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Abstract In 1984 Scarsini introduced a set of axioms for measures of concordance
of ordered pairs of continuous random variables. We exhibit an extension of these
axioms to ordered n-tuples of continuous random variables, n ≥ 2. We derive
simple properties of such measures, give examples, and discuss the relation of the
extended axioms to multivariate measures of concordance previously discussed in
the literature.
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1 Introduction

If we are given an n-tuple of random variables, we think of their “concordance” as
being their tendency to all be large or to all be small simultaneously. The idea of
comparing the concordances of different n-tuples of random variables is consid-
ered in, for example, Kimeldorf and Sampson (1987, 1989) and Joe (1990, 1997).
A second way to investigate concordance is to attach to an n-tuple (X1, . . . , Xn)
of random variables a real number κX1,...,Xn , such as Kendall’s tau or Spearman’s
rho, that “measures” their concordance.

A set of axioms was given in Scarsini (1984) for measures of concordance
κX1,X2 for ordered pairs of random variables. Scarsini’s measures of concordance
are invariant under a.s. increasing transformations of the random variables, hence
they can be treated as operating on two-copulas. [One is also referred to Nelsen
(1999) for a nice exposition of these ideas].

How might one generalize Scarsini’s axioms to more than two random vari-
ables? This is the question we consider.
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Here are some points connected to this question: (1) One way to try to generalize
a measure of concordance to an ordered n-tuple (X1, . . . , Xn) of random variables
is to compute bivariate measures of concordance for all ordered pairs (Xi , X j ),
with i < j , and then average the results; see Hays (1960) and Joe (1997). (2) In
another approach, Joe (1990) and Nelsen (2002) constructed examples of mea-
sures of concordance of a different character which in some sense consider all
the random variables of (X1, . . . , Xn) simultaneously. (3) In our investigations of
Scarsini’s axioms in Edwards et al. (2004, 2005), a fundamental role is played by
symmetries of the unit square. Thus it seemed reasonable to expect symmetries of
the unit n-dimensional cube, I n , where I = [0, 1], to play an important role in a
higher-dimensional theory.

The generalized axioms given here were most strongly influenced by the exam-
ples of Nelsen (2002) and by our emphasis on symmetries of I n . The greatest
difference from Scarsini’s formulation lies in the last two axioms. One of these, the
Reflection Symmetry Property, says, in effect, that if one runs through all possible
variations of orientation of the components of a random vector, then the average
measure of concordance is zero. The other one, the Transposition Property, pro-
vides a link between measures of concordance for n random variables and those
for n − 1.

We state our axioms now in terms of random variables and later in terms of
copulas.

By a measure of concordance κ we mean a function that attaches to every
n-tuple of continuous random variables (X1, . . . , Xn) defined on a common prob-
ability space, where n ≥ 2, a real number κ(X1, . . . , Xn) satisfying the following:

A1. (Normalization) κ(X1, . . . , Xn) = 1 if each Xi is a.s. an increasing func-
tion of every other X j , andκ(X1, . . . , Xn) = 0 if X1, . . . , Xn are independent.

A2. (Monotonicity) If X1, . . . , Xn is less concordant than Y1, . . . , Yn in the
sense of ≺C in Joe (1990), then κ(X1, . . . , Xn) ≤ κ(Y1, . . . , Yn).

A3. (Continuity) If Fk is the joint distribution function of the random vec-
tor (Xk1, . . . , Xkn) and F is the distribution function for (X1, . . . , Xn) and
Fk→F , then κ(Xk1, . . . , Xkn) → κ(X1, . . . , Xn).

A4. (Permutation Invariance) If (i1, . . . , in) is a permutation of (1, . . . , n),
then κ(Xi1, . . . , Xin ) = κ(X1, . . . , Xn).

A5. (Duality) κ(−X1, . . . ,−Xn) = κ(X1, . . . , Xn).
A6. (Reflection Symmetry Property; RSP)

∑
ε1,...,εn=±1κ(ε1 X1, . . . , εn Xn) =

0 where it is to be understood that the sum is over the 2n vectors of the form
(ε1 X1, . . . , εn Xn) for which each εi = 1 or −1.

A7. (Transition Property; TP) There exists a sequence of numbers {rn}, where
n ≥ 2, such that for every n-tuple of continuous random variables (X1,. . . ,Xn),
we have

rn−1κ(X2, . . . , Xn) = κ(X1, X2, . . . , Xn)+ κ(−X1, X2, . . . , Xn).

It can be shown as in the proof of Theorem 1 of Scarsini (1984) that the mea-
sure of concordance described by these axioms is invariant under a.s. increasing
transformations of the random variables. Thus the axioms can be stated in terms
of copulas and will later be reformulated that way.

A limitation of the present paper is that we concern ourselves only with popu-
lation versions of measures of concordance. We do not consider sample versions
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of measures of concordance, but we shall make a further comment on this in the
last section.

In what follows, we develop the language of copulas and symmetries and moti-
vate our axioms. We give examples of measures of concordance and derive some
of their simple properties. Two of our arguments were greatly improved by sugges-
tions of a referee. Finally we consider examples of higher dimensional measures
of concordance in the literature and the extent to which they do or do not satisfy
our axioms. We look at examples from Nelsen (2002), Joe (1990), Úbeda Flores
(2005), and Dolati and Úbeda Flores (2004).

A debt of gratitude for encouragement, suggestions, and discussions regarding
the ideas of this paper is owed to B. Schweizer, A. Dolati, H. Joe, R. Nelsen, and
M. Úbeda Flores and to our colleagues P. Mikusiński, H. Edwards, and M. Khosravi
at the University of Central Florida. The paper has also been greatly improved by
many thoughtful suggestions on the part of the referees.

2 Basic tools

2.1 Copulas

Take X to be the random vector (X1, . . . , Xn)where each Xi is a continuous random
variable. To every such X we associate a unique n-copula C : I n → I , where I =
[0, 1], defined by the equation F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) where F
is the joint distribution function of (X1, . . . , Xn), each Fi is the one-dimensional
distribution function of Xi , and xi ∈ R.

