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Abstract In this paper a univariate discrete distribution, denoted by GIT, is
proposed as a generalization of the shifted inverse trinomial distribution, and is
formulated as a first-passage time distribution of a modified random walk on the
half-plane with five transition probabilities. In contrast, the inverse trinomial
arises as a random walk on the real line with three transition probabilities. The
probability mass function (pmf) is expressible in terms of the Gauss hypergeo-
metric function and this offers computational advantage due to its recurrence
formula. The descending factorial moment is also obtained. The GIT contains
twenty-two possible distributions in total. Special cases include the binomial,
negative binomial, shifted negative binomial, shifted inverse binomial or, equiv-
alently, lost-games, and shifted inverse trinomial distributions. A subclass GIT3,1
is a particular member of Kemp’s class of convolution of pseudo-binomial vari-
ables and its properties such as reproductivity, formulation, pmf, moments,
index of dispersion, and approximations are studied in detail. Compound or
generalized (stopped sum) distributions provide inflated models. The inflated
GIT3,1 extends Minkova’s inflated-parameter binomial and negative binomial.
A bivariate model which has the GIT as a marginal distribution is also proposed.
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1 Introduction

The inverse trinomial (IT) is a univariate discrete distribution which appears
in different contexts such as (a) an exponential model (Jørgensen et al., 1989)
derived from the Laplace transform of the basis measure µ = δ−1/2+aδ0+δ1/2,
where δi is Dirac mass at i and a > 0, (b) the generalized trinomial coefficients
(Mohanty and Panny 1990) defined by the coefficient of vx in the power series
(αv2 + βv + γ )n, where α, β and γ are constants, (c) trinomial random walks
with the use of the difference equation for the generating function (Shimizu and
Yanagimoto 1991), and (d) the general Lagrangian expansion (Consul 1994).
The shifted IT is the inverse distribution of a three-point distribution in the
sense that the cumulant generating function (cgf) of the shifted IT is the inverse
function of the cgf of the three-point distribution, while the shifted inverse bino-
mial (Yanagimoto 1989) is the inverse of a binomial (two-point) distribution in
this sense. A multivariate extension (Shimizu et al., 1997) of the IT is obtained
by the use of the Lagrangian expansion. We now focus on the generation from
the random walk to get a univariate generalization of the shifted IT.

The random walk formulation of the IT is as follows. A particle on a straight
line starts from the origin and moves with steps +1, 0, −1 according to transition
probabilities p, q, r (p, q, r ≥ 0; p + q + r = 1), respectively until it first reaches
the barrier n (positive integer) at the xth step (Fig. 1). Let X be a random
variable which represents the number of steps x. For p > 0, the distribution of
Y = X − n is the proper IT when p ≥ r and is denoted by IT(n; p, q, r) in this
paper. The distribution of X is called the shifted IT. The probability generating
function (pgf) of the shifted IT is provided by

Gn(t) = E(tX) =
[

1 − qt − √
(1 − qt)2 − 4prt2

2rt

]n

and the probability mass function (pmf) by

fn(x) =
[(x−n)/2]∑

k=0

n
x

(
x

n + k, x − n − 2k, k

)
pn+k qx−n−2k rk (1)

Fig. 1 Random walk for the
shifted IT on the real line
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Fig. 2 Random walk for the
shifted IT on the half-plane

for x = n, n + 1, n + 2, . . . , where [a] in (1) denotes the integer part of the

number a and
(

x
x1, x2, x3

)
= x!/(x1!x2!x3!), which is the trinomial coefficient.

The IT reduces to the inverse binomial or, equivalently, lost-games distribution
(Kemp and Kemp 1969) if q = 0 and to the negative binomial if r = 0.

Figure 2 shows an alternative view of the random walk for the shifted IT
on the half-plane (x ≥ 0). Here a particle starts from the origin and, for non-
negative integer x and integer y (≤ n − 1), the particle moves from (x, y) to
(x + 1, y + 1), (x + 1, y), (x + 1, y − 1) with probabilities p, q, r, respectively
until it first reaches the barrier y = n. Notice that the particle moves from
(x, y) to (x + 1, y + 1) and (x + 1, y − 1) directly with probabilities p and r
without visiting (x + 1, y). When the particle first reaches the barrier, the coor-
dinate x coincides with the number of steps in Fig. 1, and thus the shifted
IT is produced from the random walk pictured in Fig. 2. This readily leads
to a generalization of the shifted IT if probabilities from (x, y) to (x, y + 1)

and (x, y − 1) are added to the transition probabilities for the shifted IT. The
proposed model with five transition probabilities p1, p2, p3, p4, p5 (pi ≥ 0 for
i = 1, 2, . . . , 5;

∑5
i=1 pi = 1) and barrier at y = n (positive integer) is shown in

Fig. 3. The resulting family of distributions is a generalization of the shifted IT
and is denoted by GIT(n; p1, p2, p3, p4, p5) or simply GIT.

