
AISM (2008) 60:45–59
DOI 10.1007/s10463-006-0081-5

Randomized group up and down experiments

Alessandro Baldi Antognini · Paola Bortot ·
Alessandra Giovagnoli

Received: 1 July 2005 / Revised: 8 May 2006 / Published online: 18 October 2006
© The Institute of Statistical Mathematics, Tokyo 2006

Abstract An up and down (U&D) procedure is a sequential experiment used
in binary response trials for identifying the treatment corresponding to a pre-
specified probability of positive response. Recently, a group version of U&D
procedures has been proposed whereby at each stage a group of units is treated
at the same level and the number of observed positive responses determines
the treatment assigned to the next group. The deterministic nature of this algo-
rithm leads to some limitations that in this paper we propose to overcome by
introducing a randomization mechanism. A broad class of randomized group
U&D’s is presented, giving the conditions for targeting the treatment level of
interest. In addition, we study how the properties of the design change as we
vary the method of randomization within this general class and find random-
ization schemes which guarantee desirable results in terms of the asymptotic
behavior of the experiment.

Keywords Dose-response problems · Phase I clinical trials · Markov chain ·
Random walk · Sequential experiments · Stochastic ordering · Stationary
distribution

1 Introduction

In recent years the attention of the statistical literature on experimental de-
sign, especially in the area of biomedical applications, has focused on sequen-
tial methods. In sequential experiments at each stage the decision on whether
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to continue the trial and how to carry out the next observation or group of
observations is taken in light of the results obtained up to that point. So the
next treatment allocation may depend on what treatments have been previously
allocated and/or on what outcomes have been observed. This dependence may
either extend to all the past allocations and/or responses, as, for example, in
Maximum Likelihood designs (see Rosenberger & Lachin, 2002), or be lim-
ited to the most recent ones, the so-called Markovian experiments as defined
by Giovagnoli (2004). Sometimes, a supplementary randomization mechanism
may also come into play: typical examples of the latter type of experiments are
the Biased Coin Design proposed by Efron (1971) and the Urn Designs (see
for instance Rosenberger, 2002, Baldi Antognini, 2005).

When the treatment levels are ordered and the response is binary, a com-
mon problem is finding the treatment corresponding to a given probability of
positive response, like for instance LD(50), the dose that is lethal for 50% of
the population under trial. In this context, a possible sequential experiment
is the so-called up-and-down procedure (U&D), mainly developed for dose-
response problems (Phase I clinical trials, see for instance Piantadosi, 1997),
where the probability of a toxicity is an increasing function of the dose and the
aim is to identify a target dose µ having a prescribed probability � of toxicity.
In a Markovian U&D design, at each stage we either increase or decrease the
treatment by one level with respect to the previous stage, or keep it at the
same level, according to the most recently observed responses. In the classi-
cal U&D algorithm proposed by Dixon & Mood (1948), the target dose was
LD(50) and the experiment simply consisted in decreasing the treatment level
if the response was positive and increasing it if negative. Later, a randomization
mechanism of the Biased Coin type (see for instance Derman, 1957, Durham
& Flournoy, 1994) was introduced to cope with values of � different from
0.5. Other approaches for identifying a target dose µ can also be found: for
example, alternatives to the non-parametric solution of U&D procedures are
the parametric methods discussed by O’Quigley (2002) and Mugno, Zhus &
Rosenberger (2004).