We can, if we wish, always take the Xi ’s to be uniformly distributed over I .
To each n-copula C we may associate a probability measure µC satisfying

µC (A × I n−1) = µC (I × A × I n−2) = · · · = µC (I n−1 × A) = λ(A) where A
is a Borel set of I and λ is one-dimensional Lebesgue measure. The connection is
given by C(x1, . . . , xn) = µC ([0, x1] × · · · × [0, xn]) where the last quantity is
also interpreted as the probability P(X < x) = P(X1 < x1, . . . , Xn < xn), each
Xi being considered as uniformly distributed over I and x = (x1, . . . , xn) ∈ I n .

We define the survival function C of C by

C(x1, . . . , xn) = P(X > x) = P(X1 > x1, . . . , Xn > xn).

C is not in general a copula.
Two important standard copulas are

Mn(x1, . . . , xn) = min{x1, . . . , xn} and �n(x1, . . . , xn) = x1x2 . . . xn .

Mn is known as the Fréchet–Höffding upper bound copula because we have
C ≤ Mn for every C ∈ Cop(n). The mass (probability) of Mn is distributed uni-
formly along the line segment x1 = · · · = xn that runs from (0, . . . , 0) to (1, . . . , 1)
in I n . Mn is the n-copula corresponding to each Xi of X being an a.s. increasing
function of every other X j ; this can be thought of as a state of “maximal con-
cordance.” �n is the independence copula because the associated X1, . . . , Xn are
independent, a state of total lack of concordance. Its mass is uniformly distributed
over I n . If the choice of n seems clear, we feel free to write M for Mn and� for�n .
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Another important function on I n is W n(x1, . . . , xn) = max{x1 + · · · + xn −
n + 1, 0}. This has the property that W n ≤ C for every n-copula C , W 2 is a
two-copula, and W n fails to be a copula for n ≥ 3.

A useful “trick” that we shall appeal to is that if X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) are continuous, independent random vectors with n-copulas A
and B respectively, then P(X1 < Y1, . . . , Xn < Yn) = ∫

I n A dB.
We denote the set of n-copulas as Cop(n). More detailed discussions of copulas

and their properties can be found in Schweizer and Sklar (1983) and Nelsen (1999).

2.2 Symmetries of the unit n-cube

By a symmetry of I n we understand a one-to-one, onto map φ : I n → I n of the
form φ(x1, . . . , xn) = (u1, . . . , un) where for each i we have ui = xki or 1 − xki

and where (k1, . . . , kn) is a permutation of (1, . . . , n). By S(I n)we mean the group
of such symmetries under the operation of composition.

We say that φ is a permutation if for each i we have ui = xki and is a reflection
if for each i we have ui = xi or 1−xi . The sets of permutations and reflections con-
stitute subgroups of S(I n) that we label Pn and Rn , respectively. If θ : I n → I n is
the permutation θ(x1, . . . , xn) = (xk1, . . . , xkn ), then it is uniquely associated with
the permutation (1, . . . , n) �→ (k1, . . . , kn) of {1, 2, . . . , n}, and we use the sym-
bol θ for this second permutation as well. Thus θ(x1, . . . , xn) = (xθ(1), . . . , xθ(n)).
We define the elementary reflections σ1, σ2, . . . , σn of I n by

σi (x1, . . . , xn) = (u1, . . . , un) where u j =
{

1 − x j i f j = i
x j otherwise.

By σ n we mean the reflection σ1σ2 · · · σn; that is, σ n(x1, . . . , xn) =
(1 − x1, . . . , 1 − xn). If the choice of n is clear, we shall write σ for σ n .

Rn is an abelian group and every element of Rn is its own inverse. This is not
true of either Pn or S(I n). Using the fact that for every permutation θ we have
σiθ = θσθ(i), it is easily shown that every symmetry ζ of I n has a unique repre-
sentation of the form ζ = σi1 · · · σik θ (or, equivalently, ζ = θ ′σ j1 · · · σ jk ) where θ
(or θ ′) is a permutation and i1 < · · · < ik (or j1 < · · · < jk). Because of this, we
may define the length of a symmetry ζ by |ζ | = k. We may think of the length of
ζ as being the minimal number of elementary reflections needed to write it.

To every reflection ψ we can associate a unique dual reflection σψ , the com-
position of the two reflections. If ψ has the form σi1 · · · σik , this means that the
dual reflection will have the form σψ = σ j1 · · · σ jn−k where j1 < · · · < jn−k and
{i1, . . . , ik} ∪ { j1, . . . , jn−k} = {1, 2, . . . , n}. Of course this has the consequence
that |ψ | + |σψ | = n.

We can think of symmetries of I n as operating on copulas to produce new
copulas: for each n-copula C and each element ξ of S(I n) we define an n-copula
Cξ whose probability measure is given by

µCξ (S) = µC (ξ(S)) (1)

where S is a Borel set of I n .
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Suppose θ is the permutation (1, . . . , n) �→ (i1, . . . , in). We see that Cθ (u1, . . . ,
un) = µC (θ([0, u1] × · · · × [0, un])) = P(Xθ−1(1) < x1, . . . , Xθ−1(n) < xn),
where u j = Fj (x j ). Thus Cθ must be the n-copula of (Xθ−1(1), . . . , Xθ−1(n)).

Next suppose ψ is a reflection. Consider the particularly simple case where
ψ=σ1. We can show that Cσ1(u1, u2,. . . , un)= P(−X1< x1, X2< x2, . . . , Xn <
xn), where u1 = P(−X1 < x1) and uk = P(Xk < xk) for 2 ≤ k ≤ n, so that Cσ1

is seen to be the copula of (−X1, X2, . . . , Xn). More generally, if ψ = σi1 · · · σik

and i1, . . . , ik are distinct, then Cψ is the copula of (Z1, . . . , Zn) where

Z j =
{

−X j if j = some ir ,
X j otherwise.

