ν on R

∗+\ T and according to (18),
we have

|H(tk + h) − H(tk)|

=
∣∣∣∣∣∣

tk+h∫

0

(
y

tk + h

)p/2−1

G(y) dy −
tk∫

0

(
y

tk

)p/2−1

G(y) dy

∣∣∣∣∣∣

=
∣∣∣∣∣∣

tk∫

0

G(y)

(
y

tk

)p/2−1
((

tk
tk + h

)p/2−1

− 1

)
dy

+
tk+h∫

tk

(
y

tk + h

)p/2−1

G(y) dy

∣∣∣∣∣∣

≤ 2 ν

p

(∣∣∣∣∣
(

tk
tk + h

)p/2−1

− 1

∣∣∣∣∣ tk +
∣∣∣∣∣tk + h − t p/2

k

(tk + h)p/2−1

∣∣∣∣∣

)
.

Then

lim
h→0

|H(tk + h) − H(tk)| = 0
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and the partial derivative of the function x �→ K (‖x − θ‖2) is continuous on
R

p, consequently this function is continuously differentiable, and hence weakly
differentiable.

To prove that the function u : x �→ ∂i K (‖x − θ‖2) is weakly differentiable,
it is convenient to use the sufficient condition given by Morrey (1966) page 63,
that is, u ∈ L∞(Rp), u is absolutely continuous in each variable for almost all
values of the other variables and its first partial derivatives are in L∞(Rp). The
fact that u and its first partial derivatives belong to L∞(Rp) follows from (47) and
(48), respectively. As for the absolute continuity part, we have, since |∂ j u(x)| is
symmetric with respect to θ j ,

∞∫

−∞

∣∣∂ j u(x)
∣∣ dx j = 2

∞∫

θ j

∣∣∂ j u(x)
∣∣ dx j

= 2

θ j +R0∫

θ j

∣∣∂ j u(x)
∣∣ dx j + 2

∞∫

θ j +R0

∣∣∂ j u(x)
∣∣ dx j

with R0 = max{2 ; 2 ‖θ‖ ; 2
√

tm} (see Lemma 5). Now

θ j +R0∫

θ j

∣∣∂ j u(x)
∣∣ dx j < ∞

according to (49) and (50) and

∞∫

θ j +R0

∣∣∂ j u(x)
∣∣ dx j <

∞∫

θ j +R0

M4

‖x − θ‖2 dx j < ∞

since, according to Lemma 5, for some constant M4 and for x /∈ BR0 , ‖x − θ‖2 |∂ j

u(x)| < M4. Therefore we have proved that the function x j �→ ∂ j u(x) is in L1(R);
it follows that

xi �→
xi∫

−∞
∂ j u(x) dx j = u(x) a.e.

is absolutely continuous. Finally u ∈ W 1,∞(Rp) and hence the function x �→
K (‖x − θ‖2) belongs to W 2,∞(Rp). ��

In the case where the sampling distribution is specified as a Kotz distribu-
tion, the constant k = 1

M E0[K (‖X‖2)] defined in Theorem 2 can be completely
determined.
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Lemma 7 Suppose that X has a Kotz distribution as in (11) and that c is a
polynomial function of the form c(t) = tβ with β > 0. Then the constant k =
1
M E0

[
K (‖X‖2)

]
can be expressed as

k = 2−p/2−2 m

(p − 2) �(p/2 + m)

( e

m

)m

×
(

�(p/2 + 2 m + 1) 2β �(p/2 + m + β)

(m + 1) �(p/2 + m)

×2 F1(1, p/2 + 2 m + 1; m + 2, 1/2)

−�(p/2 + 2 m + 1) 2β �(p/2 + m + β)

�(p/2 + m + 1)

×2 F1(1, p/2 + 2 m + 1; p/2 + m + 1, 1/2)

−�(p/2 + 2 m + β + 1)

m + 1
2 F1(1, p/2 + 2 m + β + 1; m + 2, 1/2)

+�(p/2 + 2 m + β + 1)

p/2 + m

×2 F1(1, p/2 + 2 m + β + 1; p/2 + m + 1, 1/2)

)
.