Most of the literature on Markovian U&D designs (Dixon & Mood, 1948,
Derman, 1957, Durham & Flournoy, 1994, 1995, Durham, Flournoy & Rosen-
berger, 1997, Giovagnoli & Pintacuda, 1998, Stylianou & Flournoy, 2002;
Ivanova, Montazer-Haghighi, Mohanti & Durham, 2003, Bortot & Giovagnoli,
2005) deals with the case of one observation at a time: at each stage just one
statistical unit is observed and the single response used to choose the next treat-
ment allocation. Recently, starting from an idea of Tsutakawa (1967) and also
from the observation of common practice in clinical trials (see Storer, 1998),
Gezmu & Flournoy (2006) have studied a “group” version of U&D experi-
ments, which we will denote by GF–GU&D. At each stage a group of m units is
treated at the same dose level and the responses are observed. If the number of
observed toxicities within the group is less than or equal to a given threshold s
the dosage is increased by one level and if it is greater than or equal to another
threshold t then it is decreased by one level; otherwise it stays the same. This
is a deterministic algorithm which, for appropriate values of the group size and
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thresholds s and t, can be shown to allocate a large percentage of the treatments
around the target dose. However, this is possible only for some values of the
probability of toxicity �, but not for all. We will show that this problem may
be solved by randomizing the experiment, similarly to what is done for U&D
designs of the single type, i.e. m = 1 (see Giovagnoli & Pintacuda, 1998).

The discussion of various types of randomization for group U&D experi-
ments is the main concern of this paper. Besides showing how randomization
can be used to overcome the limitation of the GF–GU&D mentioned above,
we will study how the properties of the design vary as we change the method of
randomization and address the identification of randomization schemes which
guarantee optimal results in terms of the asymptotic behaviour of the experi-
ment. In Sect. 2 a general randomization mechanism for group U&D’s is pre-
sented and its properties are discussed, focussing on the conditions that allow
the design to target a dose µ with a prescribed toxicity probability. Sect. 3 con-
siders special cases of the general randomized group U&D design which are
of particular interest for their practical and theoretical features. The optimality
properties of these special cases are studied in Sect. 4.

2 The randomized group U&D design

With the aim of overcoming some limitations of the GF–GU&D that are due
to its deterministic nature, we propose a general randomized version of a group
U&D design, which we will denote by Rand–GU&D. The basic idea is to
associate to each number of observed positive responses the probabilities of
increasing or decreasing the dose level according to two functions. Obviously,
some constraints on the two functions are necessary to target the design on the
dose with prescribed toxicity rate.

Suppose there is a set D of available doses. Assume in addition that the
response to a given dose X = x is a binary random variable, for which the prob-
ability of positive response is a continuous and strictly increasing function Q(x)

of the assigned dose x, Q : R → [0; 1]. The aim is to find the unknown target
dose µ such that � = Q(µ) for a given probability of toxicity � ∈ (0, 1). Suppose
further that the experimenter knows the probability of positive response at two
doses d1 and dM, such that Q(d1) < � < Q(dM). Then, we can assume without
loss of generality that D = {d1 < d2 < . . . < dM} and

Q(d1) = 0 and Q(dM) = 1 ,

since other cases can be reduced to this setup by applying a straightforward
linear transformation of Q(·), as in Giovagnoli & Pintacuda (1998).

Let Q(di) = Qi for i = 1, . . . , M. A possible scheme of randomization consists
in introducing two functions α(·) and β(·) on {0, . . . , m}, which give the proba-
bilities of, respectively, increasing and decreasing the dose by one level in terms
of the number of observed toxicities. We want the probability of increasing the
dose not to go up as the number of observed toxicities increases, and vice versa
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for the probability of decreasing the dose. Also, when there are no toxicities,
we require that the probability of increasing is higher than the probability of
decreasing the dose level, and conversely when the number of toxicities is a
maximum. More precisely, the randomization mechanism is defined as follows.

Let α(·) and β(·) be two functions from {0, . . . , m} onto [0, 1], such that

– α(k) + β(k) ≤ 1 for any k ∈ {0, . . . , m}.
– α(·) is non-increasing, β(·) is non-decreasing.
– α(0) ≥ β(0) and α(m) ≤ β(m).

