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Abstract Limitation of the cross-validation method of bandwidth selection is
well known when applied to data with ties. A method which resolves this prob-
lem and which is easy to understand and implement is proposed. We show that
the proposed approach is viable in theory, by proving its asymptotic equivalence
to the standard cross-validation method. The practical usefulness is shown in
simulations and an application to a real data example.
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1 Introduction

The choice of smoothing parameter is crucial for nonparametric kernel density
estimation and hence, not surprisingly, it has been one of the most intensely dis-
cussed and researched topics in statistical literature. This has lead to a wide vari-
ety of methods of bandwidth (that is, smoothing parameter) selection for kernel
density estimation. Of the various methods proposed, plug-in and least squares
cross-validation are the most preferred approaches. A detailed appraisal of
these methods is given in Loader (1999). The author concludes that in the
detailed analysis plug-in approaches to bandwidth selection fare poorly. This is
due to their heavy dependence on the arbitrary specification of pilot bandwidths
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and the fact that they are biased when this specification is wrong. Whereas,
careful analysis reveals that classical approach like cross-validation method of
bandwidth selection often produces estimates that are far more informative
than otherwise.

Unfortunately, the good asymptotic and finite sample performance of the
cross-validation can only be guaranteed for a continuous sample and the method
fails when the data contain ties (Silverman 1986, p. 51). Ties in the sample occur
when the data are discretised to save storage space or to accelerate compu-
tations. Moreover, all measurements have only finite accuracy and hence the
data are always rounded to the precision of the tool. Considering the good
performance revealed by Loader (1999), failing of cross-validation method in
the presence of tied observation is surely a disturbing property and, if possible,
should be remedied.

The issue of failure of cross-validation method of bandwidth selection in the
presence of tied observation was first addressed by Chiu (1991). Noting that
all data are rounded or discretised to some degree, he shows how easily such
failure of cross-validation method could occur. To overcome the problem, the
author considers the estimation of cross-validation score function in the fre-
quency domain and suggests to use the truncated version of the characteristic
function when the data contain ties.

Our idea of tackling the problem of ties is a simple and intuitive approach:
to add a small “continuous” noise to the given sample with ties and then apply
the standard cross-validation method to this “contaminated” sample which now
has no ties. This method is very easy to implement and as we show in this paper
it has good asymptotic and finite sample properties.

The idea of adding noise to the data on purpose, as we propose, is not new.
In a completely different context of simple linear regression when the indepen-
dent variable is subject to measurement error, Ruppert et al. (1999) propose
a method to estimate the slope parameter based on the idea of adding noise
to the data on purpose. This idea also has been used by Machado and Santos
Silva (2002) to define an estimator of quantile of a discrete random variable
and prove its consistency.

2 Definitions

Let X1, X2, . . . , Xn be an independent and identically distributed (i.i.d.) sample
with density fX . Recall the definition of a kernel density estimator (Rosenblatt,
1956)

f̂X(z) = 1
nh

n∑

j=1

K
(

z − Xj

h

)
, (1)

where the kernel K is a symmetric probability density function which is assumed
to be compactly supported and h is the smoothing parameter.

In this article, the bandwidth which minimises the integrated square error
(ISE) will be referred to as the optimal bandwidth ĥX,opt and the bandwidth
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which minimises the mean integrated square error (MISE = E
∫
(f − f̂ )2) the

asymptotically optimal bandwidth hX,opt.
The cross-validation method approximates the part of ISE which depends

on h,
∫

f̂ 2 − 2
∫

f f̂ , by the cross-validation score function,

MX(h) = 1
n2h

∑

i

∑

j

K∗
(

Xi − Xj

h

)
+ 2K(0)

nh
, (2)

where K∗(z) = K∗K(z)−2K(z) and K∗K denotes convolution; the bandwidth
ĥX,cv which minimises MX(h) will be referred to as the cross-validation band-
width. For a sample with no ties, this method was shown to be asymptotically
consistent (see e.g. Hall 1983, Stone 1984, Bowman 1984).

If the data do contain ties, then consider all pairs (Xi, Xj) for 1 � i < j �
n, and let N be the number of these pairs for which Xi = Xj; and denote
ζ = K∗K(0)/(4K(0) − 2K∗K(0)). Assume ζ > 0, it can be easily seen that
if N > ζn, then MX(h) → −∞, as h → 0 and the cross-validation method
chooses ĥX,cv = 0 as the optimal value (see Silverman, 1986, p. 51 for details).

Remark 1 To ensure N < nζ , a kernel such that K∗K(0) > 4N
2N+n K(0) is needed

but K∗K(0) < K(0) for a kernel which has a maximum at 0. Hence, N < nζ can
only be fulfilled if N < n/2. Note also that usually N � n (at least if there are
more than three observations in each bin) and thus the requirement N � ζn
often fails to hold and the standard cross-validation cannot be used in many
real cases.

We now give a precise interpretation of discretisation and then define our
cross-validation method in detail.

2.1 Discretisation and contamination

We consider two cases here:

Case (i) The data are continuous and the ties occur “naturally” (i.e. not as a
result of discretisation). We will call such samples continuous.

Case (ii) This case arises when the data are artificially discretised, an example
here could be the ages given in surveys (obviously, age is a continu-
ous variable but it is discretised to years). Samples of this type will
be referred to as discretised.

In the first case, we can assume that the data still follow the density fX , in the
latter case, however, the sample has a different distribution.

Definition 1 Let {xj}+∞
j=−∞ be the grid points such that �x ≡ xj+1 − xj = Dn−β ,

β > 0 and assume that x0 = 0. The discretised version of Xi is then given by
X̃i,n = ∑+∞

j=−∞ x̃jI[xj,xj+1)(Xi), where x̃j = xj+xj+1
2 .

Note that this implies that the discretised sample is close to the original one,
namely |Xi − X̃i,n| < Dn−β/2. The density of the discretised sample is then
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fX̃,n(z) =
+∞∑

j=−∞
δx̃j(z)

∫ xj+1

xj

fX(x)dx,

where δx(z) = δ0(x − z) and δ0 denotes the Kronecker delta.