Proof According to (11) and the expression of the function K given by (5), we
have

E0[K (‖X‖2)]

=
∞∫

0

2 π p/2

�(p/2)
r p−1 1

p − 2

×
∞∫

r2

[( y

r2

)p/2−1 − 1

]
(γ0 − yβ) Nm ym e−y/2 dy Nm r2m e−r2/2dr

= 2 π p/2

�(p/2)

N 2
m

p − 2

×
∞∫

0

∞∫

r2

(
γ0

r p−2 y p/2+m−1 e−y/2 − γ0 ym e−y/2

− y p/2+m+β−1

r p−2 e−y/2 + ym+β e−y/2
)

dy r p+2 m−1 e−r2/2 dr

which equals, through the substitution t = y/2,
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4π p/2

�(p/2)

N 2
m

p − 2

×
∞∫

0

[
γ0

r p−2 2p/2+m−1 �

(
p

2
+ m,

r2

2

)
− γ0 2m �

(
m + 1,

r2

2

)

−2p/2+m+β−1

r p−2 �

(
p

2
+ m + β,

r2

2

)
+ 2m+β �

(
m + β + 1,

r2

2

)]

×r p+2m−1 e−r2/2 dr.

Then with the change of variable r2

2 = t , the expectation E0[K (‖X‖2)] equals

2p/2+m+1π p/2

�(p/2)

N 2
m

p − 2

×
∞∫

0

γ0 2m tm �
( p

2
+ m, t

)
e−t − γ0 2m t p/2+m−1 �(m + 1, t) e−t

−2m+β tm �
( p

2
+m+β, t

)
e−t +2m+β t p/2+m−1 � (m+β+1, t) e−t dt.

Finally, according to (11), (12), (13) and Formula 6.4551. page 663 of Gradshteyn
and Ryzhik (1980), we have the desired result. ��

As for the constant κ = E0[ K (‖X‖2)

f (‖X‖2)
] defined in Theorem 3, we have the fol-

lowing lemma.

Lemma 8 Suppose that X has a Kotz distribution as in (11) and that c(t) = t .

Then the constant κ = E0

[
K (‖X‖2)

f (‖X‖2)

]
can be expressed as

κ = −4
p/2 + m

p
.

Proof As β equals 1 and according to (12), we have γ0 = p + 2 m. Expanding the
expression of K given in (5), we obtain

K (t) = Nm

p − 2

⎛
⎝ p + 2m

t p/2−1

∞∫

t

y p/2+m−1 e−y/2 dy − 1

t p/2−1

∞∫

t

y p/2+m e−y/2 dy

−(p + 2 m)

∞∫

t

ym e−y/2 dy +
∞∫

t

ym+1 e−y/2 dy

⎞
⎠ .
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Through an integration by parts (u = e−y/2) in the second and in the fourth integral,
the function K equals

K (t) = Nm

p − 2

⎛
⎝−(p + 2 m)

∞∫

t

ym e−y/2 dy + (2 m + 2)

∞∫

t

ym e−y/2 dy

⎞
⎠

= −Nm

∞∫

t

ym e−y/2 dy

= −Nm 2m+1 �

(
m + 1,

t

2

)
.

According to the definition of κ and to that expression of K , we have

κ = 2 π p/2

�(p/2)

∞∫

0

K (r2) r p−1 dr =− 2 π p/2

�(p/2)
Nm 2m+1

∞∫

0

�

(
m + 1,

r2

2

)
r p−1 dr.

Finally, through the substitution r2 = z and according to (11) and to Formula
6.4551. page 663 of Gradshteyn and Ryzhik (1980) with µ = p

2 , β = 0, ν = m +1
and α = 1

2 , we obtain

κ =− π p/2

�(p/2)
Nm2m+1 1

2m+1

�(p/2 + m + 1)

p
2

( 1
2

)p/2+m+1 2 F1(1, p/2 + m + 1; p/2 + 1; 0)

= −4
p/2 + m

p
.

��
The next lemma is devoted to the confidence statement problem in the normal

case.

Lemma 9 Suppose that X has a Gaussian distribution Np(θ, Ip) and that c(t) =
1l[0 ; cα](t). Define, for any t > 0,

K1(t) = 1 − α

(p − 2) (2 π)p/2

(
2p/2

t p/2−1 �

(
p

2
,

t

2

)
− 2 e−t/2

)

and

K2(t) = 1

(p − 2)(2 π)p/2

×
(

2p/2

t p/2−1 �

(
p

2
,

t

2

)
− 2p/2

t p/2−1 �
( p

2
,

cα

2

)
+ 2 e−cα/2 − 2 e−t/2

)
.

Then the function K defined in (5) verifies

K (t) = K1(t) − K2(t) if t ≤ cα.
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and

K (t) = K1(t) if t > cα.