If X1, . . . , Xn are uniformly distributed on I , we can show that Cσ1(x1, x2, . . . ,
xn) = P(1−X1 < x1, X2 < x2, . . . , Xn < xn), so that Cσ1 is seen to be the copula
of (1 − X1, X2, . . . , Xn). In particular, Cσ is the copula of (1 − X1, . . . , 1 − Xn)
and

C(x1, . . . , xn) = P(1 − X1 < 1 − x1, . . . , 1 − Xn < 1 − xn)

= Cσ (1 − x1, . . . , 1 − xn). (2)

The standard definition of concordance ordering for n-copulas (see Joe, 1997)
amounts to A ≺C B if and only if A ≤ B and A ≤ B. We see from (2) that an
alternate way to say this is

A ≺C B if and only if A ≤ B and Aσ ≤ Bσ . (3)

3 Extending Scarsini’s axioms

We give a set of axioms for bivariate measures of concordance equivalent to those
of Scarsini (1984) but stated in terms of copulas and symmetries of I n: By a mea-
sure of concordance (in the sense of Scarsini) we mean a function κ : Cop(2) → R

satisfying the following:

S1. κ(M2) = 1 and κ(�2) = 0.
S2. If Cm → C uniformly, then κ(Cm) → κ(C) as m → ∞.
S3. κ(Cθ ) = κ(C) whenever θ is a permutation.
S4. If A ≤ B, then κ(A) ≤ κ(B).
S5. κ(Cσ1) = κ(Cσ2) = −κ(C).
When Scarsini gave these axioms, he had in mind standard, already familiar mea-
sures of concordance such as Spearman’s rho and Kendall’s tau which were readily
seen to satisfy the axioms.

How can we extend these axioms to n variables?
The first three axioms generalize trivially.
To generalize S4, we replace A ≤ B by A ≺C B. We want to have both A ≤ B

and A ≤ B (or, equivalently, Aσ ≤ Bσ ) because we want to talk about the tendency
of X and Y to both be “large simultaneously” and both be “small simultaneously.”
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In dimension n = 2 it is sufficient to talk about A ≤ B because in that dimension,
and that one only, A ≤ B and A ≺C B are equivalent.

To justify our generalization of S5, we present an argument suggested by one
of the referees that is much shorter than our original one.

Let X = (X1, . . . , Xn) be a continuous random vector and δ1, . . . , δn be inde-
pendent random variables that are also independent of X such that each δi takes
on the values of 1 and −1 with probability 1/2. If we switch back to talking
about concordance of random vectors, then it seems reasonable to assume that
κ(δ1 X1, . . . , δn Xn) = 0. Now let D be the set of all sequences (d1, . . . , dn)where
each di = 1 or −1. For any (d1, . . . , dn), the probability that (δ1, . . . , δn) =
(d1, . . . , dn) is 1/2n . For a fixed (X1, . . . , Xn), we may now regard κ(δ1 X1, . . . ,
δn Xn) as a random variable on D with induced probability measure Q. Then

0 =
∫

D

κ(δ1 X1, . . . , δn Xn) d Q = 1

2n

∑

d1,...,dn

κ(d1 X1, . . . , dn Xn).

If C is the n-copula for (X1, . . . , Xn), then for each (d1, . . . , dn) there is a unique
reflection ξ of I n such that Cξ is the n-copula of (d1 X1, . . . , dn Xn). Thus we
should expect that ∑

ξ∈Rn

κ(Cξ ) = 0. (4)

This does not quite generalize S5; we need an extra axiom, namely that (X1, . . . ,
Xn) and (−X1, . . . ,−Xn) have the same measure of concordance, or, equivalently,

κn(C
σ ) = κn(C). (5)

(We did not need it when using Scarsini’s axioms because by S5 we had κ2(C) =
−κ2(Cσ1) = κ2(Cσ1σ2) = κ2(Cσ ).) This is a weak assumption since any κ that sat-
isfied our previously considered axioms could be modified to a κ ′ that also satisfies
(5) by setting κ ′(C) = 1

2 (κ(C)+ κ(Cσ )).
We check that we have now generalized S5: For n = 2, (4) becomes κ2(C)+

κ2(Cσ1) + κ2(Cσ2) + κ2(Cσ ) = 0. By our new axiom that κ2(Cσ ) = κ2(C) for
all two-copulas C , we have κ2(Cσ1) = κ2(Cσ1σ ) = κ2(Cσ2), so (4) becomes
2(κ2(C)+ κ2(Cσ1)) = 0, which amounts to Scarsini’s axiom S5.

We now add an axiom different from any of Scarsini’s. It arises from the fol-
lowing consideration: how should measures of concordance for n − 1 variables be
related to those for n variables? To justify this axiom, we again present an argument
which was suggested by one of the referees and which is shorter than our original
argument.

One way to extend a bivariate measure of concordance to a multivariate version
is to construct the average over all distinct bivariate margins of a random vector. For
example, if we start with the bivariate Kendall’s tau, we extend it to a multivariate
measure of concordance κ by setting

κ(X1, . . . , Xn) = 1
(n

2

)
∑

1≤i< j≤n

τ(Xi , X j ).

(We prove later that this extension procedure always results in a multivariate mea-
sure of concordance satisfying our axioms.) Since τ satisfies S5, notice that we
have
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κ(X1, X2, . . . , Xn)+ κ(−X1, X2, . . . , Xn) = 2(n
2

)
∑

2≤i< j≤n
τ(Xi , X j )

= rn−1κ(X2, . . . , Xn),

where rn−1 = 2(n − 2)/n.
This example leads us to propose as an axiom relating measures of concordance

for n−1 and n random variables, where n ≥ 3, that there is a constant rn−1 such that

rn−1κ(B) = κ(C)+ κ(Cσ1)

for all copulas B and C related by B(x2, x3, . . . , xn) = C(1, x2, x3, . . . , xn).

4 Axioms, examples, and properties

4.1 Axioms for a multivariate measure of concordance

We first collect and explicitly state our axioms for a multivariate measure of con-
cordance.

By a measure of concordance κ we mean a sequence of maps κn : Cop(n) → R

and a sequence of numbers {rn}, such that if A, B,C, and Cm are n-copulas and
n ≥ 2, then the following hold:

A1. (Normalization) κn(Mn) = 1 and κn(�
n) = 0.

A2. (Monotonicity) If A ≺C B, then κn(A) ≤ κn(B).
A3. (Continuity) If Cm → C uniformly, then κn(Cm) → κn(C) as m → ∞.
A4. (Permutation Invariance) κn(Cθ ) = κn(C) whenever θ is a permutation.
A5. (Duality) κn(Cσ n

) = κn(C).
A6. (Reflection Symmetry Property; RSP)

∑
ψ∈Rn

κn(Cψ) = 0.
A7. (Transition Property; TP) rnκn(C) = κn+1(E)+ κn+1(Eσ1) whenever E

is an (n + 1)-copula such that C(x1, . . . , xn) = E(1, x1, . . . , xn).