Section 2 gives the pgf and pmf of the GIT. The pgf is obtained by solving
the corresponding difference equation with boundary conditions and the pmf is
derived by expanding the pgf. The proof is lengthy and is placed in Appendix A.
An alternative expression of the pmf is given in terms of the Gauss hypergeo-
metric function and this offers computational advantage due to its recurrence
formula. The inverse distribution of the GIT with respect to the cumulant gen-
erating function is studied in Sect. 3 with proof given in Appendix B.

The GIT contains 22 subclasses except one-transition cases. Special cases in-
clude the binomial, negative binomial, shifted negative binomial, shifted inverse
binomial or, equivalently, lost-games, and shifted inverse trinomial distributions.
Section 4 studies GIT3,1(n; p1, p2, p3), a subclass of the GIT family, in detail. (The
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Fig. 3 Random walk for the
GIT

first digit in the subscript indicates the number of transition probabilities, while
the second digit refers to the combination of transition probabilities pi given in
Table 1.) The GIT3,1 is a particular member of Kemp’s class of convolution of
pseudo-binomial variables and it has extremely interesting distributional prop-
erties of reproductivity, formulation, pmf, moments, index of dispersion, and
approximations. Section 5 shows that compound or generalized (stopped sum)
distributions (Johnson et al., 2005, p. 381) provide inflated models. The inflated
GIT3,1 extends Minkova (2002) inflated-parameter binomial and negative bino-
mial. Finally, a bivariate model which has the GIT as a marginal distribution is
proposed in Sect. 6.

2 Probability generating function and probability mass function

The concept of a modified random walk on the half-plane to generate the GIT is
introduced in Sect. 1 (Fig. 3). More precisely, a particle starts from the origin and
moves on the lattice of the half-plane as follows. For non-negative integer x and
integer y, the particle moves from (x, y) to (x, y+1), (x+1, y+1), (x+1, y), (x+
1, y − 1), (x, y − 1) with five transition probabilities p1, p2, p3, p4, p5 (pi ≥ 0 for
i = 1, 2, . . . , 5;

∑5
i=1 pi = 1) respectively. The process ends once the particle

reaches the barrier y = n (positive integer). The GIT(n; p1, p2, p3, p4, p5) is the
distribution of a random variable X which represents the coordinate of the
horizontal axis when the trials end. The pmf fn(x) of X satisfies the difference
equation

fn(x) = p1fn−1(x) + p2fn−1(x − 1) + p3fn(x − 1) + p4fn+1(x − 1) + p5fn+1(x)

with boundary conditions f0(0) = 1, fn(−1) = 0 ( n ≥ 0), f0(x) = 0 (x ≥ 1).
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Table 1 Subclasses of the GIT

The pgf Gn(t) of fn(x) is defined by

Gn(t) =
∞∑

x=0

fn(x)tx, n ≥ 1,

which satisfies the recurrence relation

Gn(t) = p1Gn−1(t) + p2tGn−1(t) + p3tGn(t) + p4tGn+1(t) + p5Gn+1(t)

or

(p4t + p5)Gn+1(t) + (−1 + p3t)Gn(t) + (p1 + p2t)Gn−1(t) = 0, (2)

with boundary condition G0(t) = 1. If p1 + p2 > 0, then the solution of (2) is
provided by

Gn(t) =
[

1 − p3t − √
(1 − p3t)2 − 4(p1 + p2t)(p4t + p5)

2(p4t + p5)

]n

=
[

2(p1 + p2t)

1 − p3t + √
(1 − p3t)2 − 4(p1 + p2t)(p4t + p5)

]n

(3)
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for 0 ≤ t ≤ 1. Its proof is given in Appendix A. Note that

Gn(1) =
{

1, p1 + p2 ≥ p4 + p5,
(p1 + p2)/(p4 + p5), p1 + p2 < p4 + p5,

implying that the condition for a proper distribution is p1 + p2 ≥ p4 + p5 when
(3) is the proper pgf of the GIT. If p1 + p2 < p4 + p5, (3) does not provide a
pgf since

∑∞
x=0 fn(x) = (p1 + p2)/(p4 + p5) < 1. In this case the distribution

is improper. However, cfn(x), where c = (p4 + p5)/(p1 + p2) �= 0, is a proper
distribution, or alternatively (3) with p1 + p2 < p4 + p5 gives a distribution if a
probability 1 − (p1 + p2)/(p4 + p5) is added at x = ∞, which is the probability
that the particle never reaches the barrier.