Remark 2 Note that in practice the discretising mechanism may not be known
and the only available information is the data. In this case, one would need to
choose the grid points arbitrary, e.g. midpoints between the data points.

Define the family of density functions fUn by the scale condition,

fUn(z) = nγ fU(znγ ), γ > 0, (3)

for an even and compactly supported density fU . The support of fUn is
supp(fUn) = [−an−γ , an−γ ] and the moments of fUn satisfy µUn,k ≡ E(Uk

n) =
O(n−kγ ), where the variable Un follows the distribution fUn .

The contaminated cross-validation is the standard cross-validation method
applied to the sample contaminated by noise. The sample contamination is de-
fined below; note that the definition slightly differs in the continuous and in the
discrete case.

Case (i) Let Un,1, Un,2, . . . , Un,n be an i.i.d. sample from a known density fUn for
an arbitrary value of γ > 0 (subject to the assumptions stated in the next sec-
tion) and assume that Un,k is orthogonal to Xj for all k, j. Then the contaminated
sample Yn,i = Xi + Un,i, i = 1, . . . , n, has the density

fYn(z) = fX(z)+ µUn,2

2
f ′′
X(z)+ µUn,4

4! f (4)
X (z)+

∫
fUn(v)

v4

4! �(f , z, v, θv)dv, (4)

where �(f , z, v, θv) = f (4)
X (z− θvv)− f (4)

X (z); here and in what follows θv ∈ (0, 1).

Expansion (4) implies that the contaminated density fYn converges point-
wise to fX at the rate n−2γ .

Case (ii) In this case, the density of the noise Un,1, Un,2, . . . , Un,n is uniform
with a = D/2 and γ = β, which guarantees that the noise fills in the “gaps”
between the data. Define Ỹn,i = X̃n,i + Un,i, the density of Ỹn,i is

fỸn
(z) = fX(z)Dn−γ

+∞∑

j=−∞
fUn

(
z − x̃j

) + f ′
X(z)Dn−γ

+∞∑

j=−∞

(
x̃j − z

)
fUn

(
z − x̃j

)

+
+∞∑

j=−∞
fUn

(
z − x̃j

) ∫ xj+1

xj

(x − z)2

2
f ′′
X(z∗

x)dx, (5)

where z∗
x lies between z and x.
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Note that the first term on the right-hand side of (5)
Dn−γ

∑+∞
j=−∞ fUn(z − x̃j) ≡ 1 for all z, if and only if fUn is the uniform density

over [−Dn−γ /2, Dn−γ/2]. For the uniform distribution, the contaminated den-
sity fỸn

tends to fX at the rate n−γ , slower than in the continuous case. If the noise
density is not uniform then the contaminated density does not converge to fX .

The convergence of the contaminated density to fX has different rate in the
continuous and discrete case; this results in different rates of convergence for
the cross-validation bandwidth in these two cases. Let us denote this rate of
convergence by γ0, which will be equal to 1/5 for the continuous case and to 2/5
for the discretised case.

2.2 Cross-validation with contaminated sample

The cross-validation score function MY(h) (based on either Ỹn or Yn) and its
minimum ĥY,cv depend on the noise sample and hence for each sample of noise,
one obtains a different function MY(h) possibly with a minimum at a differ-
ent point. Note that the standard cross-validation bandwidth ĥX,cv is also a
random variable; however, the dependence on noise sample introduces addi-
tional variability in the cross-validation bandwidth ĥY,cv and the contaminated
cross-validation gives results which vary even for a given sample X1, X2, . . . , Xn,
while the standard cross-validation bandwidth is fixed for this sample.

To reduce the variability introduced by noise in the cross-validation band-
width ĥY,cv, we consider a mean bandwidth. Let {Ul

i }l=1,...,L
i=1,...,n be L independent

samples of noise. For each sample, find the cross-validation score function
MY,l(h). Define the mean cross-validation score function

M̄Y,L(h) = 1
L

L∑

l=1

MY,l(h),

and denote by Ĥcv,L the bandwidth which minimises this function.
Another approach to averaging is to find the cross-validation bandwidth

ĥcv,Y for each of the functions MY,l(h) and then consider the mean of these
bandwidths. Thus we denote ĥcv,Y calculated for lth sample of noise by ĥcv,l and
then

h̄cv,L = 1
L

L∑

l=1

ĥcv,l.

The two approaches do not necessarily give the same result.

3 Main results

In the next two subsections, we present the asymptotic results for the con-
taminated cross-validation method. The first subsection consists of the results
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for the criterion functions while in the second one, we deal with the asymp-
totic behaviour of the cross-validatory bandwidth. The proofs are given in the
Appendix.

To simplify the notation, we use the subscript Y for either Yn or Ỹn. The
following assumptions will be used in the theorems:

(A1) fX has two continuous derivatives;
(A2) fX has six continuous derivatives;

(A3) hn ∈In ≡ [b1n− 1
5 , b2n− 1

5 ];
(A4) the symmetric kernel K is a Hölder continuous function, i.e. ∀u,v|K(u) −

K(v)| � M|u − v|α , for some α ∈ (0, 1] and a constant M > 0;
(A5) the symmetric kernel K has two continuous derivatives.

3.1 Criterion functions

Theorem 1 Let the densities fYn , fỸn
be defined as above and assume that the

assumptions A1, A3 and A4 hold. If γ > γ0, then

sup
h∈In

∣∣∣∣
ISEX(h) − ISEY(h)

MISEX(h)

∣∣∣∣ → 0 (6)

almost surely as n → ∞.

It can be easily shown that suph |MX(h) + ∫
f 2
X − ISEX(h)| = o(MISE(fX))

(see Lemma 1 in the Appendix). Immediate consequence of this fact and
Theorem 1 is the following corollary, which we state without proof.

Corollary 1 Under the assumptions A1, A3 and A4,

sup
h∈In

∣∣∣∣
MX(h) − MY(h)

MISE(fX)

∣∣∣∣ → 0 (7)

almost surely as n → ∞.

A similar result holds for the mean cross-validation score function which we
again state without proof.