We will refer to α(·) and β(·) as the generating functions of the design. At
each step n, given a dose level Xn = di (i = 2, . . . , M − 1) and a response
Yn = k ∈ {0, . . . , m} , the next dose level will be chosen according to

Pr
(
Xn+1 = di+1 | Yn = k; Xn = di

) = α(k)

Pr
(
Xn+1 = di−1 | Yn = k; Xn = di

) = β(k)

Pr
(
Xn+1 = di | Yn = k; Xn = di

) = 1 − α(k) − β(k) (1)

and for the extreme doses d1 and dM

Pr
(
Xn+1 = d2 | Xn = d1

) = Pr
(
Xn+1 = dM−1 | Xn = dM

) = 1 .

The latter condition ensures that we do not “waste” observations on d1 and dM
where the response is assumed to be known (see also Sect. 4 of Giovagnoli &
Pintacuda, 1998). This assumption is likely to be satisfied in practice; however,
alternative boundary rules will be desirable if this requirement is not met.

We now show how this randomized version of a group U&D can be used to
target a dose µ associated to a given probability of toxicity � and how different
choices of α(·) and β(·) give rise to different properties of the algorithm. At each
step n, conditionally on Xn = di (i = 1, . . . , M), the distribution of Yn is Bino-
mial B (m, Qi) and depends on n only through the dose which has been assigned.
For any choice of α(·) and β(·) the sequence {Xn} is a random walk on the state
space D. Let E[g(B(m, p))] denote the expected value of the transformation
g(·) of the Binomial random variable B(m, p), for any real measurable function
g(·) and 0 < p < 1. The transition probabilities of {Xn} are, for i = 2, . . . , M −1,

pi = E[α(B(m, Qi))] =
m∑

k=0

α(k)

(
m
k

)
Qk

i (1 − Qi)
m−k

qi = E[β(B(m, Qi))] =
m∑

k=0

β(k)

(
m
k

)
Qk

i (1 − Qi)
m−k

ri = 1 − pi − qi (2)

with boundary condition p1 = qM = 1. The chain {Xn} is irreducible and pos-
itive recurrent, with a unique stationary distribution π = {π(di), i = 1, . . . , M}
given by the equilibrium equations
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π(di) = π(di−1)λi i = 2, . . . , M

π(d1) =
⎡

⎣1 +
M∑

j=2

j∏

i=2

λi

⎤

⎦

−1

, (3)

where λi = pi−1/qi, namely,

λ2 = 1
E[β(B(m, Q2))] ,

λi = E[α(B(m, Qi−1))]
E[β(B(m, Qi))] , i = 3, . . . , M − 1,

λM = E[α(B(m, QM−1))] . (4)

Proposition 1 Under the randomized group U&D, the stationary distribution π

is unimodal with mode dK, where

K = max {i ∈ {2, . . . , M} such that λi > 1} . (5)

Furthermore, if 0 < � < 1 and α(·) and β(·) satisfy

E[α(B(m, �))] = E[β(B(m, �))] , (6)

then the mode of π is such that

dK−1 < µ < dK+1. (7)

Proof Since the set D of doses is ordered and the dose-response function Q(·) is
strictly increasing, then Q1 < . . . < QM. Let ≤st be the usual stochastic ordering
of random variables; since α(·) is non-increasing and β(·) non-decreasing,

α (B(m, Q1)) ≥st . . . ≥st α (B(m, QM))

β (B(m, Q1)) ≤st . . . ≤st β (B(m, QM)) . (8)