Furthermore the constant k can be expressed as

k = γ (p/2, cα) − γ (p/2, cα/2) − 2p/2−1 e−cα/2 γ (p/2, cα/2)

(p − 2) �(p/2) 2p/2−2 .

Proof If c is the indicator function 1l[0 ; cα], then γ0 equals 1 − α and, according to
the expression of K given in (5), we have

K (t) = 1

p − 2

∞∫

t

(( y

t

)p/2−1 − 1

) (
1 − α − 1l[0 ; cα](y)

) e−y/2

(2 π)p/2 dy.

The indicator function leads to separate the two cases t > cα and t ≤ cα . When
t > cα we have

K (t) = 1 − α

(p − 2) (2 π)p/2

⎛
⎝

∞∫

t

( y

t

)p/2−1
e−y/2 dy −

∞∫

t

e−y/2 dy

⎞
⎠ = K1(t)

through the change of variable z = y
2 . Now it is clear that, when t ≤ cα , we have

K (t) = K1(t) − 1

p − 2

⎛
⎝

cα∫

t

( y

t

)p/2−1 e−y/2

(2 π)p/2 dy −
cα∫

t

e−y/2

(2 π)p/2 dy

⎞
⎠

= K1(t) − K2(t)

through the same change of variable.
This expression of K allows us to evaluate the constant k = 1

M E0[K (‖X‖2)].
Note that, in the normal case, M = 1

(2 π)p/2 . The expectation of the function K

equals

E0[K (‖X‖2)]

=
∞∫

0

2 π p/2

�(p/2)
r p−1 K (r2)

e−r2/2

(2 π)p/2 dr

=
√

cα∫

0

2 π p/2

�(p/2)
r p−1 (K1(r

2) − K2(r
2))

e−r2/2

(2 π)p/2 dr

+
∞∫

√
cα

2 π p/2

�(p/2)
r p−1 K1(r

2)
e−r2/2

(2 π)p/2 dr

= (1 − α) I1 − (1 − α) I2 − I3 + I4 − I5 + I6

(p − 2) π p/2 �(p/2) 2p−1 , (51)
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where

I1 =
∞∫

0

2p/2 r �

(
p

2
,

r2

2

)
e−r2/2 dr,

I2 = 2

∞∫

0

r p−1 e−r2
dr = �

( p

2

)
,

I3 = 2p/2

√
cα∫

0

r �

(
p

2
,

r2

2

)
e−r2/2 dr,

I4 = 2p/2

√
cα∫

0

r �
( p

2
,

cα

2

)
e−r2/2 dr = 2p/2 �

( p

2
,

cα

2

) (
1 − e−cα/2) ,

I5 = 2 e−cα/2

√
cα∫

0

r p−1 e−r2/2 dr = 2p/2 e−cα/2 γ
( p

2
,

cα

2

)

and

I6 = 2

√
cα∫

0

r p−1 e−r2
dr = γ

( p

2
, cα

)
.

Now I1 and I3 can be reexpressed. First, using the change of variable z = r2

2 and
according to 6.451 2. p 662 of Gradshteyn and Ryzhik (1980), we have

I1 =
∞∫

0

2p/2 r �

(
p

2
,

r2

2

)
e−r2/2 dr = �

( p

2

)
(2p/2 − 1).

As for I3, using the change of variable z = r2

2 , by definition of the incomplete
gamma function and by Fubini theorem, we have

I3 = 2p/2

√
cα∫

0

r �

(
p

2
,

r2

2

)
e−r2/2 dr

= 2p/2

cα/2∫

0

∞∫

z

t p/2−1 e−t dt e−z dz

= 2p/2

∞∫

0

t p/2−1 e−t

t∧cα/2∫

0

e−z dz dt

= 2p/2 �
( p

2

)
− γ

( p

2
, cα

)
− 2p/2 e−cα/2 �

( p

2
,

cα

2

)
.
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In order to complete the last expression in (51), note that

1 − α = γ0 = E0[c(‖X‖2)] =
∞∫

0

2 π p/2

�(p/2)
r p−1 1l[0;cα](r2)

e−r2/2

(2 π)p/2 dr.

Then, using the change of variable z = r2

2 , we obtain

1 − α = γ (p/2, cα/2)

�(p/2)
. (52)

Finally, according to (51) and (52) and after simplifications, we obtain the desired
expression of constant k. ��
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