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Abstract We study the asymptotic properties of both the horizontal and vertical
shift functions based on independent ranked set samples drawn from continuous
distributions. Several tests derived from these shift processes are developed. We
show that by using balanced ranked set samples with bigger set sizes, one can
decrease the width of the confidence band and hence increase the power of these
tests. These theoretical findings are validated through small-scale simulation stud-
ies. An application of the proposed techniques to a cancer mortality data set is also
provided.

Keywords Shift function · Q–Q plot · P–P plot · Bootstrap · ROC curve ·
Wilcoxon–Mann–Whitney test

1 Introduction

Let X and Y be two random variables with cumulative distribution functions F
and G respectively. Let S(F) = {x : 0 < F(x) < 1} be the support of F . The
horizontal shift function from F to G at x is defined as

�(x) = G−1 ◦ F(x)− x, x ∈ S(F)
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and the vertical shift function at p as

�(p) = G ◦ F−1(p)− p, 0 ≤ p ≤ 1,

where, for any nondecreasing function �, the generalized inverse is given by

�−1(t) = inf{u : �(u) ≥ t}.
These functions measure the distances between the 45◦ line and the quantities
plotted in the Q–Q and P–P plots respectively, which are useful graphical tools in
ascertaining how two distributions differ. For example, a straight line plot of the
horizontal shift function indicates a location-scale shift. The vertical shift function
is also related to the ROC curve, which is a tool used to assess the performance of
a diagnostic test with a continuous marker. The relation is given by

ROC(p) = p −�(1 − p), 0 ≤ p ≤ 1.

Examples of the use of ROC analysis can be found in speech recognition, disease
detection, image analysis and a variety of other fields.

Doksum (1974) first investigated the asymptotic behavior of the horizontal shift
process and constructed distribution-free confidence bands based on simple random
samples. The results obtained were extended to the nonparametric Bayesian frame-
work by Wells and Tiwari (1989). Lu et al. (1994) further extended these results
to the case of right censored data and used the bootstrap to construct simultaneous
confidence bands. Li et al. (1996, 1999) derived the asymptotic distribution of the
vertical shift process in the presence of right censoring. Hsieh and Turnbull (1996)
and Li et al. (1999) have discussed nonparametric and semiparametric estimation
of the ROC curve based on simple random samples.

Obtaining an RSS consists of sampling in multiple stages as follows: an SRS
of k units is drawn from the underlying population and the units are then ranked
according to the characteristic of interest. From this set, the smallest unit is identi-
fied and then measured. Another SRS of k units is drawn (independent of the first
sample), the units ranked, and the second smallest unit is measured. The process
is continued, until at the kth stage, a random sample of k units is taken, the units
are ordered and the largest unit is measured. This completes one cycle and the k
measurements so obtained constitute a ranked set sample of size k from the popu-
lation of interest. Note that although k2 units were screened, the RSS consists of
only k observations. The entire cycle can be repeated m times to get m replicates of
each order statistic. The sample so obtained is called a balanced ranked set sample
(BRSS) of set size k with m replications. Thus, a BRSS consists of equal numbers
of independent copies of all the order statistics, arising from independent samples,
each of the same size.

The above procedure can be generalized to the situation where one gets multiple
independent copies of various order statistics which are not necessarily based on
samples of the same size or where different order statistics may get unequally rep-
resented. This is called an unbalanced ranked set sample or a Generalized Ranked
Set Sample (GRSS). GRSS occurs naturally in many situations such as nomina-
tion sampling where one always observes independent copies of the same order
statistic (see, for example, Willemain, 1980; Boyles and Samaniego, 1986; Wells
and Tiwari, 1991). One such example is the failure times of independent r -out-of-k
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systems. For more on ranked set samples, see Kaur et al. (1995), Patil et al. (1999)
and the recent book by Chen et al. (2004). Also see Özturk and Wolfe (2000) and
Chen et al. (2004) for examples on applications.

In this article, we first study the asymptotic properties of the two shift functions
based on independent GRSS. We derive the limiting distributions of the two shift
processes and show that when one uses BRSS, the pointwise variances get smaller
as one increases the set size k. Hence, one always improves by using a ranked set
sample instead of a simple random sample, provided sampling costs are negligible
compared to measurement costs. Various two-sample tests are developed based on
these shift functions and their properties are studied. Examples include the con-
trol percentile test, the Wilcoxon–Mann–Whitney test and a Kolmogorov–Smirnov
type test based on the bootstrap.