Theorem 2 For any fixed integer L > 1, assuming A1, A3 and A4,

sup
h∈In

∣∣∣∣∣
MX(h) − M̄Y,L(h)

MISE(fX)

∣∣∣∣∣ → 0 (8)

almost surely as n → ∞, if γ > γ0.
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3.2 Cross-validation bandwidth

Denote R(g) = ∫
g2(x)dx, K1(x) = xK′(x), K∗

1(x) = xK∗′′
(x) and let Sj(x) =

((xj − x)/h, (xj+1 − x)/h) and S1j = (xj, xj+1).

Theorem 3 Assume that A2, A3 and A5 hold, Then

n3/10(ĥY,cv − ĥX,opt) → N(0, σ 2
cv), (9)

in distribution as n → ∞, with γ � γ0. The variance σ 2
cv is equal to σ 2

X,cv, if

γ > γ0, to σ 2
Y,cv, if γ = 1/5 in the continuous case, or to σ 2

Ỹ,cv
, if γ = 2/5 in the

discretised case, where

σ 2
X,cv =

(
2

Ch

)3

R(fX) · R(K1) +
(

2σ 2
KCh

)2
(∫

(f ′′
X(x))2fX(x)dx − R2(f ′

X)

)
,

σ 2
Y,cv = 2µU,2

C5
h

(
2R(K∗′

) + R(K∗
1)

)
R(fX) + σ 2

X,cv,

σ 2
Ỹ,cv

= C(K, fx, D)

n4h3 + σ 2
Y,cv,

with Ch =
(

R(K)

4σ 2
KR(f ′′

X )

)1/5

and

C(K, fx, D) =
∫ ⎛

⎝z− D
Ch

+∞∑

j=−∞

2j + 1
2

(
ISj(x)(z) − IS1j(x)

)
⎞

⎠
2

×
(

2K∗′
(z) + zK∗′′

(z)
)2

f 2
X(x)dx dz.

Theorem 3 and the fact that ĥX,opt/hX,opt → 1 almost surely imply imme-
diately the asymptotic normality of the ratio, as stated in the corollary below.

Corollary 2 Under the assumptions A2, A3 and A5,

n1/10 ĥY,cv − ĥX,opt

ĥX,opt
→ N

(
0,

(
σcv

Ch

)2
)

, in distribution, as n → ∞, (10)

with γ � γ0 and Ch defined as in Theorem 3.

Theorem 3 implies also the following corollary, which we state without proof.

Corollary 3 Under the assumptions A2, A3 and A5,

n
(

ISEX(ĥY,cv) − ISEX(ĥX,opt)
)

→ σ 2
cv

2
χ2

1 , (11)

in distribution, as n → ∞, with γ � γ0.
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The asymptotic results for the cross-validation bandwidth ĥY,cv have their
analogues for the bandwidths Ĥcv,L and h̄cv,L. We summarise them in the fol-
lowing proposition.

Proposition 1 Under the assumptions A2, A3 and A5, the bandwidths Ĥcv,L and
ĥcv,L are asymptotically equivalent to the optimal bandwidth

ĤL,cv

ĥX,opt
→ 1 and

h̄L,cv

ĥX,opt
→ 1,

almost surely as n → ∞, when γ > γ0. Furthermore, if we assume that fX ∈ C6,
then

n1/10 ĤL,cv − ĥX,opt

ĥX,opt
→ N

(
0, σ 2

L,cv

)
, (12)

n1/10 h̄L,cv − ĥX,opt

ĥX,opt
→ N

(
0, σ 2

L,cv

)
, (13)

in distribution as n → ∞, with γ � γ0. The variance σ 2
L,cv is equal to σ 2

X,cv
if γ > γ0 and to σ 2

L,c if γ = γ0 = 1/5 in the continuous case or to σ 2
L,d if

γ = γ0 = 2/5 in the discretised case, where

σ 2
L,c = 2µU,2

LC5
h

(
2R(K∗′

) + R(K∗
1)

)
R(fX) + σ 2

X,cv

C2
h

,

σ 2
L,d = C(K, fx, D)

n4h3 + σ 2
L,c.

Remark 3 Notice that the asymptotic variances for hL and HL are the same and
that averaging decreases asymptotic variances of these bandwidths if γ = γ0.

4 Examples

4.1 Simulations

To illustrate how the cross-validation score function behave for the continuous,
discretised and contaminated samples, we compare its plots for three simulated
samples drawn from densities: standard normal, f1, mixture of two normal dis-
tributions, f2 = 0.3 5√

2π
e−25x2/2 + 0.7 1

3
√

2π
e−x2/18 and gamma, f3 = Gam(2, 1.5).

Two discretised (as defined in Sect. 2.1) versions for each of the three simulated
samples are created, one with a ratio of the number of ties to the sample size
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Fig. 1 The cross-validation score functions for samples of size 50 from densities f1 −f3, with L = 50
in three cases: for original continuous data (solid), for discretised data (dashed) and for discretised
data with noise (dashdot). The value of N/n was near 0.5 for the left-hand side plots and 2 for the
right-hand side plots. Plots are in loge scale

(N/n) approximately equal to 0.5 and the other with N/n ≈ 2. The values of
the cross-validation bandwidth are chosen in the interval [0.02, 20] · n−1/5. In
each case three cross-validation functions are plotted: the function based on the
original continuous sample (MX), the function based on the discretised sam-
ple (MdX) and the function based on the contaminated (discretised plus noise)
sample (MY). The plots are in Fig. 1 and the values of the bandwidths chosen
in each case are in Table 1. As expected, the cross-validation score function
tends to minus infinity as h → 0 for the discretised sample and therefore the
bandwidth ĥX̃,cv is close to 0 (here, ĥX̃,cv = 0.0091). But the contaminated
cross-validation function has a minimum and the minimum is close to the min-
imum for the original sample. Note that, even when the number of ties to
the sample size ratio is as high as 2, the contaminated cross-validation chose
the bandwidths close to those chosen for the original sample in most cases.
Also, the mean cross-validation functions based on the contaminated samples
do not differ much from the cross-validation score function for the original
sample.
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Table 1 The values of bandwidth h chosen by the cross-validation method; the bandwidths ˆ̃Hcv,L,
¯̃hcv,L are for a contaminated discretised sample