From (2), applying a well-known property of the stochastic ordering ≤st (see
Ross, 1996), the sequence {qi}{i=2,...,M} is non-decreasing and {pi}{i=1,...,M−1} is
non-increasing. Thus, the sequence {λi}{i=2,...,M} in (4) is non-increasing with
λ2 > 1, so that the stationary distribution π is unimodal with mode dK (see
Durham & Flournoy, 1994). For any fixed m, condition (6) leads to an equation
in �, where the left-hand side E[α(B(m, �))] is a continuous and decreasing
function of � varying between 1 and 0, and the right-hand side E[β(B(m, �))] is
a continuous and increasing function of � varying between 0 and 1. Thus, Eq. (6)
admits a unique solution �∗ in (0, 1) and the proof follows from Theorem 1 of
Durham & Flournoy (1994): see also Proposition 2 in Giovagnoli & Pintacuda
(1998). Observe that we cannot have µ = dK+1 since Q(·) is assumed to be
strictly increasing and continuous.
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This result offers a solution to the problem of estimating µ. The empirical
distribution of the assigned treatments can be used as an approximation of
the invariant distribution π . Thus, if Rand–GU&D satisfies condition (6), by
virtue of (7) the mode of the empirical dose distribution is a valid candidate as
an estimator of µ (see Giovagnoli & Pintacuda, 1998). Alternative estimators
have also been proposed, see for example Stylianou & Flournoy (2002).

3 Special cases of the randomized group U&D design

In this section we analyze some special cases of Rand–GU&D. Their properties
in terms of the asymptotic behavior of the design will be studied in Sect. 4.

Without loss of generality, from now on we assume � ∈ (0; 0.5], which is the
most relevant case for toxicology studies. The case � ∈ (0.5, 1), most frequently
encountered in efficacy experiments and adaptive testing, for example, can be
derived analogously.

3.1 Giovagnoli and Pintacuda

When m = 1 the group U&D becomes fully sequential. Then the random-
ized U&D defined in this paper becomes the general U&D rule proposed by
Giovagnoli & Pintacuda (1998) with

α(0) = α, α(1) = α′,
β(0) = γ ′, β(1) = γ , (9)

where 0 < α′ ≤ α ≤ 1 and 0 < γ ′ ≤ γ ≤ 1.

3.2 Gezmu and Flournoy

The U&D rule defined by Gezmu & Flournoy (2006) is

if Xn = di (i = 2, . . . , M − 1), then

Xn+1 = di+1, if Yn ≤ s

Xn+1 = di, if s < Yn < t

Xn+1 = di−1, if Yn ≥ t,

if Xn = d1, then

Xn+1 = d2, if Yn ≤ s

Xn+1 = d1, if Yn > s,

if Xn = dM, then

Xn+1 = dM, if Yn < t

Xn+1 = dM−1, if Yn ≥ t,
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where s and t are integer values satisfying 0 ≤ s < t ≤ m. This algorithm
corresponds to choosing the functions

α(k) =
{

1, k ≤ s
0, otherwise

and β(k) =
{

1, k ≥ t
0, otherwise

. (10)

Gezmu and Flournoy do not assume the response function Q(·) to be strictly
increasing, thus their targeting condition leads to

dK−1 ≤ µ ≤ dK+1

instead of the strict inequalities in (7). The GF–GU&D algorithm is appropriate
under further assumptions (see the Theorem in Sect. 3 of Gezmu & Flournoy,
2006), which correspond to knowing two values of the response Q(·), either Q1
and Q2 or QM−1 and QM. In addition, as mentioned in the Introduction, one
limitation of GF–GU&D is that, for a given probability � and group size m,
there might not exist integers s and t such that the targeting condition (6) is
satisfied.

3.3 Randomized extension of the GF–GU&D design

A simple way of randomizing the GF–GU&D design is as follows. With suit-
able adjustments for the extreme doses, at each step if the number of positive
responses is less or equal to s, then the next dose is increased with probability
0 < α ≤ 1, whereas if the number of positive responses is greater or equal
to t the dose is decreased with probability 0 < β ≤ 1. Within the class of
Rand–GU&D’s, this rule corresponds to the following choice of the generating
functions

α(k) =
{

α, k ≤ s
0, otherwise

and β(k) =
{

β, k ≥ t
0, otherwise

.