In what follows, we will use the notation
d→ to denote “convergence in dis-

tribution” or “weak convergence”,
d= to denote “equality in distribution”,

P→ to
denote “convergence in probability” and

a.s.→ to denote “almost sure convergence”.
Following the notation of Billingsley (1968), we will say that a sequence of random
elements {Fn} converges in distribution to a random element F if the correspond-

ing probability measures converge weakly (i.e., Fn
d→ F if and only if Pn �⇒ P).

We will use the notation (a ∧ b) to denote the minimum of a and b, [x] to denote
the biggest integer less than or equal to x , D[a, b] to denote the space of all right
continuous functions on [a, b] with left limit and C[a, b] to denote the space of
all continuous functions on [a, b].

This paper is organized as follows. The asymptotic properties of the proposed
estimators of the horizontal and vertical shift functions are presented in Sect. 2.
In Sect. 3, we study various test statistics constructed from results in Sect. 2. In
Sect. 4, we investigate the construction of confidence bands using the bootstrap
and in Sect. 5, we present the results of a small simulation study and analyze a data
set. In particular, we compare the distributions of prostate cancer mortality rates
for the years 1991–1992 and and 1999–2000 to examine if the two distributions are
equal or not as a result of the introduction of the prostate specific antigen (PSA)
screening test. Finally, Sect. 6 is devoted to the conclusion and discussion. The
proofs of the results in Sects. 2 and 4 are deferred to the Appendix.

2 Asymptotic properties

Suppose we have a generalized ranked set sample (GRSS) X from F given by

X =

⎧
⎪⎪⎨

⎪⎪⎩

X(r11:k11)1 X(r11:k11)2 . . . X(r11:k11)m11

X(r12:k12)1 X(r12:k12)2 . . . X(r12:k12)m12
...

...
...

...
X(r1n1 :k1n1 )1

X(r1n1 :k1n1 )2
. . . X(r1n1 :k1n1 )m1n1

⎫
⎪⎪⎬

⎪⎪⎭

. (1)

Here X(r :k) j denotes the j th replicate of the r th order statistic based on a sample
of size k from the underlying distribution F . For a BRSS with set size k1 and m1
replications, we have r1i = i, k1i = k1, m1i = m1 and n1 = k1. We will denote
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this BRSS by Xk1×m1 . Independently, let us have a GRSS Y from G given by

Y =

⎧
⎪⎪⎨

⎪⎪⎩

Y(r21:k21)1 Y(r21:k21)2 . . . Y(r21:k21)m21

Y(r22:k22)1 Y(r22:k22)2 . . . Y(r22:k22)m22
...

...
...

...
Y(r2n2 :k2n2 )1

Y(r2n2 :k2n2 )2
. . . Y(r2n2 :k2n2 )m2n2

⎫
⎪⎪⎬

⎪⎪⎭

. (2)

We use the notations

M1 = m11 + m12 + · · · + m1n1,

M2 = m21 + m22 + · · · + m2n2 ,

m1 = (m11 ∧ m12 ∧ · · · ∧ m1n1),

m2 = (m21 ∧ m22 ∧ · · · ∧ m2n2),

M = M1 + M2,

m = (m1 ∧ m2).

For i = 1, . . . , n1, let m1i
M1

→ q1i as m1 → ∞ and similarly, for i = 1, . . . , n2,
let m2i

M2
→ q2i as m2 → ∞.

Following Chen (2001, 2003), we define

Fq1
(x) =

n1∑

i=1

q1i F(r1i :k1i )(x), (3)

where F(r :k)(x) is the cdf of X(r :k) based on F . Denoting the Beta(r, k − r + 1)
cdf by

Br, k(x) = �(k + 1)

�(r)�(k − r + 1)

x∫

0

ur−1(1 − u)k−r du,

we can write F(r :k)(x) = Br, k ◦ F(x) and rewrite (3) as

Fq1
(x) = h1 ◦ F(x),

where h1 : [0, 1] 
→ [0, 1] is given by

h1(u) =
n1∑

i=1

q1i Br1i , k1i (u).