Distri- ĥX,cv ĥX̃,cv
ˆ̃Hcv,L

¯̃hcv,L
N
n Bin

bution width

f1 0.9274 0.0091 0.8815 0.8760 0.5000 0.0600
f1 0.9274 0.0091 0.8815 0.7869 2.0200 0.2400
f2 1.2488 0.0091 1.2947 1.2938 0.5000 0.1600
f2 1.2488 0.0091 1.3407 1.4114 2.0600 0.7450
f3 2.6722 0.0091 2.6722 2.2140 0.5000 0.1600
f3 2.6722 0.0091 2.6722 1.8228 2.1800 0.5850

All parameters as in Fig. 1

4.2 Comparison of different methods of averaging

We proposed two methods of reducing the variability in the estimates of opti-
mal bandwidth obtained by contaminated cross-validation and showed that
their asymptotic variances are the same. To compare their performance for a
finite sample, we have estimated conditional (given the sample X1, X2, . . . , Xn)
variances of both bandwidths Ĥcv,L and h̄cv,L for different values of L and plot-
ted them as a function of L. The variances were estimated via Monte Carlo
method.

Our simulations show that the bandwidth ¯̃hcv,L performs better (i.e.
has smaller variance), if the uniform kernel is used, nearly for all samples

X1, X2, . . . , Xn. The bandwidth ¯̃hcv,L is also preferred for most samples
X1, X2, . . . , Xn in the case of the Epanechnikov kernel but the evidence is not
as strong in this case (results not shown here). If the normal kernel is used, then

the results are hardly conclusive: the bandwidth ˆ̃Hcv,L has lower conditional

variance for nearly as many samples as the bandwidth ¯̃hcv,L.
Therefore, we have also estimated the (unconditional) variances for the band-

widths in the case of normal kernel. The bandwidth ¯̃hcv,L seems to give better
results than its competitor this time as well.

The examples of the estimated variances as functions of L are in Fig. 2. The
left hand side shows the estimates of the conditional variances of the mean
bandwidths for the uniform kernel and a sample drawn from distribution f3;

clearly, Var( ¯̃hcv,L|X) is lower than its competitor. The plots in the right-hand
side of Fig. 2 are the estimated (unconditional) variances for the normal kernel

and the distribution f3. Similarly here, Var( ¯̃hcv,L) is lower. It is important to
notice that the differences between the two types of averaging become small
for larger values of L and thus the choice of the method is not as influential in
this case.
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Fig. 2 The estimated variances of the cross-validation bandwidths ˆ̃Hcv,L (Var(H)) and ¯̃hcv,L
(Var(h)) plotted as functions of L. The left-hand side panel shows the conditional variances esti-
mated for a sample of size 30 from the distribution f3 and uniform kernel, in the right hand side
panel, there are the unconditional variances based on 50 samples of size 30 from the distribution f3
and normal kernel

4.3 Real data example – the Stanford Heart Transplant data

We applied our method to a real data set. This example is the sample of ages
of the patients in the Stanford Heart Transplant data (Andrews and Herzberg
1985). The ages of patients are given in years hence, the additional noise in
contaminated cross-validation is (uniformly) distributed in [0, 1].

The ratio of ties in the data for the analysed sample is N/n = 2.6522, which
is more than ζ for Epanechnikov kernel and hence the method fails. The cross-
validation score function for the original data drops off around 0 but the function
for the contaminated data has a minimum in Ĥcv,L = 4.5988 (Fig. 3, left-hand
side); the value of the other average cross-validation bandwidth h̄50,cv was
4.4882. We have plotted the kernel estimates for the density function with
bandwidth h̄50,cv based on the original sample and on the conatinated sample
(Fig. 3, right-hand side). The estimate for the other bandwidth was virtually
the same; hence, it is not presented here. The result is a unimodal density with
mode around 49 and two “bumps” in 20 and 30. The estimate based on the con-
taminated sample is nearly the same as the one based on the original sample,
but slightly smoother.
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Fig. 3 The cross-validation score functions for the Stanford Heart Transplant data; plots are in
loge scale and are on the left-hand side. The estimates of the density for the Stanford Heart Trans-
plant data based on the original discrete sample (solid line) and based on the contaminated sample
(dashed line) are on the right hand side; for both the cross-validation bandwidth h̄50,cv was used
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Appendix

Before proving Theorem 1, we state the following lemma which is a standard
result and hence its proof is omitted here.

Lemma 1 Under the assumptions A1, A3 and A4 and if γ > 0,

sup
h∈In

∣∣∣∣∣
M̃Y(h) − ISEYn(h)

MISEX

∣∣∣∣∣ → 0, (14)

almost surely as n → ∞, where M̃Y(h) = MY(h) + ∫
f 2
Y(x)dx.

Proof of Theorem 1 By Borel-Cantelli lemma, to prove (6), it suffices to show
that

P
[

sup
h

∣∣∣∣
ISEX(h) − ISEYn(h)

MISEX(h)

∣∣∣∣ > ε

]
< C · n−η, (15)
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where η > 1 and C denotes a generic constant. Note the the left-hand side of
this inequality is less than suph E|(ISEX(h)− ISEYn(h))/MISEX(h)|2k · ε−2k for
any positive integer k. Cauchy–Schwartz inequality implies that

E
∣∣ISEX(h)−ISEYn(h)

∣∣2k �
[

C ·
([∫ (

fX − fYn

)2
]2k

+E
[∫ (

f̂X − f̂Yn

)2
]2k

)

×
(

E
(∫ (

fX − f̂X

)2
)2k

+E
(∫ (

fYn − f̂Yn

)2
)2k

)] 1
2

≡ C (B11 + B12) (B21 + B22) ,

For the term B11, Taylor expansion for fX gives

∫ (
fYn − fX

)2 = n−4γ

4

∫ (∫
u2f ′′

X(z − θuun−γ )fU(u)du
)2

dz � C · n−4γ .