The random walk {Xn} generated by this algorithm has transition probabilities
given by

pi = α

s∑

k=0

(
m
k

)
Qk

i (1 − Qi)
m−k

qi = β

m∑

k=t

(
m
k

)
Qk

i (1 − Qi)
m−k

ri = 1 − pi − qi (11)

for i = 2, . . . , M − 1, with p1 = qM = 1.
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As regards the stationary distribution of the chain, from (4) we derive

λ2 = 1
β Pr (B(m, Q2) ≥ t)

,

λi = α Pr
(
B(m, Qi−1) ≤ s

)

β Pr (B(m, Qi) ≥ t)
, i = 3, . . . , M − 1,

λM = α Pr
(
B(m, QM−1) ≤ s

)
. (12)

The targeting condition (6) becomes

α

s∑

k=0

(
m
k

)
�k(1 − �)m−k = β

m∑

k=t

(
m
k

)
�k(1 − �)m−k (13)

and is satisfied for fixed m, s, t and toxicity rate � if

α = β
Pr (B(m, �) ≥ t)
Pr (B(m, �) ≤ s)

, (14)

and β is chosen in the interval S = (0, β∗), where

β∗ = min

{
1;

Pr (B(m, �) ≤ s)
Pr (B(m, �) ≥ t)

}
. (15)

Thus, for any values of � and m this randomized rule admits a parameter setting
that satisfies the targeting condition.

3.4 Linear generating functions

Condition (6) and the selection of a rule that targets the dose µ having a pre-
scribed toxicity probability � are greatly simplified if the generating functions
α(·) and β(·) are linear, that is if the probability of increasing (decreasing) the
dose level, given the current dose and outcomes, is proportional to the number
of observed toxicities. For any k = 0, . . . , m, let

α(k) = a
(

1 − k
m

)
and β(k) = 1 + b

(
k
m

− 1
)

, (16)

where 0.5 ≤ a ≤ b ≤ 1. In this algorithm if we observe 0 toxicities then the prob-
ability of increasing the dose level is greater than 0.5; if we observe m toxicities,
than at the next step the dose level will be decreased with probability 1.
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From the linearity of the generating functions, the transition probabilities of
the random walk {Xn} are

pi = E[α(B(m, Qi))] = (1 − Qi)a

qi = E[β(B(m, Qi))] = 1 − (1 − Qi)b

ri = (1 − Qi)(b − a) (17)

for i = 2, . . . , M − 1, with p1 = qM = 1, and the stationary distribution can be
derived from (3) with

λ2 = 1
1 − (1 − Q2)b

,

λi = (1 − Qi−1)a
1 − (1 − Qi)b

, i = 3, . . . , M − 1,

λM = (1 − QM−1)a . (18)

Under this procedure, the targeting condition (6) becomes

a + b = 1
1 − �

, (19)

which implies

λ2 = 1
1 − (1 − Q2)b

,

λi =
(1 − Qi−1)

(
1

1−�
− b

)

1 − (1 − Qi)b
, i = 3, . . . , M − 1,

λM = (1 − QM−1)

(
1

1 − �
− b

)
. (20)

Thus the stationary distribution of the targeting design does not depend on m.

3.5 Complementary generating functions

Consider now the class of Rand–GU&D’s for which ri = 0 for any i, i.e. the
dose level changes at each step. More precisely, let the generating functions
satisfy

α(k) + β(k) = 1 k = 0, . . . , m. (21)

We call this a complementary group U&D. Examples of this type of algorithm
can be found in each of the special cases previously analyzed, for instance,
within the GF–GU&D class by letting t = s + 1, or in the linear generating
function scheme for a = b.
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For a complementary group U&D, from (2)

pi =
m∑

k=0

α(k)

(
m
k

)
Qk

i (1 − Qi)
m−k = 1 − qi i = 2, . . . , M − 1, (22)

and the target condition (6) becomes

E[α(B(m, �))] =
m∑

k=0

α(k)

(
m
k

)
�k (1 − �)m−k = 1

2
. (23)

For example, consider the GF–GU&D with t = s + 1. In this case Eq. (23)
becomes

s∑

k=0

(
m
k

)
�k (1 − �)m−k = 1

2
,

so that the integer s must be chosen as the median of B(m, �). For � = 0.5 any
combination of an integer s and a group size m = 2s + 1 satisfies the target
condition, as shown by Gezmu & Flournoy (2006) by the following examples
(m, s) = (1, 0), (3, 1), (5, 2) and (7, 3).