Note that for a BRSS Xk×m , we have h1(u) = u. Also, for a maxima-nomi-
nation sample (i.e., r1i = k, k1i = k, m1i = m, n1 = 1), we have h1(u) = uk

whereas for a minima-nomination sample (i.e., r1i=1, k1i=k, m1i=m, n1=1),
we have h1(u) = 1 − (1 − u)k .

Since h′
1(u) > 0 for all u ∈ (0, 1), h1(·) is continuous and strictly increasing,

and has a unique inverse, h−1
1 (·). We thus write

F(x) = h−1
1 ◦ Fq1

(x).
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Let

F̂(r1i :k1i )(x) = 1

m1i

m1i∑

j=1

I[X(r1i :k1i ) j , ∞)(x), i = 1, . . . , n1. (4)

Define

F̂q1
(x) =

n1∑

i=1

q1i F̂(r1i :k1i )(x) (5)

and consequently,

F̂(x) = h−1
1 ◦ F̂q1

(x). (6)

Similarly, define Gq2
(x) = ∑n2

i=1 q2i G(r2i :k2i )(x) and write

Gq2
(x) = h2 ◦ G(x),

where

h2(u) =
n2∑

i=1

q2i Br2i , k2i (u).

As before, h2(·) is invertible and thus

G(x) = h−1
2 ◦ Gq2

(x).

Also let,

Ĝ(r2i :k2i )(x) = 1

m2i

m2i∑

j=1

I[Y(r2i :k2i ) j , ∞)(x), i = 1, . . . , n2, (7)

Ĝq2
(x) =

n2∑

i=1

q2i Ĝ(r2i :k2i )(x) (8)

and

Ĝ(x) = h−1
2 ◦ Ĝq2

(x). (9)

Note that we have

F̂q1
(x) = E DFX (x)+ op(1),

where E DFX is the empirical distribution function of X . A similar result holds
for Y .
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Lemma 1 Let X and Y be independent GRSS given by (1) and (2) respectively.
Then, as m → ∞,

√
M1(F̂ − F)

d→ WF

h′
1 ◦ F

(10)

and
√

M2(Ĝ − G)
d→ WG

h′
2 ◦ G

, (11)

where WF and WG are independent zero-mean Gaussian processes with covari-
ance kernels

KF (x, y) = Fq1
(x ∧ y)−

n1∑

i=1

q1i F(r1i :k1i )(x)F(r1i :k1i )(y) (12)

and

KG(x, y) = Gq2
(x ∧ y)−

n2∑

i=1

q2i G(r2i :k2i )(x)G(r2i :k2i )(y), (13)

respectively. Consequently,

√
M[(F̂, Ĝ)− (F, G)] d→

(
WF√
λh′

1 ◦ F
,

WG√
1 − λh′

2 ◦ G

)

(14)

as m → ∞, where λ = limm→∞ M1
M .

Define the estimators of the horizontal and vertical shift functions to be

�̂(x) = Ĝ−1 ◦ F̂(x)− x, x ∈ S(F)

and

�̂(p) = Ĝ ◦ F̂−1(p)− p, 0 ≤ p ≤ 1,

respectively.

Theorem 1 For independent GRSS X and Y from F and G, respectively, as
m → ∞,

√
M(�̂−�)

d→ Z�,GRSS

g ◦ G−1 ◦ F
,

where Z�,GRSS is a zero-mean Gaussian process with covariance kernel

K�,GRSS(x, y) =
[

KF (x, y)

λh′
1 ◦ F(x)h′

1 ◦ F(y)

+ KG(G−1 ◦ F(x), G−1 ◦ F(y))

(1 − λ)h′
2 ◦ F(x)h′

2 ◦ F(y)

]

and M1
M → λ.
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Corollary 1 For independent BRSS Xk1×m1 and Y k2×m2 from F and G res-
pectively, as (m1 ∧ m2) → ∞,

√
k1m1 + k2m2(�̂−�)

d→ Z�,BRSS

g ◦ G−1 ◦ F
,

where Z�,BRSS is a zero-mean Gaussian process with covariance kernel

K�,BRSS(x, y) = 1

λ

{

F(x ∧ y)− 1

k1

k1∑

i=1

F(i :k1)(x)F(i :k1)(y)

}

+ 1

1 − λ

{

F(x ∧ y)− 1

k2

k2∑

i=1

F(i :k2)(x)F(i :k2)(y)

}

and k1m1
k1m1+k2m2

→ λ.