To bound term B12, write first

(∫ (
f̂X − f̂Yn

)2
)2k

� C

(nh)4k

⎡

⎢⎣

(
n∑

i=1

Wi

)2k

+
⎛

⎝
∑

i<j

Vij

⎞

⎠
2k

⎤

⎥⎦ , (16)

where Wi = h
∫ (

K (t) − K
(

t − Ui,n
h

))2
dt and Vij = ∫ (

K
(

z−Xi
h

)
−K

(
z−Xi−Ui,n

h

))

(
K

(
z−Xj

h

)
−K

(
z−Xj−Uj,n

h

))
dz. For any i.i.d. Z1, Z2, . . . , Zn,

E

(
n∑

i=1

Zi

)2k

� C

⎡

⎣E

(
n∑

i=1

(Zi − EZi)

)2k

+ n2k(EZ1)
2k

⎤

⎦ (17)

and note that EW1 � Cn−1/5+2α(1/5−γ ) and

E(W1)
2k = h2k

∫ (∫ (
K (t) − K

(
t − u

h

))2
dt

)2k

fU,n (u) du � Cn2k(− 1
5 +2α( 1

5 −γ )).

This together with (17) and Rosenthal’s inequality (see e.g. Hall and Heyde,
1980, p. 23) (

∑j
i=1(Wi − EWi) is a martingale with Fj = σ {Xi, Ui, i = 1, . . . ,

min(j, n)}) imply that

E

(
n∑

i=1

Wi

)2k

� Cn8k/5+4kα(1/5−γ ).



34 K. Żychaluk, P. N. Patil

To bound the latter sum in (16), define Vi = E(Vi,j|Xi, Ui), Ṽi,j = Vi,j − Vi −
Vj + EVi,j and Ṽi = Vi − EVi. Since

E
[
K

(
z − Xi

h

)
−K

(
z − Xi − Ui,n

h

)]
= h

2
f ′′
X(z)

∫
u2fUn(u)du+o

(
hn−2γ

)

= C · f ′′
X(z)n−1/5−2γ + o

(
hn−2γ

)
, (18)

then EVij =Cn− 2
5 −4γ +o

(
n−2

5 −4γ
)

and Vi =
∫

Cf ′′
X(z)n−1

5 −2γ
[
K

(
z−Xi

h

)
−K

(
z−Yi,n

h

)]
dz.

Also

E(Vij)
2k � Ch2k+1−4kα

∫
|u1|2kα|u2|2kαfUn(u1)fUn(u2)du1du2

∫
f 2
X(x)dx

� Cn−1/5−2k/5+4kα(1/5−γ ). (19)

Hence E(Vi)
2k � Cn− 4k

5 −4kγ+2kα( 1
5 −γ ), hence EṼ2k

ij � Cn−1/5−2k/5+4kα(1/5−γ )

and by Rosenthal’s inequality E
(∑n

j=i+1 Ṽi,j

)2k
� Cn2k/5+4kα(1/5−γ ), which

implies that

E

⎛

⎝
∑

1�i<j�n

Ṽi,j

⎞

⎠
2k

� Cn7k/5+4kα(1/5−γ ).

Since also

E

(
n∑

i=1

s̃i

)2k

� Cnk/5−4kγ+2kα(1/5−γ ),

thus

E

⎛

⎝
∑

i<j

Vij

⎞

⎠
2k

� Cn7k/5
[
n4kα(1/5−γ ) + n9k/5−8kγ

]

and hence

E
[∫ (

f̂X − f̂Yn

)2
]2k

� Cn−8k/5+4kα(1/5−γ ). (20)

For the term B21, note that

E
[∫ (

fX − f̂X

)2
]2k

� C

([∫ (
fX − Ef̂X

)2
]2k

+ E
[∫ (

f̂X − Ef̂X

)2
]2k

)



Cross-validation for data with ties 35

and

∫ (
fX − Ef̂X

)2 =
∫ (

σ 2
Kh2

2
f ′′
X + o(h2)

)2

� C · h4 = C · n−4/5.

Note also that

E
[∫ (

f̂X − Ef̂X

)2
]2k

� C

n4kh4k

⎛

⎜⎝E

[
n∑

i=1

Wi

]2k

+ E

⎡

⎣
∑

i<j

Vij

⎤

⎦
2k

⎞

⎟⎠ .

where Wi = h
∫
(K(t) − EKh)2dt, Vij = ∫ [(K((z − Xi)/h) − EKh)(K((z −

Xj)h) − EKh)]dz and EKh = E
[
K ((z − X1)/h)

]
. Wi’s are non-random and

E
[∑n

i=1 Wi
]2k = C·(nh)2k = O

(
n8k/5). The sum

∑
i<j Vij is treated in analogous

way to the latter sum in (16). Using the fact that EVij = 0, E
∣∣Vij

∣∣2l = O
(
h2l+1)

and E
(

V2
ij|Fj−1

)
= O(h3) fX(Xi) gives

E
[∫ (

f̂X − Ef̂X

)2
]2k

� 1
n16k/5

· O
(

n8k/5 + n7k/5
)

= O
(

n−8k/5
)

.

Similarly for B22, E[∫ (fYn − f̂Yn)
2]2k � C · n− 8k

5 and therefore E|ISEX(h)

−ISEYn(h)
∣∣2k � C n

−2k
(

4
5−α

5+αγ
)

. Since MISEX(h)=O(n−4/5) for h=O(n−1/5),
the probability in (15) is bounded by

E

∣∣∣∣
ISEX(h) − ISEYn(h)

MISEX(h)

∣∣∣∣
2k

· ε−2k � C

ε2k
· n

−2kα
(
γ− 1

5

)

= C

ε2k
· n−η, η > 1,

for a sufficiently large k and thus (15) holds which proves (6). 
�

The discretised case is proven similarly to the continuous case, the only
significantly different points are:

• for the term B11, using expansion (5),

∫ (
fX(z) − fỸn

(z)
)2dz = D2n−2γ

12

+∞∑

j=−∞

xj+1∫

xj

(
f ′
X(z)

)2 dz + o(n−2γ ) � Cn−2γ ;

• for the term B12, the moments EWi and EW2k
i have the same orders as for

the continuous case, but, the convergence in (18) is slower. Using Taylor
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expansion for fX ,

∣∣∣∣fX(z) −
xj+1∫

xj

fX(x)

Dn−γ
dx

∣∣∣∣ �
|f ′

X(z)| · Dn−γ

2
+

xj+1∫

xj

(x − z)2

2Dn−γ
f ′′
X(z + θxz(x − z))dx,

and

∣∣∣∣E
[

K
(

z − Xi

h

)
− K

(
z − X̃i − Ui,n

h

)]∣∣∣∣ � Dn−γ h
2

|f ′
X(z)|

+∞∑

j=−∞

z−xj
h∫

z−xj+1
h

K(t)dt

+ h2|f ′
X(z)|

+∞∑

j=−∞

z−xj
h∫

z−xj+1
h

tK(t)dt+o(n−1/5−γ )

� Cn−1/5−γ ;

• thus

B12 � C
(

n−8k/5−4kα(γ−1/5) + n−4kγ + n−k−2kγ−2kα(γ−1/5)
)

,

which proves the result for γ > 2/5.