Consider now linear generating functions with a = b. From (23) the target
condition becomes

E[α(B(m, �))] = (1 − �)b = 1
2

i.e.

a = b = 1
2(1 − �)

.

Thus the linear complementary design is uniquely determined. Substituting in
(20), the stationary distribution can be derived in terms of � and the quantile
function Q(·).

3.6 Symmetric U&D

We end this section with a remark on symmetric generating functions α(·) and
β(·) satisfying

α(k) = β(m − k) k = 0, . . . , m. (24)

Lemma 1 For symmetric generating functions, the only dose µ which can be
targeted corresponds to � = 1

2 .
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Proof Under (24),

E[α(B(m, �))] =
m∑

k=0

α(k)

(
m
k

)
�k (1 − �)m−k

=
m∑

k=0

β(m − k)

(
m
k

)
�k (1 − �)m−k = E[β(B(m, 1 − �))],

(25)

so that the target Eq. (6) becomes

E[β(B(m, 1 − �))] = E[β(B(m, �))] . (26)

As a function of �, the left-hand side is a continuous and decreasing function
from (0, 1) in [0, 1], and the right-hand side is a continuous and increasing func-
tion from (0, 1) in [0, 1]. Thus, equation (26) has a unique solution in (0, 1),
which is obviously � = 0.5, so that the only target dose which can be located by
this procedure is µ = Q−1(0.5).

4 Optimality of randomized group U&D experiments

An asymptotic criterion was given in Giovagnoli & Pintacuda (1998) to com-
pare two U&D algorithms, UD(1) and UD(2), both targeted on the same dose
level µ. We say that the stationary distribution π (1) is more peaked around µ

than π (2) if, for i = 2, . . . , M − 1,

Qi < � implies λ(1)
i ≥ λ(2)

i and Qi ≥ � implies λ
(1)

i+1 ≤ λ
(2)

i+1 , (27)

where λ
(j)
i = π(j)(di)/π

(j)(di−1) and j = 1, 2.
We will use this comparison rule in the present setting to choose the “opti-

mal” design within each subclass of the Rand–GU&D algorithm that has been
described in Sect. 3.

4.1 Randomized extension of the GF–GU&D rule

From Eq. (12) we see that, if m, s and t are fixed and the randomization param-
eters α and β are chosen to satisfy (14) and (15), then different choices of β

in S lead to the same stationary distribution. Thus we cannot specialize β in
order to improve on the “ peakedness” of the stationary distribution. However,
it may be observed that the same arguments of Bortot & Giovagnoli (2005) can
be applied, namely we can compare the speed of convergence of different rules
having the same stationary distribution. By virtue of these results, the optimal
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value of β is the one associated to the algorithm that moves fastest, i.e.

β∗ = min

{
1;

Pr (B(m, �) ≤ s)
Pr (B(m, �) ≥ t)

}
,

while α is obtained from (14).

4.2 Linear generating functions

From (20), the stationary distribution of a linearly randomized group U&D tar-
geted on � ∈ (0; 0.5] can be expressed in terms of b. The following result gives
the optimal choice of b with respect to the shape of the stationary distribution,
while a is given by (19).

Proposition 2 For linearly randomized group U&D algorithms satisfying (19),
a choice of b as large as possible optimizes the design according to criterion (27).

Proof By taking the derivative in (20) with respect to b, it is easy to see that λi
increases for all integers i such that Qi < � and decreases for i such that Qi ≥ �.

Because of conditions 0.5 ≤ a ≤ b ≤ 1 and of (19), the best possible value for
b is thus

b = min

{
1;

1
1 − �

− 1
2

}
.