The pmf of the GIT is given by

fn(x) =
x∑

k=0

∞∑
l=0

m∑
i=0

n
n + x − i + k + 2l

(
n + x − i + k + 2l

n − i + k + l, i, x − i − k, k, l

)

× pn−i+k+l
1 pi

2 px−i−k
3 pk

4 pl
5, (4)

which is obtained from the expansion of (3) about t, where m = min(n + k +
l, x − k) and

(
x

x1, x2, x3, x4, x5

)
= x!/(x1!x2!x3!x4!x5!), which is the multinomial

coefficient.
An alternative expression of the pmf, which may be more tractable than (4),

is obtained as follows. Since it is shown in Appendix A that the pgf of the GIT
is written as

Gn(t) =
∞∑

k=0

n
n + k

(
n + 2k − 1

k

) (
p1 + p2t
1 − p3t

)n+k (
p4t + p5

1 − p3t

)k

,

the pmf is given by

fn(x) =
∞∑

k=0

n
n + k

(
n + 2k − 1

k

) x∑
i=0

pX1(i)pX2(x − i) (5)

with

pX1(i) =
(

n + k + i − 1
i

)
pn+k

1 pi
3 2F1

(
−n − k, −i; −n − k − i + 1; − p2

p1p3

)

and

pX2(i) =
(

k + i − 1
i

)
pk

5pi
3 2F1

(
−k, −i; −k − i + 1; − p4

p5p3

)
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from the expansion of H1(t) = ((p1 + p2t)/(1 − p3t))n+k and H2(t) = ((p4t + p5)

/ (1 − p3t))k, where 2F1 denotes the Gauss hypergeometric function. Equation
(5) offers computational advantage in the following way. Compared to (4), this
expression involves only one infinite sum and one finite sum, and only one
binomial coefficient. The terms pX1(i) and pX2(i) are also easily computed by
three-term recurrence formulae (see Sect. 4.2d).

The rth descending factorial moment of the GIT is obtained from

µ′[r] = ∂rGn(t)
∂tr

∣∣∣∣
t=1

=
∞∑

k=0

n
n + k

(
n + 2k − 1

k

)
×

r∑
�=0

{
∂�H1(t)

∂t�

∣∣∣∣
t=1

}

×
{

∂r−�H2(t)
∂tr−�

∣∣∣∣
t=1

}
.

Since

∂�H1(t)
∂t�

=
�∑

i=0

(
�

i

)
(n + k)(n + k − 1) · · · (n + k − i + 1)pi

2(p1 + p2t)n+k−i

×(−n − k)(−n − k − 1) · · · (−n − k − (� − i) + 1)(−p3)
�−i

×(1 − p3t)−n−k−�+i,

we have

∂�H1(t)
∂t�

∣∣∣∣
t=1

= (n + k)

�∑
i=0

(
�

i

)
(n + k + � − i − 1)!

(n + k − i)! pi
2p�−i

3

(
p1 + p2

1 − p3

)n+k−i

×(1 − p3)
−�

and similarly

∂r−�H2(t)
∂tr−�

∣∣∣∣
t=1

= k
r−�∑
j=0

(
r − �

j

)
(k + r − � − j − 1)!

(k − j)! pj
4pr−�−j

3

(
p4 + p5

1 − p3

)k−j

×(1 − p3)
�−r.

Thus, the rth descending factorial moment is finally given by

µ′[r] =
∞∑

k=0

n
n + k

(
n + 2k − 1

k

)
×

r∑
�=0

µ1(�)µ2(�)

(
p3

1 − p3

)r

,
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Fig. 4 Random walk for the
GIT with stay probability

where

µ1(�) = (n + k)

�∑
i=0

(
�

i

)
(n + k + � − i − 1)!

(n + k − i)!
(

p2

p3

)i (p1 + p2

1 − p3

)n+k−i

,

µ2(�) = k
r−�∑
j=0

(
r − �

j

)
(k + r − � − j − 1)!

(k − j)!
(

p4

p3

)j (p4 + p5

1 − p3

)k−j

.

Note that the GIT of Fig. 3 is generalized, as Fig. 4, by adding a stay prob-
ability p6 at (x, y), but this model does not produce an extended family of
distributions different from the GIT. The reason is as follows. Apparently the
new pmf fn(x) and pgf Gn(t) satisfy the difference equation

fn(x) = p1fn−1(x) + p2fn−1(x − 1) + p3fn(x − 1) + p4fn+1(x − 1) + p5fn+1(x)