Proof of Theorem 3 We apply here the methods developed in Hall and Marron
(1987) and use the Lemmas 2–7 stated further in this section. The MISE′

X admits
the expansion

0 = MISE′
X(hX,opt) = MISE′

X(ĥY,cv) + (hX,opt − ĥY,cv)MISE′′
X(h∗),

where h∗ lies between ĥY,cv and hX,opt. Denote

D1(h) = MISEX(h) − ISEX(h),

D2(h) = ISEX(h) − MX(h),

D3(h) = MX(h) − MY(h) = 1
n2h

∑

i,j

(
K∗

(
Xi − Xj

h

)
− K∗

(
Yi − Yj

h

))
.

Then MISE′
X(ĥY,cv) = D′

1(ĥY,cv)+ D′
2(ĥY,cv)+ D′

3(ĥY,cv). Since M′
Y(ĥY,cv) = 0

(ĥY,cv − hX,opt)MISE′′
X(h∗) = D′

1(ĥY,cv) + D′
2(ĥY,cv) + D′

3(ĥY,cv). (21)
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Lemmas 5, 6 and Lemma 3.2 in Hall and Marron (1987) together with Eq. (21)
imply

(ĥY,cv −hX,opt)MISE′′
X(h∗) = D′

1(hX,opt)+D′
2(hX,opt)+D′

3(hX,opt)+o(n−7/10).
(22)

From the proof of Theorem 2.1 in Hall and Marron (1987),

(ĥX,opt − hX,opt)MISE′′
X(h∗) = D′

1(hX,opt) + o(n−7/10),

hence

(ĥY,cv − ĥX,opt)MISE′′
X(h∗) = D′

2(hX,opt) + D′
3(hX,opt) + o(n−7/10). (23)

Finally, the fact that MISE′′
X(h∗) = Cn−2/5 and Lemma 7 give

n3/10(ĥY,cv − ĥX,opt) → N(0, σ 2
cv),

in distribution as n → ∞. 
�

Notation

Denote

Vij(h) = K∗
(

Xi − Xj

h

)
− K∗

(
Yi − Yj

h

)
,

Wij(h) = Xi − Xj

h
K∗′

(
Xi − Xj

h

)
− Yi − Yj

h
K∗′

(
Yi − Yj

h

)
,

and Vi(h) = E[Vij(h)|Xi, Ui], Wi(h) = E[Wij(h)|Xi, Ui] and define Ṽij(h) =
Vij(h) − Vi(h) − Vj(h) + EVij, W̃ij(h) = Wij(h) − Wi(h) − Wj(h) + EWij. Then

1
2

D′
3(h) = 1

n2h2

∑

i<j

Ṽij(h) + 1
n2h2

∑

i<j

W̃ij(h)

+ 1
nh2

n∑

i=1

(Vi(h) − E(Vi(h)) + Wi(h) − E(Wi(h)))

+ 1
h2 E (Vi(h) + Wi(h)) + R ≡ I1 + I2 + I3 + I4 + R, (24)
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where R = n−1I3 + n−1I4 is a negligible part. Define also

I31 = 1
nh2

n∑

i=1

[
Wi(h) − E(Wi(h))

]
,

I32 = 1
nh2

n∑

i=1

[
Vi(h) − E(Vi(h))

]
,

then I3 = I31 + I32. In the discretised case Yis change to Ỹi in the definitions of
Vij, Wij.

Lemma 2 If γ > γ0,

sup
h∈In

E|n7/10D′
3(h)|2k → 0;

if γ = γ0,

sup
h∈In

E|n7/10D′
3(h)|2k � C(b1, b2),

where In = [b1n− 1
5 , b2n− 1

5 ].

Proof For the continuous case, the expected values of Vij, Wij admit

EVij=h
∫

K∗(z)

[
− µ2

2n2γ

(
f ′′
X(y + zh)fX(y)+fX(x)f ′′

X(y + zh)

)
+O

(
n−4γ

)]
dz dy,

EWij=h
∫

zK∗′
(z)

[
− µ2

2n2γ

(
f ′′
X(y+zh)fX(y)+fX(x)f ′′

X(y + zh)

)
+O

(
n−4γ

)]
dz dy.

Hence using Taylor expansion of fX , E
(
Vij + Wij

) = O(n−4γ h3) + O(n−2γ h5).
Note that

E
[

K∗
(

X − Xi

h

) ∣∣X
]

− E
[

K∗
(

X − Y
h

)]
= h

(∫
f 2
X(x)dx−fX(Xi) + o(h2)

)

and

E
[

K∗∗
(

X − Xi

h

) ∣∣X
]

− E
[

K∗∗
(

X − Y
h

)]

= h
(

−
∫

f 2
X(x)dx + fX(Xi) + o(h2)

)
,
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where K∗∗(z) = zK∗′
(z). Therefore, Vi + Wi = o(n−3/5) and by Rosenthal’s

inequality,

E
[

1
nh2

n∑

i=1

(Vi(h) + Wi(h) − E(Vi(h) + Wi(h)))

]2k

� o
(

n−7k/5
)

. (25)

The moments of Vij are bounded by

E
(

V2k
ij

)
= h

∫ (
u − u1

h
K∗′

(z)− (u − u1)
2

2h2 K∗′′(
z∗)

)2k

×fXUn(x, x + zh, u, u1)dx dz du du1 � Ch1−2kn−2kγ . (26)

Hence E
(

Ṽ2k
ij

)
� Cn(2k−1)/5−2kγ and therefore by Rosenthal’s inequality,

E

⎛

⎝ 1
n2h2

∑

i<j

Ṽij(h)

⎞

⎠
2k

� Cn−k−2kγ . (27)

By analogous arguments, E
(

1
n2h2

∑
i<j W̃ij(h)

)2k
� Cn−k−2kγ .