When we wish to indicate a measure of concordance κ along with its attendant
κn’s and rn’s, we shall sometimes use the notation κ = ({κn}, {rn}).

There is one way in which we have not perfectly extended Scarsini’s axioms.
Scarsini requires that −1 ≤ κ(C) ≤ 1. We have not listed that requirement in our
version of Scarsini’s axioms, S1–S5, however it does follow from them since if
C is a two-copula, then W 2 ≤ C ≤ M2 so that −1 = κ((M2)σ1) = κ(W 2) ≤
κ(C) ≤ κ(M2) = 1. For n ≥ 3 the most we can manage is κn(C) ≤ 1. We know
this much is true because we always have C ≤ Mn and Cσ ≤ Mn = (Mn)σ . That
is, we always have C ≺C Mn and κn(Mn) = 1. However there does not seem to
be an obvious proof that −1 ≤ κn(C) for n ≥ 3.

4.2 Some examples

We first show how to extend a bivariate measure of concordance to a multivari-
ate one. This result was brought to our attention by one of the referees. (We also
received some useful remarks about this topic from A. Dolati).
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We require a notation for the marginal of a copula. Let C be an n-copula
and S be a nonempty subset of {1, 2, . . . , n}. If S has cardinality n − k, then we
define the k-marginal of C determined by S to be the map CS : I k→I defined
by CS(xi1, . . . , xik ) = C(x1, . . . , xn) where i1 < · · · < ik , each ir /∈ S, and
x j = 1 if j ∈ S. Of course this CS is an k-copula provided k ≥ 2. If, for example,
C is a five-copula and S = {1, 3, 4}, then CS is a two-copula and CS(x2, x5) =
C(1, x2, 1, 1, x5).

Theorem 1 Suppose that κ2: Cop(2) → R is a bivariate measure of concordance
in the sense of Scarsini. For p = 1, 2, . . . , let us define κp+2 : Cop(p + 2) → R

and r1+p by

κp+2(C) = 1
(p+2

2

)
∑

card(S)=p

κ2(CS) and r1+p = 2p

2 + p

where it is understood that the summation is over all subsets S of {1, 2, . . . , p +2}
of size p, hence over all two-marginals CS of C. Then κ = ({κn}, {rn}) is a multi-
variate measure of concordance in our sense.

Proof Because the two-marginals of M p+2 are M2 and those of�p+2 are�2, the
Normalization property is trivial.

The Monotonicity property follows from the fact that if A and B are (p + 2)-
copulas such that A ≺C B, then AS ≤ BS for all two-marginals.

The Continuity property and Permutation Invariance are easily seen.
It is straightforward to show that if S is a subset of {1, 2, . . . , p+2} of cardinal-

ity p, then (Cσ p+2
)S = (CS)

σ 2
. Since κ2((CS)

σ 2
) = κ2(CS), the Duality property

holds.
To establish RSP, first notice that for a (p+2)-copula C we can write

∑
ξ∈Rp+2

κp+2(Cξ )=(
1/

(p+2
2

))∑
card(S)=p

∑
ξ κ2((Cξ )S). Fix S, a subset of {1, 2,. . ., p+2}

with cardinality p, and suppose that {1, 2, . . . , p + 2} − S = {i, j} where i < j .
Notice that the number of reflections ξ : I p+2 → I p+2 such that ξ either replaces
both xi and x j by their reflected values 1 − xi and 1 − x j or else ξ affects neither
xi nor x j , is 2p+1. For each such ξ we have κ2((Cξ )S) = κ2(CS). On the other
hand, the number of reflections ξ : I p+2 → I p+2 which replaces precisely one of
the components xi , x j by its reflected value 1 − xk and leaves the other one alone,
is 2p+1. For each such ξ we have κ2((Cξ )S) = −κ2(CS). Thus for fixed S we see
that

∑
ξ κ2((Cξ )S) = 0. Hence RSP holds.

Finally we consider TP. Notice that for a (p +2)-copula C we have κ2((Cσ1)S)
equal to κ2(CS) if 1 ∈ S and equal to −κ2(CS) if 1 /∈ S. We then calculate

κp+2(C)+ κp+2(C
σ1) = 1

(p+2
2

)

⎡

⎣
∑

card(S)=p

κ2(CS)+
∑

card(S)=p

κ2((C
σ1)S)

⎤

⎦

= 2
(p+2

2

)
∑

card(S)=p
1∈S

κ2(CS)
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= 2
(p+2

2

)

(
p + 1

2

)
1

(p+1
2

)
∑

card(T )=p−1
T ⊆{2,3,...,p+2}

κ2(C{1}∪T )

= 2p

p + 2
κp+1(C{1}).

Since (C{1})(x2, . . . , x p+2) = C(1, x2, . . . , x p+2), we have established TP and
hence the theorem.

We next prove a theorem which generalizes the form Nelsen used in his version
of Spearman’s rho in Nelsen (2002), but first we need some terminology.

We say that a measure µ on the Borel sets of I n is I n-invariant if µ(ξ(B)) =
µ(B) for every symmetry ξ of I n and every Borel set B of I n . Next define a projec-
tion map πn

i : I n → I n−1, where n ≥ 3, by πn
i (x1, . . . , xi−1, xi , xi+1, . . . , xn) =

(x1, . . . , xi−1, xi+1, . . . , xn). Let µn be a measure on the Borel sets of I n for n =
2, 3, . . .. We say that the sequence {µn} is projective ifµn((π

n
i )

−1(B)) = µn−1(B)
for 1 ≤ i ≤ n, for all Borel sets B of I n−1, and for n ≥ 3.

Notice that if we take each µn to be Lebesgue measure on I n , then {µn} is
projective, each µn is I n-invariant, and µn((0, 1)n) > 0 for all n. We give other
examples of {µn} having all three of these properties in Examples 2, 3, 4, and 5
and we will be concerned with examples of this sort in the next theorem. However
it is not clear how to construct such examples in general. One cannot simply start
with µ2 and work upwards. If, for instance, one begins with µ2 whose mass is
distributed uniformly over the inscribed circle in I 2, then it is easily seen that there
is no µ3 on I 3 that projects correctly onto µ2. This is because, in this case, we
are making three different requirements for the relationship between µ3 and µ2,
namely,µ3(B1 × B2 × I ) = µ3(B1 × I × B2) = µ3(I × B1 × B2) = µ2(B1 × B2)
for all Borel sets B1 and B2 of I .