+ p6fn(x)

and recurrence relation

(1 − p6)Gn(t) = p1Gn−1(t) + p2tGn−1(t) + p3tGn(t) + p4tGn+1(t) + p5Gn+1(t)

respectively, from which division of both side by 1 − p6 leads to

Gn(t) = p′
1Gn−1(t) + p′

2tGn−1(t) + p′
3tGn(t) + p′

4tGn+1(t) + p′
5Gn+1(t),

where p′
i = pi/(1 − p6) for i = 1, 2, . . . , 5. This recurrence relation is of the

form (2). The following problem could arise since the GIT model without a stay
probability is indistinguishable from (not identifiable as) the GIT model with a
stay probability. Suppose we consider a GIT model with a stay probability p6.
In the context of parameter estimation, it is not possible to estimate p6 from
the estimates for p′

i, i = 1, 2, . . . , 5. For identifiability, a stay probability should
not be considered in the random walk model for the GIT. It is observed that
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Fig. 5 Random walk for the
inverse family of the GIT

the stay probability q in the random walk on the real line for the IT has become
the transition probability p3 along the x-axis in the random walk model on the
half-plane (Fig. 2). Thus, the meaning of the stay probabilities is quite different
in this sense between IT and GIT.

3 Inverse family of the GIT

When X is distributed as the GIT and its cgf is C(t) = log E(e−tX), the inverse
distribution of the GIT is defined by the distribution whose cgf is given by the
inverse function C−1(t) of C(t). Since the cgf of GIT(n; p1, p2, p3, p4, p5) is

C(t) = −n log

[
1−p3e−t + √

(1−p3e−t)2−4(p1+p2e−t)(p4e−t+p5)

2(p1+p2e−t)

]
, (6)

its inverse function is

C−1(t) = log

[
p2e−2t/n + p3e−t/n + p4

−p1e−2t/n + e−t/n − p5

]
. (7)

Consider the following modified random walk. A particle starts from the origin
and, for integers x and y (0 ≤ y ≤ m − 1), moves from (x, y) to (x + 1, y), (x +
1, y + 1), (x, y + 1), (x − 1, y + 1), (x − 1, y) with five transition probabilities
p1, p2, p3, p4, p5 (pi ≥ 0 for i = 1, 2, . . . , 5;

∑5
i=1 pi = 1), respectively until it

first reaches the barrier y = m (Fig. 5). That is, the transition in Fig. 5 is the
reflection of that in Fig. 3 with respect to the line y = x. (Alternatively, the
inverse family of the GIT may be obtained from the random walk model for
the GIT in Fig. 3 by setting the absorbing barrier at x = m instead of y = n and
then interchanging x and y with reflection about the new x-axis.) Let a random
variable Z represent the coordinate x of the horizontal axis when the trials end,
then a random variable Z/n in the case m = 1 has a distribution whose cgf is
C−1(t) in (7). See Appendix B for details. In other words, the GIT is the inverse
of the distribution whose cgf is (7).
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4 Subclasses of the GIT

4.1 Some examples

There exist twenty-two subclasses of the GIT if one or some of p1, p2, p3, p4, p5
are substituted by zero except for one-transition cases where p1 = 1, p2 =
p3 = p4 = p5 = 0 and p2 = 1, p1 = p3 = p4 = p5 = 0. Table 1 summarizes
the possibility of the distributions. Some known classical distributions which
belong to the family are shown below with pgf’s and pmf’s.

(a) GIT2,1(n; p1, p2), which is the binomial also denoted by B(n, p2).

Gn(t) = (p1 + p2t)n, fn(x) =
(

n
x

)
px

2 pn−x
1

for x = 0, 1, . . . , n.
(b) GIT2,2(n; p1, p3), which is the negative binomial also denoted by NB(n, p3).

Gn(t) =
(

p1

1 − p3t

)n

, fn(x) =
(

n + x − 1
x

)
px

3 pn
1

for x = 0, 1, 2, . . . .
(c) GIT2,5(n; p2, p3), which is the shifted negative binomial.

Gn(t) =
(

p2t
1 − p3t

)n

, fn(x) =
(

x − 1
n − 1

)
px−n

3 pn
2

for x = n, n + 1, n + 2, . . . .
(d) GIT2,6(n; p2, p4), which is the shifted inverse binomial or, equivalently,

lost-games distribution.

Gn(t) =
[

1 − √
1 − 4p2p4t2

2p4t

]n

, fn(x) = n
x

(
x

(x − n)/2

)
p(n+x)/2

2 p(x−n)/2
4

for x = n, n + 2, n + 4, . . . .

(e) GIT3,4(n; p2, p3, p4), which is the shifted inverse trinomial.