For the discretised case E
(
Vij + Wij

) = O(n−2γ h3) + O(n−γ h5) and the rest
of the proof follows the same lines as in the continuous case.

Lemma 3 For s, t ∈ [b1n− 1
5 , b2n− 1

5 ],

E
∣∣∣n7/10

(
D′

3(sn−1/5) − D′
3(tn

−1/5)
)∣∣∣

2k
� C|s − t|2k.

Proof In the continuous case, Taylor expansion for K∗ gives

1
sn−1/5

K∗
(

Xi − Xj

sn−1/5

)
− 1

tn−1/5
K∗

(
Xi − Xj

tn−1/5

)

= n1/5
[

t − s
ts

K∗
(

Xi − Xj

tn−1/5

)
+ Xi − Xj

sn−1/5
· t − s

ts
K∗′

(
Xi − Xj

tn−1/5

)

+ (Xi − Xj)
2

2sn−2/5
· (t − s)2

t2s2 K∗′′
(

Xi − Xj

t∗n−1/5

)]
· I{|Xi − Xj| � |b2|n−1/5},

and

K∗
(

Xi−Xj

tn−1/5

)
− K∗

(
Xi−Xj+Ui−Uj

tn−1/5

)

= −Ui−Uj

tn−1/5
K∗′

(
Xi−Xj

tn−1/5

)
+ (Ui−Uj)

2

2t2n−2/5
K∗′′(

z∗) , (28)
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where t∗ is between s and t and z∗ is between n1/5(Xi−Xj)/t and n1/5(Xi−Xj+
Ui−Uj)/t. Therefore,

∣∣∣∣∣
Ṽij(sn−1/5)

sn−1/5
− Ṽij(tn−1/5)

tn−1/5

∣∣∣∣∣ � Cn1/5|s − t|n1/5−γ I{|Xi − Xj| � tn−1/5}, (29)

and

E

∣∣∣∣∣
Ṽij(sn−1/5)

sn−1/5
− Ṽij(tn−1/5)

tn−1/5

∣∣∣∣∣

2k

� Cn(4k−1)/5−2kγ |s − t|2k,

which combined with Rosenthal’s inequality gives

E

⎛

⎝ 1
n2h

∑

i<j

Ṽij(sn−1/5)

sn−1/5
− Ṽij(tn−1/5)

tn−1/5

⎞

⎠
2k

� Cn−k−2kγ |s − t|2k.

In the same way, one obtains the bounds for W̃ij,

E

⎛

⎝ 1
n2h

∑

i<j

W̃ij(sn−1/5)

sn−1/5
− W̃ij(tn−1/5)

tn−1/5

⎞

⎠
2k

� Cn−k−2kγ |s − t|2k.

To find bounds for moments of Vi, note that

1

sn− 1
5

∫
K∗

(
Xi − x

sn− 1
5

)
fX(x)dx − 1

tn− 1
5

∫
K∗

(
Xi − x

tn− 1
5

)
fX(x)dx

=
∫

K∗(z)

[
zn− 1

5 (t − s)f ′
X(Xi) + z2n− 2

5

2
(t2 − s2)f ′′

X(Xi) + o(n− 2
5 )|s − t|

]
dz

= o
(

n− 2
5

)
|s − t|.

Thus by Rosenthal’s inequality again,

E
(

1
nh

n∑

i=1

Ṽi(sn−1/5)

sn−1/5
− Ṽi(tn−1/5)

tn−1/5

)2k

� o
(

n−7k/5
)

,

where Ṽi(h) = Vi(h) − EVi(h). Since the arguments for Wi are same, we omit
the details.

In the discretised case, we need to replace (Ui −Uj)t−1 in (28) by [(Xi −Xj)−
(Ỹi − Ỹj)]t−1 and the inequality (29) remains true. 
�
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Lemma 4 There exists a positive number η > 0, such that

sup
t∈[b1,b2]

|D′
3(tn

−1/5)| = OP(n−3/5−η).

Proof Lemma 2 implies that E|D′
3(n

−1/5t)|2k � Cn−7k/5, therefore by the
Chebyshev’s inequality

P
(
|n3/5+ηD′

3(n
−1/5t)|2k � ε

)
�

E|D′
3(n

−1/5t)|2k

ε2kn−6k/5−2kη
� Cn−k/5+2kη → 0,

provided η < 1/10. 
�
Lemma 5 There exists a positive number η > 0, such that

ĥY,cv − hX,opt = OP(n−1/5−η).

Proof We assume that ĥY,cv ∈ [b1n−1/5, b2n−1/5], hence by Lemma 4 and
Lemma 3.2 in Hall and Marron (1987),

|D′
1(ĥY,cv)| + |D′

2(ĥY,cv)| + |D′
3(ĥY,cv)| = OP(n−3/5−η). (30)

Taylor expansion of MISEX gives

MISE′
X(hX,opt)+(ĥY,cv−hX,opt)MISE′′

X(h∗)=D′
1(ĥY,cv)+D′

2(ĥY,cv)+D′
3(ĥY,cv)

where h∗ lies between ĥY,cv and hX,opt and hence h∗ = O(n−1/5). Therefore,
MISE′′

X(h∗) = C n−2/5, which together with (30) imply that ĥY,cv − hX,opt =
OP(n−1/5−η). 
�
Lemma 6 For any η > 0,

sup
|t−t0|<n−1/5−η

n7/10|D′
3(t) − D′

3(t0)| → 0

in probability.