Theorem 2 Let {µn} be a sequence of probability measures on (I n,B(I n)), where
n ≥ 2, such that each µn is I n-invariant, µn((0, 1)n) > 0 for all n, and the
sequence {µn} is projective. Then 2

∫
I n M dµn − 1

2n−1 > 0 for n ≥ 2; and if we
define

αn = 1

2
∫

I n M dµn − 1
2n−1

, (6)

κn(C) = αn

( ∫

I n

(C + Cσ ) dµn − 1

2n−1

)
, (7)

rn = αn+1

αn
, (8)

where n ≥ 2 and C is an n-copula, then the sequences of maps {κn} and numbers
{rn} define a measure of concordance κ .

Note that (6) and (7) are for satisfying A1 and A6, and (8) is for satisfying A7.

Proof In order to show that αn > 0, and hence that we can define κn by (7), and
in order to establish the Normalization axiom, we first show that that for every
reflection ψ∈Rn we have ∫

I n

�ψdµn = 1

2n
. (9)
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Suppose X1, . . . , Xn are random variables that are independent and uniformly
distributed over I , that Y1, . . . , Yn are random variables distributed in I such that
they generate the probability measure µn , and that X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) are independent. We now perform a simple calculation:

1 = P(X1 < Y1)+ P(1 − X1 < 1 − Y1)

= P(X1 < Y1, X2 < Y2)+ P(X1 < Y1, 1 − X2 < 1 − Y2)

+ P(1 − X1 < 1 − Y1, X2 < Y2)+ P(1 − X1 < 1 − Y1, 1 − X2 < 1 − Y2)

= . . .

= P(X1 < Y1, . . . , Xn < Yn)+ · · · + P(1 − X1 < 1 − Y1, . . . , 1 − Xn

< 1 − Yn). (10)

From our discussion of the way random variables and copulas are linked, we see that
for anyψ ∈ Rn we can choose Zi = Xi or 1− Xi in such a way that

∫
I n �

ψdµn =
P(Z1<Y1, . . . , Zn<Yn). Thus we have shown that

∑
ψ∈Rn

(∫
I n�

ψdµn − 1
2n

)=0.
But now notice that because Z1, . . . , Zn must be independent and have � as their
copula, we also have P(Z1 < Y1, . . . , Zn < Yn) = ∫

I n � dµn . Therefore (9) must
hold.

Since Mn − �n is positive on (0, 1)n and µn((0, 1)n) > 0, it follows that∫
I n (Mn −�n) dµn > 0. Because (9) holds, we see that we can define αn by αn =

1/(2
∫

I n Mn dµn − 1
2n−1 ) and that αn > 0. Thus we can define κn : Cop(n)→R

by (7).
We now begin to verify the axioms for a measure of concordance.
Since Mσ = M , we have

∫
I n (M+Mσ )dµn = 2

∫
I n M dµn , so that κn(Mn)=1

trivially. By (9), we also have κn(�
n) = ∫

I n (�+�σ − 1
2n−1 )dµn = 0. Thus the

Normalization property holds.
The Monotonicity property follows from (3), while the Continuity property is

a consequence of the dominated convergence theorem.
To verify Permutation Invariance, we first choose a permutation θ and note that

κn(C
θ ) = αn

⎛

⎝
∫

I n

(Cθ + Cθσ )dµn − 1

2n−1

⎞

⎠ . (11)

Now Cθ (x1, . . . , xn) = P(X1 < xθ(1), . . . , Xn < xθ(n)) = (C◦θ)(x1, . . . , xn).
So by the symmetry ofµn we have

∫
I n Cθdµn = ∫

I n C dµn . Next, since θσ = σθ ,
we see that

∫
I n Cθσdµn = ∫

I n Cσθdµn = ∫
I n Cσdµn by our previous calculation.

It now follows from (11) that κn(Cθ ) = κn(C).
The Duality property is trivially true by the form of κn .
We now turn our attention to RSP and TP. Let X = (X1, . . . , Xn) and Y =

(Y1, . . . , Yn) be independent random vectors in I n such that C is the copula of X
and Y induces the probability measure µn .

To establish RSP, we simply repeat the calculations of (10) to obtain this time∑
ψ∈Rn

(∫
I n Cψdµn − 1

2n

) = 0. This implies that
∑
ψ∈Rn

(∫
I n (Cψ + Cψσ )dµn−

1
2n−1

)
= 0, which amounts to RSP.
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To establish TP, assume n ≥ 3 and that B is the (n −1)-copula defined by
B(x2, . . . , xn) = C(1, x2, . . . , xn). Notice that it follows from the fact that (Y1, . . . ,
Yn) generates µn on I n and the fact that the sequence of measures µ2, µ3, . . . is
projective that (Y2, . . . , Yn) must induce the measure µn−1 on I n−1. Now
∫

I n

C dµn +
∫

I n

Cσ1dµn = P(X1 < Y1, X2 < Y2, . . . , Xn < Yn)

+P(1 − X1 < Y1, X2 < Y2, . . . , Xn < Yn)

= P(X2 < Y2, . . . , Xn < Yn) =
∫

I n−1

B dµn−1.

Similarly,
∫

I n Cσdµn + ∫
I n Cσσ1dµn = ∫

I n−1 Bσdµn−1. It then follows from the
definition of κn that we have κn(C) + κn(Cσ1) = rn−1κn−1(B) where rn−1 =
αn/αn−1.

Example 1 The generalization of Spearman’s rho from Nelsen (2002) is

ρn(C) = αn

⎛

⎝
∫

I n

(C + Cσ ) d�− 1

2n−1

⎞

⎠ .

By Theorem 2 with each µn equal to Lebesgue measure on I n , we see that this is a
measure of concordance in our sense. It is known that αn = ((n + 1)2n−1)/(2n −
(n + 1)), hence

rn = αn+1

αn
= 2

(
n + 2

n + 1

) (
2n − (n + 1)

2n+1 − (n + 2)

)

.