Gn(t) =
[

1 − p3t − √
(1 − p3t)2 − 4p2p4t2

2p4t

]n

,

fn(x) =
[(x−n)/2]∑

k=0

n
x

(
x

n + k, x − n − 2k, k

)
pn+k

2 px−n−2k
3 pk

4

for x = n, n + 1, n + 2, . . . .
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4.2 Properties of GIT3,1(n; p1, p2, p3)

The most interesting subclass may be GIT3,1, which is the distribution such that
the transition is invariant under the inversion (with indices exchanged). It is a
particular member of Kemp’s class of convolution of pseudo-binomial variables
(Johnson et al., 1992, p. 147 and references therein; see also Johnson et al., 2005,
pp. 140–144) with pgf

G(t) =
(

1 − Q1t
1 − Q1

)U1
(

1 − Q2t
1 − Q2

)U2

and generalizes the binomial, negative binomial and shifted negative binomial.
Actually the pgf of GIT3,1(n; p1, p2, p3) is written as

Gn(t) =
(

p1 + p2t
1 − p3t

)n

=
(

p1 + p2t
p1 + p2

)n (
1 − p3

1 − p3t

)n

, 1 − p3 = p1 + p2 (8)

and reduces to the binomial if p3 = 0, negative binomial if p2 = 0 and shifted
negaitve binomial (shifted n steps to the right) if p1 = 0. Some properties of
GIT3,1(n; p1, p2, p3) are summarized below. Compound distributions are studied
in Sect. 5. Here X indicates a random variable having GIT3,1(n; p1, p2, p3).

(a) Reproductive property. If X1 and X2 are independent random variables
distributed as GIT3,1(n; p1, p2, p3) and GIT3,1(m; p1, p2, p3) respectively,
then the sum X1 + X2 is distributed as GIT3,1(n + m; p1, p2, p3).

(b) The random variable X is expressible as the sum of two independent
random variables X1 and X2, where X1 has the binomial B(n, p2/(p1 +p2))

and X2 the negative binomial NB(n, p3).
(c) The pmf of GIT3,1(n; p1, p2, p3) is given by

fn(x) =
min(n,x)∑

i=0

n
n + x − i

(
n + x − i

n − i, i, x − i

)
pn−i

1 pi
2 px−i

3 (9)

for x = 0, 1, 2, . . . . Equation (9) is also expressed as

fn(x) =
(

n + x − 1
x

)
pn

1px
3 2F1

(
−n, −x; −n − x + 1; − p2

p1p3

)
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in terms of the Gauss hypergeometric function. This is the pmf of the
negative binomial multiplied by 2F1. An alternative expression is

fn(x) =
x∑

j=max(0,x−n)

n
n + j

(
n + j

n − x + j, x − j, j

)
pn−x+j

1 px−j
2 pj

3

=
(

n
x

)
pn−x

1 px
2 2F1

(
n, −x; n − x + 1; −p1p3

p2

)
if n ≥ x

=
(

x − 1
n − 1

)
pn

2px−n
3 2F1

(
x, −n; x − n + 1; −p1p3

p2

)
if x > n,

which is the pmf of the binomial multiplied by 2F1.
(d) The pmf fn(x) of X satisfies the recurrence relation

fn(x) =
(

a + b
x

)
fn(x − 1) + c

(
1 − 2

x

)
fn(x − 2)

for x ≥ 2 with initial conditions fn(0) = pn
1, fn(1) = npn−1

1 (p1p3 + p2),
which is an example of Sundt (1992) recursion, where a = (p1p3 − p2)/p1,
b = (n(p1p3 + p2) − (p1p3 − p2))/p1, c = p2p3/p1 with p1 > 0.

(e) The rth descending factorial moment of X is

µ′[r] = E(X(X − 1) . . . (X − r + 1))= n
(p1 + p2)r

r∑
i=0

(
r
i

)
(n + r − i − 1)!

(n − i)!
×pi

2pr−i
3

for r ≥ 1. The descending factorial moment has a recursion formula.
Beginning with the factorial moment generating function

G(t + 1) =
(

p1 + p2 + p2t
1 − p3 − p3t

)n

=
∞∑

r=0

µ′[r]
r! tr,

we have

G′(t + 1) =
∞∑

r=1

µ′[r]
(r − 1)! tr−1 = nG(t + 1)

(p1 + p2)(p2 + p3)

(1 − p3 − p3t)(p1 + p2 + p2t)
.

From the relation

{
(p1 + p2)

2 + (p1 + p2)(p2 − p3)t − p2p3t2
}

G′(t + 1) = n(p1+p2)(p2+p3)

×G(t + 1),



First–passage time random walk distribution 13

we have the recursion formula for the descending factorial moment

(p1 + p2)
2

r! µ′
[r+1] + (p1 + p2)(p2 − p3)

(r − 1)! µ′[r] − p2p3

(r − 2)!µ
′
[r−1]

= n(p1 + p2)(p2 + p3)

r! µ′[r],

which leads to

(p1 + p2)
2µ′

[r+1] + {r(p1 + p2)(p2 − p3) − n(p1 + p2)(p2 + p3)} µ′[r]
−r(r − 1)p2p3µ

′
[r−1] = 0

with initial conditions

µ′[0] = 1, µ′
[1] = n

p2 + p3

p1 + p2
.