Theorem 4.1 of Doksum (1974) becomes a special case of Corollary 1 by taking
k1 = k2 = 1, m1 = m and m2 = n.

Remark 1 Since

1

k

k∑

i=1

F2
(i :k)(x) ≥

{
1

k

k∑

i=1

F(i :k)(x)
}2

= F2(x),

we have for all x ,

K�,BRSS(x, x) ≤ K�,SRS(x, x).

Hence, a pointwise confidence band for� based on BRSS would be narrower than
that based on SRS.

Theorem 2 Let M1
M → λ as m → ∞. Fix [a, b] ⊂ (0, 1). Then, as m → ∞,

√
M(�̂−�)

d→ Z�,GRSS,

on [a, b], where

Z�,GRSS
d= g ◦ F−1

f ◦ F−1 × WF ◦ F−1

√
λh′

1

+ WG ◦ F−1

√
1 − λh′

2 ◦ G ◦ F−1
.

Note that Z�,GRSS is a zero-mean Gaussian process with covariance kernel

K�,GRSS(x, y)

= g ◦ F−1(x)× g ◦ F−1(y)

f ◦ F−1(x)× f ◦ F−1(y)
× 1

λh′
1(x)× h′

1(y)

×
{

h1(x ∧ y)−
n1∑

i=1

q1i F(r1i :k1i ) ◦ F−1(x)F(r1i :k1i ) ◦ F−1(y)

}
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+ 1

(1 − λ)h′
2 ◦ G ◦ F−1(x)× h′

2 ◦ G ◦ F−1(y)

×
{

h1◦G◦F−1(x∧y)−
n2∑

i=1

q2i G(r2i :k2i )◦F−1(x)×G(r2i :k2i )◦F−1(y)

}

,

for 0 < a ≤ x, y ≤ b < 1.

Corollary 2 For independent BRSS Xk1×m1 and Y k2×m2 from F and G respec-
tively, as (m1 ∧ m2) → ∞, we have

√
k1m1 + k2m2(�̂−�)

d→ Z�,BRSS

on [a, b] ⊂ (0, 1) where Z�,BRSS is a zero-mean Gaussian process with covari-
ance kernel

K�,BRSS(x, y) = g ◦ F−1(x)× g ◦ F−1(y)

f ◦ F−1(x)× f ◦ F−1(y)
× 1

λ

×
{

x ∧ y − 1

k1

k1∑

i=1

F(i :k1) ◦ F−1(x)× F(i :k1) ◦ F−1(y)

}

+ 1

(1 − λ)

{

G ◦ F−1(x ∧ y)

− 1

k2

k2∑

i=1

G(i :k2) ◦ F−1(x)× G(i :k2) ◦ F−1(y)

}

for 0 < a ≤ x, y ≤ b < 1.

Remark 2 As in Remark 1, a pointwise confidence band for � is narrower when
using BRSS, instead of SRS.

3 Some tests

In this section, we use the results presented earlier to develop tests for various
hypotheses of interest. First, we present a test based on the horizontal shift func-
tion at a fixed point and its generalization to multiple points. Next, we discuss
comparison of one or several quantiles of the two distribution functions. Finally,
we present the Wilcoxon–Mann–Whitney Statistic that aggregates quantile com-
parisons of the two distributions.

As seen in Theorem 2, under the null hypothesis H0 : F = G, the limiting pro-
cess Z� is distribution free, unlike the horizontal shift process, where the limiting
distribution depends on F . Hence, it is more convenient to use �̂ (or its functionals)
to perform tests of equality of the two distributions.
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3.1 Test for location-scale shift

The following is a direct consequence of Theorem 1.

Corollary 3 For any positive integer p and points x1, . . . , x p ∈ S(F),

√
M

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

�̂(x1)

�̂(x2)
...

�̂(x p)

⎞

⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎝

�(x1)
�(x2)
...