Proof This is proved in analogous way to the proof of Lemma 3.2 in Hall and
Marron (1987) and details are omitted here. 
�
Lemma 7 If γ > γ0, then

n7/10D′
3(hX,opt) → 0

in probability. If γ = γ0, then

n7/10 (
D′

2(hX,opt) + D′
3(hX,opt)

) → N(0, σ 2
Y,cv) (31)

in distribution.



42 K. Żychaluk, P. N. Patil

Proof If γ > γ0, then Lemma 2 implies that Var(D′
3(hX,opt)) = o(n−7/5) and

therefore n7/10D′
3(hX,opt) → 0 in probability.

Assume now that γ = γ0. In the continuous case, using the decomposition
(24), denote

T11 = 1
n2h2

∑

i<j

(
Ṽij(h) + W̃ij(h)

)
,

T12 = 1
n2h2

∑

i<j

(
B̃1,ij(h) + B̃2,ij(h)

)
,

T2 = 1
nh2

n∑

i=1

(
B̃1,i(h) + B̃2,i(h)

)
,

where B̃k,ij = Bk,ij−Bk,i−Bk,j+EBk,ij, B̃k,i = Bk,i−EBk,i and Bk,i = E[Bk,ij|Xi]
with B1,ij = K

(
Xi−Xj

h

)
and B2,ij = Xi−Xj

h K′
(

Xi−Xj
h

)
. Set T1 = T11 + T12. Then

D′
2+D′

3 = T1+T2+I3+I4+R. Note that (25) implies Var(I3) = o(n−7/5), hence
to prove (31), it suffices to show that n7/10 (T1 + T2) → N(0, σ 2

Y,cv). It is easy to
see that T1 and T2 are uncorrelated. Write T1 = ∑

i<j A(i, j) and T2 = ∑n
i=1 a(i)

and define Qi = ∑n
j=i+1 A(i, j) + a(i), then EQi = 0 and T1 + T2 = ∑n

i=1 Qi
is a martingale with σ -field Fn,i = σ {Xj, Uj, j = 1, . . . , min(i, n)}. Note that the
variables A(i, j), A(i, k) are uncorrelated if i, j, k are all different and

Var(A(1, 2)) =
[

2µU,2

n4+2γ h5

(
2R(K∗′

) + R(K∗
1)

)
+ 1

n4h3 R(K1)

]
R(fX) + o(n− 1

5 ),

(32)

Var(a(1)) = h2

n2 σ 4
K

(∫ (
f ′′
X(x)

)2 fX(x)dx −
(∫

f ′′
X(x)fX(x)dx

)2
)

.

Hence

s2
n ≡ Var(T1 + T2) =

n∑

i=1

Var(Qi) = n(n − 1)

2
Var(A(1, 2)) + nVar(a(1)). (33)

Since also Qis are independent from Fn,i−1,

s−2
n

∑

i

E
[
Q2

i |Fn,i−1

]
→ 1, (34)

in probability.
By Chebyshev’s inequality and (32),

P(|Qi| > snε) � E|Qi|2s−2
n ε−2 = O

(
n−1

)
, (35)
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and by the Cauchy–Schwartz inequality,

E
[
Q2

i I{|Qi| > snε}
]

� (EQ4
i )

1/2P1/2(|Qi| > snε) � O(n−1/2EQ2
i ). (36)

Hence

s−2
n

n∑

i=1

E
[
Q2

i I{|Qi| > snε}|Fn,i−1

]
� nEQ2

i

nVar(Qi)
· O(n−1/2) = O(n−1/2) → 0.

This and (34) imply, using Brown’s theorem (Hall and Heyde, 1980, p. 58), that
T1 + T2 → N(0, s2

n) in distribution. Substituting h = hX,opt = Chn−1/5 in the
expressions for variances in (32) finishes the proof of (31).

In the discretised case,

Var(A(1, 2)) = 1
n4h3

∫ ⎛

⎝z −
+∞∑

j=−∞

x̃j

(
ISj(x)(z) − IS1j(x)

)

h

⎞

⎠
2

×
(

2K∗′
(z) + zK∗′′

(z)
)2

f 2
X(x)dx dz

+ 2µU,2

n4+2γ h5

(
2R(K∗′

)+R(K∗
1)
)

R(fX)+ 1
n4h3 R(K1)R(fX)+o(n−1/5)

and the rest of the proof remains the same and is omitted here.

Proof of Proposition 1
Proof of (12) The proof is analogous to the proof of Theorem 3 with the function
D3(h) replaced by

D3L(h) = MX(h) −M̄Y,L(h) = 1
n2h

∑

i,j

[
K∗

(
Xi− Xj

h

)
− 1

L

L∑

l=1

K∗
(

Yl
i − Yl

j

h

)]
,

where Yl
i = Xi + Ul

i . We also need to redefine Vij and Wij. The terms K∗((Yi −
Yj)h−1) and K∗

1((Yi −Yj)h−1) in the definition of Vij and Wij are replaced by the
means L−1 ∑L

l=1 K∗((Yl
i −Yl

j )h
−1) and L−1 ∑L

l=1 K∗
1((Yl

i −Yl
j )h

−1), respectively.

In the proof of Lemma 3, the differences Ui − Uj and (Ui − Uj)
2 in the

right-hand side of (28) need to be replaced by the means L−1 ∑L
l=1 Ul

i − Ul
j

and L−1 ∑L
l=1(U

l
i − Ul

j )
2. All the following inequalities remain the same in this

proof.
In the second part of Lemma 7, the terms A(i, j) are dependent on L and

their variance is expanded to

Var(A(1, 2)) =
[

2µU,2

Ln4+2γ h5

(
2R(K∗′

) + R(K∗
1)

)
+ 1

n4h3 R(K1)

]
R(fX) + o(n− 1

5 ),
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which with h=Chn− 1
5 implies that n

7
10

(
D′

2(hX,opt)+D′
3L(hX,opt)

)→N(0, σ 2
L,cv),

in distribution.

Proof of (13) Equation (23) holds for each of the bandwidths ĥl,cv and thus

(
h̄cv,L − ĥX,opt

)
MISE′′

X(h∗) = D′
2(hX,opt) + D′

3L(hX,opt) + o(n−7/10),

which is the same as the analogous expansion for the bandwidth ĤL,cv, hence
(13) holds.
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