(f) The rth moment, µ′
r = E(Xr), of X about zero satisfies the recurrence

relation

µ′
r =

r−1∑
j=0

(
r − 1

j

)
{(a + 2r−j−1c)µ′

j+1 + (a + b)µ′
j}

for r ≥ 1 with initial condition µ′
0 = 1 and the understanding that 0! = 1,

where a, b and c are given in (d). This is proved by using the recurrence
relation of the pmf in (d) as follows

µ′
r =

∞∑
x=1

xrf (x)

= f (1) +
∞∑

x=0

(x + 2)rf (x + 2)

=
(

a + b
1

)
f (0) +

∞∑
x=0

(x + 2)r
(

a + b
x + 2

)
f (x + 1)

+
∞∑

x=0

(x + 2)rc
(

1 − 2
x + 2

)
f (x)

=
∞∑

x=0

(x + 1)r
(

a + b
x + 1

)
f (x) +

∞∑
x=0

(x + 2)rc
(

1 − 2
x + 2

)
f (x)

=
∞∑

x=0

(x + 1)r
(

ax + (a + b)

x + 1

)
f (x) +

∞∑
x=0

(x + 2)rc
(

x
x + 2

)
f (x)
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=
r−1∑
j=0

∞∑
x=0

(
r − 1

j

)
{axj+1 + (a + b)xj}f (x) +

r−1∑
j=0

∞∑
x=0

(
r − 1

j

)

×2r−1−jcxj+1f (x).

(g) The mean and variance of X are obtainable from (e) and (f). They are also
obtained by using (b). Actually

E(X) = E(X1 + X2) = n
p2

p1 + p2
+ n

p3

1 − p3
= n

p2 + p3

p1 + p2
,

V(X) = V(X1 + X2) = n
(

p1

p1 + p2

)(
p2

p1 + p2

)
+ n

p3

(1 − p3)2

= n
p1p2 + p3

(p1 + p2)2 ,

from which the index of dispersion (ID) is

ID = V(X)

E(X)
= p1p2 + p3

(p1 + p2)(p2 + p3)

{
>1, p3 > p2,
<1, p3 < p2.

If p2 = p3, then ID = 1. Note that GIT3,1(n; 1−2p, p, p) with 0 < p < 1/2 is
not a Poisson distribution, but its ID is unity. This gives a quite interesting
example because it is known that among the power series distributions,
the Poisson distribution is characterized by ID = 1 (Johnson et al., 2005,
p. 179).

(h) Normal approximation. The distribution of (X − E(X))/
√

V(X) goes to a
standard normal distribution as n tends to infinity.

(i) Poisson approximation. The distribution GIT3,1(n; p1, p2, p3) goes to a
Poisson distribution with parameter λ2 + λ3 as n tends to infinity pro-
vided np2 = λ2 and np3 = λ3.

5 Compound distributions

5.1 Inflated model

This section studies the distribution of the random variable S = X1 + · · · + XN
with the understanding that S = 0 when N = 0, where X1, X2, . . . are inde-
pendent and identically distributed (iid) as GIT3,1(1; q1, q2, q3), N as GIT
(n; p1, p2, p3, p4, p5), and N is independent of X1, X2, . . .. Let GX(t) and GN(t)
denote the pgf’s of Xi (i = 1, 2, . . .) and N respectively. Then, from (8) and (3),
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the pgf GS(t) of S is provided by

GS(t) = GN (GX(t))

=
[

1 − α3t + √
(1 − α3t)2 − 4(α1 + α2t)(α4t + α5)

2(α1 + α2t)

]−n

, (10)

which is the pgf of GIT(n; α1, α2, α3, α4, α5) for 0 ≤ t ≤ 1, where α1 = (p1 +
p2q1)/(1 − p3q1), α2 = (−p1q3 + p2q2)/(1 − p3q1), α3 = (p3q2 + q3)/(1 − p3q1),
α4 = (p4q2 − p5q3)/(1 − p3q1), α5 = (p4q1 + p5)/(1 − p3q1). Note that the
range of parameters is extended to α1 +α2 +α3 +α4 +α5 = 1, −1 ≤ α2, α4 ≤ 1,
0 ≤ α1, α3, α5 ≤ 1, α1α3+α2 ≥ 0, α4+α3α5 ≥ 0, α1+α2 > 0 and α1+α2 ≥ α4+α5,
whereas pi ≥ 0 (i = 1, 2, . . . , 5),

∑5
i=1 pi = 1, p1 + p2 > 0, p1 + p2 ≥ p4 + p5,

and qj ≥ 0 (j = 1, 2, 3),
∑3

j=1 qj = 1. Thus (10) defines an inflated model of the
GIT. As a particular case, if X1, X2, . . . are iid as GIT3,1(1; q1, q2, q3) and N as
GIT3,1(n; p1, p2, p3), and N is independent of X1, X2, . . ., then S = X1 +· · ·+XN
has an inflated GIT3,1(n; γ1, γ2, γ3), where γ1 = (p1 + p2q1)/(1 − p3q1), γ2 =
(−p1q3 + p2q2)/(1 − p3q1), γ3 = (p3q2 + q3)/(1 − p3q1), γ1 + γ2 + γ3 = 1,
−1 ≤ γ2 ≤ 1, 0 ≤ γ1, γ3 ≤ 1.