�(x p)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

d→ Np(0, �),

where � = ((σuv)) is given by

σuv = [g ◦ G−1 ◦ F(xu)g ◦ G−1 ◦ F(xv)]−1

×
[

h1 ◦ F(xu ∧ xv)−∑n1
i=1 q1i Br1i ,k1i ◦ F(xu)Br1i ,k1i ◦ F(xv)

λh′
1 ◦ F(xu)h′

1 ◦ F(xv)

+h2 ◦ F(xu ∧ xv)−∑n2
i=1 q2i Br2i ,k2i ◦ F(xu)Br2i ,k2i ◦ F(xv)

λh′
2 ◦ F(xu)h′

2 ◦ F(xv)

]

.

That is,
√

M(�̂ − �)
d→ Np(0, �).

Assume p ≥ 3. Let

A =

⎛

⎜
⎜
⎝

−1 1 0 · · · · · · 0
0 −1 1 0 · · · 0
...

...
...

...
...
...

0 0 · · · 0 −1 1

⎞

⎟
⎟
⎠

(p−1)×p

,

B = diag

(
1

x2 − x1
, . . . ,

1

x p − x p−1

)

(p−1)×(p−1)

and

C =

⎛

⎜
⎜
⎝

−1 1 0 · · · · · · 0
0 −1 1 0 · · · 0
...

...
...

...
...
...

0 0 · · · 0 −1 1

⎞

⎟
⎟
⎠

(p−2)×(p−1)

.

Under the null-hypothesis of location-scale shift H0 : F(x) = G((x − µ)/σ), we
have CBA� = 0. Hence,

√
MCBA�̂

d→ Np−2(0, (CBA)�(CBA)′).

One can construct a χ2-test for location-scale shift based on the above. For the spe-
cial case p = 3, this is equivalent to a Z -test. Note that in practice, the elements of
� = (σuv) will need to be replaced by their corresponding consistent estimators.
Estimation of the variance is discussed in Sect. 3.5.
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3.2 Confidence interval for �(x)

Putting p = 1 in Corollary 3, we see that for any x ∈ S(F),
√

M(�̂(x)−�(x))

σ�(x)
d→ N (0, 1),

where

σ 2
�(x)

=
⎡

⎣

∑n1
i=1 q1i

{
Br1i ,k1i ◦ F(x)− B2

r1i ,k1i
◦ F(x)

}

λ
{∑n1

i=1 q1i br1i ,k1i ◦ F(x)
}2

+
∑n2

i=1 q2i

{
Br2i ,k2i ◦ F(x)− B2

r2i ,k2i
◦ F(x)

}

(1 − λ)
{∑n2

i=1 q2i br2i ,k2i ◦ F(x)
}2

⎤

⎦

/
[
g ◦ G−1 ◦ F(x)

]2
.

Suppose σ̂ 2
�(x) is a consistent estimator of the above variance. Then, by Slutsky’s

Theorem, an asymptotic 100(1 − α)% pointwise confidence interval for �(x) is
�̂(x)±zα/2

σ̂�(x)√
M

. A simultaneous χ2
p-test for H0:F(xi ) = G(xi ) at some pre-spec-

ified points x1, . . . , xk can also be developed.

3.3 Control percentile test

Suppose F is the control population and G is the treatment population. One may
be interested in testing whether at a specified percentile value, the control and
treatment populations differ. The following Corollary to Theorem 2 is useful.

Corollary 4 For any p ∈ [a, b], we have
√

M(�̂(p)−�(p))

σ�(p)
d→ N (0, 1),

where

σ 2
�(p) =

{
g ◦ F−1(p)

f ◦ F−1(p)

}2
∑n1

i=1 q1i

{
Br1i ,k1i (p)− B2

r1i ,k1i
(p)
}

λ
{
h′

1(p)
}2

+
∑n2

i=1 q2i

{
Br2i ,k2i ◦ G ◦ F−1(p)− B2

r2i ,k2i
◦ G ◦ F−1(p)

}

(1 − λ)
{
h′

2 ◦ G ◦ F−1(p)
}2 .