Example 2 (Product measure examples) Let ν be a probability measure on the
Borel sets of I that is symmetric about 1

2 . We take µn , our measure on I n , to be
ν × · · · × ν. These measures are easily seen to satisfy the hypotheses of Theorem
2 so that κ as defined in that theorem is a measure of concordance.

One simple instance of this follows from letting ν assign positive masses
m1, . . . ,mk symmetrically about 1/2 to a finite number of points in I where
m1 + · · · + mk = 1. Then there exists a finite lattice of points Ln in I n such
that for each C , an n-copula,

∫
I n C dµn = ∑

p∈Ln
C(p) µn(p) where the mass of

each p, namely µn(p), has the form mi1mi2 · · · min .
Another instance is obtained by choosing a nonnegative, Lebesgue integrable

function f on I that is symmetric about 1/2 and satisfies
∫ 1

0 f (t) dt = 1. We then
take µn to be the measure on I n having density f (x1) · · · f (xn) at (x1, . . . , xn). In
this case,

∫
I n C dµn = ∫

I n C(x1, . . . , xn) f (x1) · · · f (xn) dx1 · · · dxn .

Example 3 (Blomqvist’s coefficient) A particularly simple instance of the last exam-
ple, one that can be considered as a generalization of Blomqvist’s coefficient (see
Nelsen 1999), is obtained by taking ν to be a unit mass at 1

2 and hence µn to be a
unit mass at the point ( 1

2 , . . . ,
1
2 ) in I n . In this case we obtain

αn = 2n−1

2n−1 − 1
and rn = 2(2n−1 − 1)

2n − 1
. (12)
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(This version of Blomqvist’s coefficient was constructed earlier and independently
in Úbeda Flores 2005).

Example 4 (Gini’s coefficient) We next construct a generalization of Gini’s coeffi-
cient. We know from Nelsen (1999) and Edwards et al. (2004) that Gini’s coefficent
for two random variables with copula C is given by

γ (C) = 8
∫

I 2

C d

(
M + W

2

)

− 2.

The mass that defines the measure of concordance is equally and uniformly dis-
tributed along the two diagonals x1 = x2 and x1 + x2 = 1 of I 2. We therefore
construct our probability measure µn on I n by distributing a unit mass over the
2n−1 diagonals of I n , each diagonal receiving the same amount of mass as every
other diagonal, and the distribution along each diagonal being uniform. Thus for
any copula C , we have

∫
I n C dµn = ∫

I n C d
( 1

2n

∑
ξ∈Rn

Mξ
)
. Invariance under

symmetries of I n holds by construction, and it is straightforward to check that
{µn} is projective.

It can be shown that

αn = 2n

2n−1 − 1
and rn = 2

(
2n−1 − 1

2n − 1

)

. (13)

Example 5 (Some examples generated by Archimedean copulas) Let φ : [0, 1] →
[0,∞] be such that φ(−1), the quasi-inverse of φ, is completely monotone or
the Laplace transform of a distribution function on [0,∞). Then An(x1, . . . ,
xn) = φ(−1)(φ(x1) + · · · + φ(xn)) is the associated Archimedean n-copulas
with generator φ. (See Nelsen 1999 for a discussion of Archimedean copulas.)
If νn is the probability measure associated with An , then it is trivially invari-
ant under permutations, and it follows from An(x1, . . . , xi−1, 1, xi+1, . . . , xn) =
An−1(x1, . . . , xi−1, xi+1, . . . , xn) for n ≥ 3 that the sequence {νn} is projective.
However the νn’s are not necessarily I n-invariant. Therefore we introduce the
n-copulas Bn = (1/2n)

∑
ξ∈Rn

Aξn which are trivially invariant under reflections.
Let µn be the probability measure associated with Bn . We would like to know

that the sequence {µn} is projective; we indicate how this works for the case n = 3
by replacing x3 by 1 in B3. For a three-copula C , let C∗ be the two-copula
(x1, x2) �→ C(x1, x2, 1). We calculate

A∗
3 = Aσ3

3
∗ = A2, Aσ1

3
∗ = Aσ1σ3

3
∗ = Aσ1

2 , Aσ2
3

∗ = Aσ2σ3
3

∗ = Aσ2
2 ,

and Aσ1σ2
3

∗ = Aσ1σ2σ3
3

∗ = Aσ1σ2
2 .

It follows from the definition of Bn that B3(x1, x2, 1) = B2(x1, x2). The general
proof is similar.

It then follows from Theorem 2 that κn(C) = αn(
∫

I n (C +Cσ ) dBn −1/2n−1),
where n ≥ 2 and αn is chosen to satisfy κn(Mn) = 1, defines a measure of con-
cordance. Examples of generators φ that produce n-copulas for all n ≥ 2 can be
found in Sect. 4.6 of Nelsen (1999); alternatively, suitable examples of φ−1 can be
obtained as Laplace transforms of distribution functions on [0,∞) by consulting
Tricomi (1954) or Zwillenger (2002). It appears that Bn does not, in general have
a computationally simple form.
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4.3 Some simple properties

Theorem 3 For every measure of concordance κ = ({κn}, {rn}), the following is
true:

(a) If C and E are (n − 1)- and n-copulas respectively (where n ≥ 3) such that

E(x1, . . . , xi−1, 1, xi+1, . . . , xn) = C(x1, . . . , , xi−1, xi+1, . . . , xn),

then rn−1κn−1(C) = κn(E)+ κn(Eσi ).
(b) rn−1 = 1 + κn((Mn)ψ) whenever |ψ | = 1 or n − 1 and n ≥ 3.
(c) r2 = 2

3 and κ3((M3)ψ) = − 1
3 whenever |ψ | = 1 or 2.

Proof We shall prove only (b) and (c).
(b) By the Transition Property with C = Mn and part (a) of this proposition

we have rn−1 = 1 + κn((Mn)σi ). Any symmetry ψ of I n having |ψ | = 1 can be
written in the form σiθ where θ is a permutation, and κn((Mn)σi θ ) = κn((Mn)σi ),
so that takes care of the case |ψ | = 1. The case where |ψ | = n − 1 is handled by
Duality and a similar argument since such a ψ can be written in the form σiσ θ ,
where θ is a permutation.

(c) Taking M = M3, by the Reflection Symmetry Property, we must have

κ3(M)+ κ3(M
σ1)+ κ3(M

σ2)+ κ3(M
σ3)+ κ3(M

σ1σ2)+ κ3(M
σ1σ3)

+κ3(M
σ2σ3)+ κ3(M

σ ) = 0.