5.2 A comment

Minkova (2002) studied the family of inflated-parameter generalized power
series distributions or generalized power series distributions generalized by
the generalizing shifted geometric distribution. If X has a shifted geomet-
ric distribution and N a Poisson, binomial, negative binomial, log-series as
a member of generalized power series distributions, then the distribution of
S = X1 +· · ·+XN is called the inflated-parameter Poisson, binomial (IBi), neg-
ative binomial (INB), log-series respectively. The inflated GIT3,1(n; γ1, γ2, γ3)

in Sect. 5.1 extends the IBi and INB because GIT3,1(1; q1, q2, q3) includes the
shifted geometric distribution GIT2,5(1; q2, q3) and GIT3,1(n; p1, p2, p3) does the
binomial GIT2,1(n; p1, p2) and negative binomial GIT2,2(n; p1, p3). The inflated
GIT(n; α1, α2, α3, α4, α5) in Sect. 5.1 extends the inflated GIT3,1(n; γ1, γ2, γ3).

6 A bivariate model

Consider the random walk model for the GIT (Fig. 3). Let X denote the coor-
dinate of the horizontal axis (i.e. X ∼ GIT) and Y the number of transitions.
We can consider the bivariate distribution of (X, Y). The joint pmf satisfies the
difference equation

fn(x, y) = p1fn−1(x, y − 1) + p2fn−1(x − 1, y − 1) + p3fn(x − 1, y − 1)

+ p4fn+1(x − 1, y − 1) + p5fn+1(x, y − 1).
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The joint pgf defined by

Gn(t, s) =
∞∑

x=0

∞∑
y=0

txsyfn(x, y)

satisfies the difference equation

Gn(t, s) = p1sGn−1(t, s) + p2tsGn−1(t, s) + p3tsGn(t, s) + p4tsGn+1(t, s)

+p5sGn+1(t, s),

which leads to

(p4ts + p5s)Gn+1(t, s) + (−1 + p3ts)Gn(t, s) + (p1s + p2ts)Gn−1(t, s) = 0.

The solution of the form Gn(t, s) = {λ(t, s)}n is given by

Gn(t, s) =
[

1 − p3ts − √
(1 − p3ts)2 − 4(p1s + p2ts)(p4ts + p5s)

2(p4ts + p5s)

]n

.

The marginal pgf’s are: Gn(t, 1) is the pgf of the GIT and

Gn(1, s) =
[

1 − p3s − √
(1 − p3s)2 − 4(p1 + p2)(p4 + p5)s2

2(p4 + p5)s

]n

is the pgf of the shifted IT(n; p1 + p2, p3, p4 + p5). The joint pmf of (X, Y) may
have an intractable form and is beyond the scope of the present paper.
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Appendix A: The probability mass function of the GIT

The pmf of the GIT is found from the difference equation given by (2)

(p4t + p5)Gn+1(t) + (−1 + p3t)Gn(t) + (p1 + p2t)Gn−1(t) = 0

with boundary condition G0(t) = 1. We look for particular solutions Gn(t) of the
form Gn(t) = {λ(t)}n. Substitution of this expression into (2) gives the quadratic
equation

(p4t + p5)λ
2(t) + (−1 + p3t)λ(t) + p1 + p2t = 0, (11)
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which has the two roots

λ1(t) = 1 − p3t − √
(1 − p3t)2 − 4(p4t + p5)(p1 + p2t)

2(p4t + p5)
,

λ2(t) = 1 − p3t + √
(1 − p3t)2 − 4(p4t + p5)(p1 + p2t)

2(p4t + p5)
.

The range of t for which (1 − p3t)2 − 4(p4t + p5)(p1 + p2t) ≥ 0 is 0 ≤ t ≤
(b − √

b2 − ac)/a, with a = p2
3 − 4p2p4, b = p2 + 2p2p5 + 2p1p4, c = 1 − 4p1p5

and (b − √
b2 − ac)/a > 1. Since 0 < λ1(t) < 1 and λ2(t) > 1 for 0 < t < 1,

{λ2(t)}n is inappropriate as a solution and Gn(t) = B(t){λ1(t)}n is a solution to
(11). From the boundary condition G0(t) = 1, we obtain B(t) = 1. Hence the
solution is

Gn(t) = {λ1(t)}n. (12)

The pmf is provided by expanding (12) about t. From the formula
(Abramowitz and Stegun 1972 [15.1.13])