As before, if σ̂ 2
�(p) is a consistent estimator of the variance, by Slutsky’s The-

orem, �̂(p) ± σ̂�(p)√
M

zα/2 is an approximate 100(1 − α)% confidence interval for

�(p). Since the covariance kernel of the limiting process in Theorem 2 is distri-
bution free under the null hypothesis H0: F = G, a Z -test or χ2-test for equality
of a fixed number of percentiles would not require estimation of the associated
variance. Estimation of σ 2

�(p) under the alternative is discussed in Sect. 3.5.
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3.4 The Wilcoxon–Mann–Whitney statistic

Let X and Y be independent GRSS from F and G, respectively. Let

T = 1

M

n1∑

i=1

n2∑

j=1

I (Y(r2i :k2i ) < X(r1 j :k1 j )) = 1

M
#(Y < X) (15)

denote the WMW statistic. We now present the asymptotic distribution of this
statistic.

Theorem 3 Let X and Y be independent GRSS from F and G, respectively, and
T be defined as in (15). Then,

√
M (T − θ)

d→ N (0, σ 2),

where

θ ≡ θ(F, G) =
1∫

0

h2 ◦ G ◦ F−1 ◦ h−1
1 (p)d p,

σ 2 = σ 2
1

λ
+ σ 2

2

1 − λ
,

with

σ 2
1 =

1∫

0

1∫

0

U1(x, y)× U2(x, y)× U3(x, y)dxdy,

U1(x, y) = x ∧ y −
n1∑

i=1

q1i Br1i , k1i (h
−1
1 (x))Br1i , k1i (h

−1
1 (y)),

U2(x, y) = h′
2 ◦ G ◦ F−1 ◦ h−1

1 (x)× h′
2 ◦ G ◦ F−1 ◦ h−1

1 (y)

h′
1 ◦ h−1

1 (x)× h′
1 ◦ h−1

1 (y)
,

U3(x, y) = g ◦ F−1 ◦ h−1
1 (x)× g ◦ F−1 ◦ h−1

1 (y)

f ◦ F−1 ◦ h−1
1 (x)× f ◦ F−1 ◦ h−1

1 (y)

and

σ 2
2

=
1∫

0

1∫

0

[

h2 ◦ G ◦ F−1 ◦ h−1
1 (x ∧ y)

−
n2∑

j=1

q2 j Br2 j , k2 j (G ◦ F−1 ◦ h−1
1 (x))Br2 j , k2 j (G ◦ F−1 ◦ h−1

1 (y))dxdy

⎤

⎦.
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In particular, under H0 : F = G, we have θ = ∫ 1
0 h2 ◦ h−1

1 (p)d p,

σ 2
1 =

1∫

0

1∫

0

x ∧ y −∑n1
i=1 q1i Br1i , k1i (h

−1
1 (x))Br1i , k1i (h

−1
1 (y))

h′
1 ◦ h−1

1 (x)× h′
1 ◦ h−1

1 (y)

×h′
2 ◦ h−1

1 (x)× h′
2 ◦ h−1

1 (y)dxdy

and

σ 2
2 =

1∫

0

1∫

0

[

h2 ◦ h−1
1 (x ∧ y)

−
n2∑

j=1

q2 j Br2 j , k2 j (h
−1
1 (x))Br2 j , k2 j (h

−1
1 (y))dxdy

⎤

⎦ .

For independent balanced ranked set samples, we have the following result.

Corollary 5 Let Xk1×m1 and Y k2×m2 be independent BRSS from F and G, respec-
tively. Then,

√
k1m1 + k2m2(T − P(Y < X))

d→ N (0, σ 2),

where

σ 2 = σ 2
1

λ
+ σ 2

2

1 − λ
,

σ 2
1 =

1∫

0

1∫

0

{

x ∧ y − 1

k1

k1∑

i=1

Bi, k1(x)Bi, k1(y)

}

× g ◦ F−1(x)g ◦ F−1(y)

f ◦ F−1(x) f ◦ F−1(y)
dxdy

and

σ 2
2 =

1∫

0

1∫

0

{

x ∧ y − 1

k2

k2∑

i=1

Bi, k2(G ◦ F−1(x))Bi, k2(G ◦ F−1(y))

}

dxdy.

In particular, under H0 : F = G, we have

√
k1m1 + k2m2

(

T − 1

2

)
d→ N

(

0,
1

6

{
1

λ(k1 + 1)
+ 1

(1 − λ)(k2 + 1)

})

.