4.3 Complementary group U&D designs

Within the class of complementary group U&D rules consider the special case

α̃(k) =
{

1, k ≤ �m��
0, otherwise

and β̃(k) = 1 − α̃(k) , (28)

where �z� stands for the integer part of z. This rule falls within the GF–GU&D
family with s = �m�� and t = s + 1. The rationale is identical to Dixon and
Mood and consists of increasing the dose level if the observed number of toxic-
ities is less than m�, the expected number at the target dose, and decreasing it
otherwise. From (22), under procedure (28) the transition probabilities of the
Markov chain {Xn} are given by

p̃i =
�m��∑

k=0

(
m
k

)
Qk

i (1 − Qi)
m−k = 1 − q̃i i = 2, . . . , M − 1, (29)
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with p̃1 = q̃M = 1, and the target condition (23) becomes

E[α̃(B(m, �))] =
�m��∑

k=0

(
m
k

)
�k (1 − �)m−k = 1

2
. (30)

Given a target toxicity rate �, the group size m must be chosen as the integer
solution of Eq. (30). Thus this algorithm may not target some �’s exactly.

Proposition 3 For a toxicity rate � and group size m, rule (28) is optimal by
criterion (27) within the class of complementary group U&D’s that can target �

with the same group size.

Proof Consider a complementary group U&D targeted on �, namely with
generating function α(·) satisfying (23). Let {Xn} be the corresponding random
walk with transition probabilities {pi} defined in (22). Observe that for any
i = 2, . . . , M − 1

pi =
m∑

k=0

α(k)

(
m
k

)
Qk

i (1 − Qi)
m−k

=
m∑

k=0

α(k)

(
m
k

){
Qk

i (1 − Qi)
m−k − �k (1 − �)m−k

}
+ 1

2

=
m∑

k=0

α(k)

(
m
k

)
Ci(k) + 1

2
,

with Ci(k) = Qk
i (1 − Qi)

m−k − �k (1 − �)m−k. From condition (27), it is suffi-
cient to show that

pi ≤ p̃i for Qi < � and pi ≥ p̃i for Qi ≥ � .

Case 1 If 0 ≤ Qi < �, then Ci(k) ≥ 0 for any k = 0, . . . , �mτi�, where

τi =
ln

{
1 − �

1 − Qi

}

ln

{
Qi(1 − �)

�(1 − Qi)

} ∈ (0; �).

Since α(k) ∈ [0; 1] for k = 0, . . . , m, then

m∑

k=0

α(k)

(
m
k

)
Ci(k) ≤

�mτi�∑

k=0

(
m
k

)
Ci(k)
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and thus

pi =
m∑

k=0

α(k)

(
m
k

)
Qk

i (1 − Qi)
m−k ≤

�mτi�∑

k=0

(
m
k

)
Ci(k) + 1

2

≤
�m��∑

k=0

(
m
k

)
Ci(k) + 1

2
=

�m��∑

k=0

(
m
k

)
Qk

i (1 − Qi)
m−k

=
m∑

k=0

α̃(k)

(
m
k

)
Qk

i (1 − Qi)
m−k = p̃i .

Case 2 If � ≤ Qi ≤ 1, we must show that pi ≥ p̃i and the proof is similar to that
of Case 1.

5 Conclusions

In this paper we have discussed a general randomization mechanism for group
U&D experiments aimed at overcoming the limitations of the group U&D
proposed by Gezmu & Flournoy (2006). We introduce a very broad class of
randomized U&D’s, giving conditions that allow the designs to target a given
dose µ with a prescribed probability of positive response. We have focussed
on special methods of randomization which are of particular interest for their
practical and theoretical features, showing some of their properties. Further, we
have indicated which randomization schemes guarantee “optimized” results in
terms of the asymptotic behaviour of the experiment.

Several questions remain to be answered, for example regarding the effect
of randomization on the speed of convergence of these experiments to their
stationarity. We point out that a fully satisfactory criterion for comparing all
U&D experiments remains to be found.
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