2F1

(
a,

1
2

+ a; 1 + 2a; z
)

= 22a{1 + (1 − z)1/2}−2a

for |z| < 1, where 2F1 stands for the Gauss hypergeometric function, (12) is
transformed into

Gn(t) =
[

1 − p3t + √
(1 − p3t)2 − 4(p4t + p5)(p1 + p2t)

2(p1 + p2t)

]−n

=
(

1 − p3t
2(p1 + p2t)

)−n
[

1 +
√

1 − 4(p1 + p2t)(p4t + p5)

(1 − p3t)2

]−n

=
(

1 − p3t
p1 + p2t

)−n

2F1

(
n
2

,
n + 1

2
; n + 1;

4(p1 + p2t)(p4t + p5)

(1 − p3t)2

)

=
(

1 − p3t
p1 + p2t

)−n ∞∑
k=0

(n/2)k ((n + 1)/2)k

(n + 1)k k!
(

4(p4t + p5)(p1 + p2t)
(1 − p3t)2

)k

,

where (x)i = x(x + 1) . . . (x + i − 1) = �(x + i)/�(x). From the duplication
formula for the gamma function

�(2z) = 1
(2π)1/2

22z−1/2�(z)�

(
z + 1

2

)
,
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we obtain

Gn(t) =
∞∑

k=0

n
n + k

(
n + 2k − 1

k

)
(p1 + p2t)n+k(p4 + p5)

k
(

1
1 − p3t

)n+2k

=
∞∑
j

∞∑
k

k∑
l

n+k∑
i

n
n + 2k + j

(
n + 2k + j

n + k − i, i, j, k − l, l

)

× pn+k−i
1 pi

2pj
3pk−l

4 pl
5ti+j+k−l,

which leads to

∞∑
x

∞∑
k′

∞∑
l

n+k′+l∑
i

n
n + 2k′ + 2l + j

(
n + 2k′ + 2l + j

n + k′ + l − i, i, j, k′, l

)

× pn+k′+l−i
1 pi

2pj
3pk′

4 pl
5ti+j+k′

after the replacement k − l = k′. The coefficient of tx, where x = i + j + k′, in
Gn(t) is (4), the pmf of the GIT.

Appendix B: The inverse distribution of the GIT

We consider the distribution derived from the modified random walk defined
in Sect. 3 (Fig. 5). The difference equation of the pmf is

hm(x) = p1hm(x − 1) + p2hm−1(x − 1) + p3hm−1(x) + p4hm−1(x + 1)

+p5hm(x + 1)

with initial condition h0(x) = 1 if x = 0, 0 if x �= 0, and the recurrence relation
of the corresponding pgf is

Hm(t) = p1tHm(t) + p2tHm−1(t) + p3Hm−1(t) + p4t−1Hm−1(t) + p5t−1Hm(t)

with initial condition H0(t) = 1. From this we obtain the pgf

Hm(t) =
(

p2t2 + p3t + p4

−p1t2 + t − p5

)m

.

On the other hand to get the inverse of (6), we set log E(e−tX) = s. Then

1 − p3e−t + √
(1 − p3e−t)2 − 4(p1 + p2e−t)(p4e−t + p5)

2(p1 + p2e−t)
= e−s/n.
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If we set e−t = T and e−s/n = S, then we have

0 = S2(p2
1 + 2p1p2T + p2

2T2) + S(p2p3T2 + p1p3T − p2T − p1)

+(p2p4T2 + p1p4T + p2p5T + p1p5)

= p2
2

(
S2 + p3

p2
S + p4

p2

)
T2 + p1p2

{
2S2 +

(
p3

p2
− 1

p1

)
S +

(
p4

p2
+ p5

p1

)}
T

+p2
1

{
S2 − 1

p1
S + p5

p1

}

= p2
2(S

2 + aS + c)T2 + p1p2

{
2S2 + (a − b)S + (c + d)

}
T + p2

1(S
2 − bS + d)

≡ AT2 + BT + C, (13)

where a = p3/p2, b = 1/p1, c = p4/p2, d = p5/p1, A = p2
2(S

2 + aS + c), B =
p1p2(2S2 + (a − b)S + (c + d)), C = p2

1(S
2 − bS + d). The solution of (13) is

T = −B ± √
B2 − 4AC

2A

with B2 − 4AC = p2
1p2

2 {(a + b)S + (c − d)}2 ≥ 0. We see that

T = −p1p2{2S2 + (a − b)S + (c + d)} ± p1p2{(a + b)S + (c − d)}
2(p2

2S2 + p2p3S + p2p4)

= −p1S2 + S − p5

p2S2 + p3S + p4
,

−p1p2S2 − p1p3S − p1p4

p2
2S2 + p2p3S + p2p4

and the second solution is inappropriate since it is negative. Thus we obtain (7).
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