(16)

Furthermore, if k1 = k2 = k, (16) is equivalent to
√
(

1

m1
+ 1

m2

)−1 (

T − 1

2

)
d→ N

(

0,
1

6k(k + 1)

)

. (17)
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It is easily verified that the results in Corollary 5 are asymptotically equivalent
to those obtained in Theorem 3.2 and Corollary 3.3 of Bohn and Wolfe (1992).
Note, however that λ in our calculations is related to the λ in their calculations
(denoted by λ∗ here) through λ = k1λ

∗
k1λ∗+k2(1−λ∗) .

Also note from Corollary 5 that,

ARE(TBRSS(k), TSRS) = k(k + 1)

2
.

Thus, the WMW Statistic based on BRSS with k1 = k2 = 2 is 150% efficient
compared to SRS. It should be kept in mind that TSRS is based on effective sample
size m1 + m2 whereas TBRSS is based on a sample of size k(m1 + m2). Estimation
of σ 2 is discussed below.

3.5 Estimation of variances

3.5.1 Horizontal shift

Let Q(p) = G−1(p) and q(p) be its derivative. To obtain a consistent estimator
of the asymptotic variance σ 2

�(x) or of quantities σuv , the first step is to obtain a
uniformly consistent estimator of q(p). Let k(·) be a non-negative kernel function
that vanishes outside [−1, 1] and satisfies

∫

k(u)du = 1,
∫

|u|k(u)du < ∞ and
∫

|k′(u)|du < ∞,

where k′(·) is the first derivative of k(·). Define

q̂(p) = −1

b2
m

1∫

0

Ĝ−1(s)k′
(

s − p

bm

)

ds, 0 < p < 1.

This is the derivative of the smoothed estimator of q(p) given by

Q̃(p) = 1

bm

1∫

0

Ĝ−1(s)k

(
s − p

bm

)

ds.

The bandwidth bm is chosen to converge to 0.
Under certain regularity conditions and bandwidth choices, it can be shown

using arguments similar to Lu et al. (1994) that q̂ weakly uniformly converges to q .
Also, F̂ is weakly uniformly consistent for F . Hence,

σ̂ 2
�(x) =

⎡

⎢
⎣

∑n1
i=1 q1i

{
Br1i ,k1i ◦ F̂(x)− B2

r1i ,k1i
◦ F̂(x)

}

λ
{∑n1

i=1 q1i br1i ,k1i ◦ F̂(x)
}2

+
∑n2

i=1 q2i

{
Br2i ,k2i ◦ F̂(x)− B2

r2i ,k2i
◦ F̂(x)

}

(1 − λ)
{∑n2

i=1 q2i br2i ,k2i ◦ F̂(x)
}2

⎤

⎥
⎦

/{
q̂(F̂(x))

}2

is a consistent estimator of σ 2
�(x). Estimation of σuv follows similarly.
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3.5.2 Vertical shift

Let F̃ and G̃ be the kernel-smoothed versions of F̂ and Ĝ and f̃ , g̃ be the corre-
sponding densities. Hence, for example,

F̃(x) = h−1
1

(
1

M1

M1∑

i=1

K ((x − Xi )/b1)

)

and

f̃ (x) = 1

h′
1(F̃(x))

1

b1 M1

M1∑

i=1

k

(

(x − Xi )/b1

)

where K (·) is the cdf corresponding to the kernel k(·). Using arguments similar to
Hall et al. (2004), we estimate the variance to be

σ̂ 2
�(p) =

{
g̃(F̃−1(p))

f̃ (F̃−1(p))

}2 ∑n1
i=1 q1i

{
Br1i ,k1i (p)− B2

r1i ,k1i
(p)
}

λ
{
h′

1(p)
}2

+
∑n2

i=1 q2i

{
Br2i ,k2i (G̃(F̃

−1(p)))− B2
r2i ,k2i

(G̃(F̃−1(p)))
}

(1 − λ)
{

h′
2(G̃(F̃

−1(p)))
}2 .

Then, the interval �̂(p)± σ̂�(p)√
M

zα/2 optimizes the coverage probability. Implemen-
tation of this procedure requires choosing 10 bandwidths which are done according
to the suggestions of Hall et al. (2004). They also suggest the use of the smoothed
versions of F̂ and Ĝ instead of the unsmoothed versions in the estimated vertical
shift curve, to give it a more regular appearance, especially in the case of small
sample sizes.