By Duality and Normalization we have κ3(M) = κ3(Mσ ) = 1 and κ3(Mσi ) =
κ3(Mσ jσk ). This leads to 2 + 6 κ3(Mσi ) = 2 + 6 κ3(Mσkσ j ) = 0. It follows that
κ3(Mψ) = −1/3 whenever |ψ | = 1 or 2. Then by part (b) of this proposition, we
have r2 = 1 + κ3(Mσi ) = 2/3.

Theorem 4 Let C be an n-copula which is permutation symmetric (that is, Cξ = C
for all permutations ξ of I n). Then for all measures of concordance κ and for all
symmetries ψ and ξ of I n we have κn(Cψ) = κn(Cξ ) whenever |ψ | = |ξ | or
|ψ | + |ξ | = n.

Proof We first consider the case |ψ | = |ξ |.
Recall our notation for marginals of copulas. Let us take S = {i} and T =

{ j}. By the Transition Property we have rn−1κn−1(CS) = κn(C) + κn(Cσi ) and
rn−1κn−1(CT ) = κn(C)+ κn(Cσ j ). Since C is permutation symmetric, it follows
that all its (n − 1)-marginals are identical so that CS = CT and thus κn(Cσi ) =
κn(Cσ j ). It is then a short step, using Permutation Invariance, to conclude that
κn(Cψ) = κn(Cξ ) whenever |ψ | = |ξ | = 1.

The rest of the |ψ | = |ξ | case is established by induction. The general argument
and its validity is easily seen by considering what happens when |ψ | = |ξ | = 2. Let
S = {i, j} and T = {k, l} where i = j and k =l. Next set S′ = {i} and T ′ = {k}. By
the Transition Property we have rn−2κn−2(CS) = κn−1(CS′)+ κn−1((Cσ j )S′) and
rn−2κn−2(CT ) = κn−1(CT ′)+ κn−1((Cσl )T ′). Since C is permutation symmetric,
we must have CS = CT and CS′ = CT ′ , and thus κn−1((Cσ j )S′) = κn−1((Cσl )T ′).
We apply the Transition Property once more to obtain rn−1κn−1((Cσ j )S′) =
κn(Cσ j ) + κn(Cσ jσi ) and rn−1κn−1((Cσl )T ′) = κn(Cσl ) + κn(Cσlσk ). It follows
from this and the |ψ | = |ξ | = 1 case that κn(Cσ jσi ) = κn(Cσlσk ). By appealing
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to Permutation Invariance, we now see that κn(Cψ) = κn(Cξ ) whenever |ψ | =
|ξ | = 2.

Finally suppose |ψ | + |ξ | = n. Then |ξ σ | = |ψ | so that by Duality we have
κn(Cψ) = κn(Cξ σ ) = κn(Cξ ).

Corollary 1 For all n ≥ 2 and all ψ and ξ such that |ψ | = |ξ | or |ψ | + |ξ | = n,
we have κn(Mψ) = κn(Mξ ).

5 Examples and counterexamples from the literature

5.1 Another example from Nelsen

Example 6 (Blomqvist’s coefficient) In Nelsen (2002), Blomqvist’s coefficient is
generalized to

βn(C) = αn

(

C

(
1

2
, . . . ,

1

2

)

− 1

2n

)

.

It is straightforward to see that β satisfies all of our axioms except for Duality. The
arguments justifying RSP and TP are essentially those used in Theorem 2. The fact
that Duality fails can easily be seen by constructing a three-copula C with different
amounts of mass in [0, 1/2]3 and [1/2, 1]3 so that C(1/2, 1/2, 1/2)=Cσ (1/2, 1/2,
1/2).

For this particular example,

αn = 2n

2n−1 − 1
and rn = 2

(
2n−1 − 1

2n − 1

)

.

5.2 Joe’s examples

We shall describe Joe’s examples from Joe (1990) in terms of copulas and in ways
that do not always match his notation; nevertheless, they will be the same measures
of concordance.

Example 7 (Blomqvist’s coefficient) Let C be the n-copula of the random vector
X = (X1, . . . , Xn) where each Xi is uniformly distributed over I . We define

βn(C) =
n∑

k=0

wn,k

∑

|ξ |=k

Cξ (1/2) =
n∑

k=0

wn,k

∑

|ξ |=k

P(ξ(X) <
1

2
),

where the symbol
∑

|ξ |=k indicates a summation over all reflections ξ (elements
of Rn only, not general symmetries of I n) such that |ξ | = k, where 1/2 really
stands for the constant vector (1/2, . . . , 1/2), and where {wn,k} is a collection of
coefficients, n ≥ 2 and 0 ≤ k ≤ n, such that

(β1) wn,0 = wn,n = 1.
(β2) wn,k = wn,n−k .
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(β3)
∑n

k=0

(n
k

)
wn,k = 0.

(β4) wn,0 ≥ wn,1 ≥ · · · ≥ wn,m where m = � n+1
2 �, the greatest integer less than

or equal to (n + 1)/2.

It is straightforward to verify that such βn satisfy the axioms of Normalization,
Continuity, Permutation Invariance, Duality, and RSP.

Only Monotonicity and the Transition Property need to be checked. Joe gives
a condition in Joe (1990) on {wn,k} that insures Monotonicity, but necessary and
sufficient conditions are not known. One sufficient choice that Joe gives is

wn,k =
⎧
⎨

⎩

1 if k = 0, n,

−
(

1

2n−1 − 1

)

otherwise.

It should also be borne in mind that Joe (1990) assumes n is fixed and does not
focus on the question of how measures of concordance are related for different n.
It turns out that the TP can be seen to hold if we put one more condition on {wn,k}:
(β5) rn−1wn−1, j = wn, j+1 + wn, j .

For the wn,k’s shown above, they satisfy (β5) if rn = (2n − 2)/(2n − 1).
Thus we have a situation in which it is possible to give an example of {wn,k}

such that the generalization of Blomqvist’s coefficient given here is a measure of
concordance in our sense.

(The reader is also invited to compare this with other versions of Blomqvist’s
coefficient in this paper.)

Example 8 (Kendall’s tau) Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two
independent random vectors each having C as its copula and such that Xi and Yi
are uniformly distributed over I . We define

τn(C) =
n∑

k=0

wn,k

∑

|ξ |=k

P(ξ(X) < ξ(Y )) =
n∑

k=0

wn,k

∑

|ξ |=k

∫

I n

CξdCξ

where, as before, the ξ ’s range over reflections having |ξ | = k and thewn,k’s satisfy
(β1)–(β4). As in the example of Blomqvist’s coefficient, this will satisfy all our
axioms except possibly Monotonicity and TP. It is shown in Joe (1990) that it will
satisfy Monotonicity for certain choices of {wn,k}. In order to satisy TP, we must
again introduce the extra condition of (β5).

For the same choice of {rn} and {wn,k} as in our last example, all of our axioms
of a measure of concordance will hold. Thus, as in the last example, Joe’s gener-
alization of Kendall’s tau is compatible with our axioms for at least one choice of
{wn,k}.
Example 9 (Spearman’s rho) Joe develops two versions of Spearman’s rho. The
first version is defined by

ρn(C) = αn

⎛

⎝
∫

I n

� dC − 1

2n

⎞

⎠ where αn = (n + 1)2n

2n − (n + 1)
.
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It is straightforward to verify all of the axioms of a measure of concordance except
for Duality. (It turns out that as in previous examples we have rn = αn+1/αn .)
Duality amounts to ρn(Cσ ) = ρn(C) which reduces first to

∫
� d(Cσ ) = ∫

� dC
and then to P(Y > X) = P(Y < X) where X and Y are independent, continuous
random vectors having C and � respectively as their copulas. This last equation
holds for n = 2 but not in general for n ≥ 3.

The second version of Spearman’s rho is ρn(C) = αn
(∫

I n � dC − 1
2n

)
. The

same remarks apply as for the first version.
Thus this last example misses fitting our definition only with respect to Duality.

However, if we take 1
2 (ρn + ρn), this turns out to be Nelsen’s generalization of

Spearman’s rho which satisfies all the axioms.

5.3 Work by Dolati and Úbeda Flores

The work of Dolati and Úbeda Flores on measures of concordance, Úbeda Flores
(2005) and Dolati and Úbeda Flores (2004, 2006), was kindly brought to our atten-
tion by M. Úbeda Flores. In Dolati and Úbeda Flores (2006) they give an alternative
set of axioms for multivariate measures of concordance. It coincides with our own
set except that it does not include RSP or TP and it explicitly requires measures of
concordance to be bounded below by −1. Their work forms a contrasting and inde-
pendent line of development to our own and features several interesting examples
of measures of concordance.

A generalization of Blomqvist’s coefficient is given in Úbeda Flores (2005)
that is identical with the one we have given in Example 3 but is earlier than ours.
A generalization of Spearman’s footrule coefficient is given in the same paper. This
turns out to be a particular instance of the class of AOD measures of concordance
(see Dolati and Úbeda Flores 2006) which we discuss below.

In Dolati and Úbeda Flores (2004) a multivariate version of Gini’s rank asso-
ciation coefficient is defined and investigated. The definition involves the formal
construction of an analog to the survival function for W in higher dimensions with
no obvious probabilistic interpretation. It is not clear how to apply the methods of
analysis used in this paper, and we have not determined if this version of Gini’s
coefficient is a measure of concordance.

Example 10 In Dolati and Úbeda Flores (2006), the authors define an average
orthant dependent (AOD) measure of concordance to be one of the form

ωn(C) = αn

∫

I n

(C −�
n + C −�n)dA,

where A is a fixed n-copula such that

∫

I n
(M

n −�
n + M −�n)dA > 0, (14)

Aσ = A, (15)

Aθ = A for all permutations θ of I n, (16)
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and αn is chosen to satisfy ωn(M) = 1. AOD measures of concordance satisfy the
axioms that Dolati and Úbeda Flores give for measures of concordance in Dolati
and Úbeda Flores (2006).

The requirement
∫

I n (M
n −�

n + Mn −�n) dA > 0 is trivially satisfied for
all n-copulas A since Mn −�n is positive on (0, 1)2.

AOD measures of concordance do not in general satisfy the Reflection Sym-
metry Property (RSP). We can check on this by considering (14) with A =
M = Mn . We can show that αn = (n + 1)/(n − 1) and then that, for exam-
ple,

∑
ξ∈R3

ω3(Mξ ) = 2.
There is no clear or convincing way, in this setting, of passing from κn to κn−1.
Therefore for AOD measures of concordance, RSP fails and TP looks unlikely.

6 Questions

Many questions suggest themselves for further study. We present a few.

(i) Can it be shown to follow from our axioms that −1 ≤ κn(C)? Or better yet,
that −1 < κn(C) if n ≥ 3? (One of the referees thinks it likely that the
minimum value of κn will approach 0 from below as n → ∞. We are, at the
present, of the same mind.)

(ii) Can it be shown that for every measure of concordance, rn > 0 for n > 2?
(iii) Can one find interesting procedures for constructing sequences {µn} of mea-

sures on I n , n ≥ 2, such that eachµn is I n-invariant,µn((0, 1)n) > 0 for all n,
and {µn} is projective? (The construction of Example 5 using Archimedean
copulas deserves more consideration).

(iv) In Theorem 2 we require the measures µn to be invariant under all symme-
tries of I n . This is most likely a stronger symmetry than needed to construct
measures of concordance of the type considered in the theorem. What is the
weakest symmetry required on µn for a theorem of this type to hold?

(v) An important question, though it is not considered here, is this: What can be
said about sample versions of multivariate measures of concordance? In con-
nection with this, it is worth quoting a comment of one of the referees: “The
sample version could be considered as κ(F) with F replaced by an empirical
distribution FN . So for practical use, there needs to be one more ‘axiom’:
κ(FN ) should be easy to compute.”

(vi) The examples of measures of concordance examined here have the property
that if A and B are n-copulas and 0 ≤ t ≤ 1, then κn((1 − t)A + t B) is either
a first or second degree polynomial in t . One can clearly extend this idea to
talk about measures of concordance of degree m. Is it possible to characterize
measures of concordance of a fixed degree, to exhibit some sort of canonical
form for them? (Our colleague H. Edwards has done this, Edwards (2004),
for degree one bivariate measures of concordance).
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