3.5.3 WMW test

Let R(p) = G ◦ F−1(p) and r(p) be its derivative. Let the smoothed estimate of
R be

R̃(p) = 1

bm

1∫

0

Ĝ ◦ F̂−1(s)k

(
s − p

bm

)

.

Define the estimated derivative of R as

r̂(p) = −1

b2
m

1∫

0

Ĝ ◦ F̂−1(s)k′
(

s − p

bm

)

ds.
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Under regularity conditions similar to Theorem 2 of Li et al. (1996), both R̃ and
r̂ are weakly uniformly consistent for the respective quantities. Since h1, h2 are
continuously differentiable, a consistent estimator of σ 2 is given by

σ̂ 2 = σ̂ 2
1

λ
+ σ̂ 2

2

1 − λ

with

σ̂ 2
1 =

1∫

0

1∫

0

x ∧ y −∑n1
i=1 q1i Br1i , k1i (h

−1
1 (x))Br1i , k1i (h

−1
1 (y))

h′
1 ◦ h−1

1 (x)× h′
1 ◦ h−1

1 (y)

×r̂ ◦ h−1
1 (x)× r̂ ◦ h−1

1 (y)× h′
2 ◦ R̃ ◦ h−1

1 (x)× h′
2 ◦ R̃ ◦ h−1

1 (y)dxdy,

and

σ̂ 2
2 =

1∫

0

1∫

0

⎡

⎣h2 ◦ R̃ ◦ h−1
1 (x ∧ y)

−
n2∑

j=1

q2 j Br2 j , k2 j (R̃ ◦ h−1
1 (x))Br2 j , k2 j (R̃ ◦ h−1

1 (y))dxdy

⎤

⎦ .

This estimator of σ may be used to estimate the power of the WMW test for
H0 : F = G.

4 Bootstrapped shift functions

Since the distributions of the limiting processes in Theorems 1 and 2 depend on
the unknown distributions F and G, the previous section used consistent estima-
tors of the variance function. For practical applications, one can use resampling
techniques such as the bootstrap to approximate these limiting distributions. In this
section, we introduce the bootstrap for GRSS and present some relevant results.
We will use ideas similar to Bickel and Freedman (1981). See also Chen (2001)
and Chen et al. (2004) for a short discussion on bootstrap for ranked set samples.

For a fixed i , we generate a bootstrap sample X∗
(r1i :k1i )1

, X∗
(r1i :k1i )2

, . . .,

X∗
(r1i :k1i )m1i

from F̂(r1i :k1i ). Repeating this over for i = 1, . . . , n1, we get a boot-
strapped GRSS X∗ from X . Similarly, we generate Y∗ from Y . Based on X∗, define
the bootstrapped versions of (5) and (6) as

F̂∗
q1
(x) =

n1∑

i=1

q1i F̂∗
(r1i :k1i )

(x)

and

F̂∗(x) = h−1
1 ◦ F̂∗

q1
(x),
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where F̂∗
(r1i :k1i )

(·) is the edf of the bootstrap sample {X∗
(r1i :k1i ) j }m1i

j=1. Also, based
on Y∗, define the bootstrapped versions of (8) and (9) as

Ĝ∗
q2
(x) =

n2∑

i=1

q2i Ĝ
∗
(r2i :k2i )

(x)

and

Ĝ∗(x) = h−1
2 ◦ Ĝ∗

q2
(x),

where Ĝ∗
(r2i :k2i )

(·) is the edf of the bootstrap sample {Y ∗
(r2i :k2i ) j }m2i

j=1.
Define the bootstrapped horizontal and vertical shift functions as

�̂∗(x) = Ĝ∗−1 F̂∗(x)− x, x ∈ S(F)

and

�̂∗(p) = Ĝ∗ ◦ F̂∗−1(p)− p, p ∈ [0, 1],
respectively.

Theorem 4 Suppose cα(�) is chosen such that for 0 < α < 1,

P

(√
M sup

x∈S(F)
|�̂∗(x)− �̂(x)| ≤ cα(�)

∣
∣
∣
∣X, Y

)

= 1 − α.

If M1
M → λ as m → ∞, then

P

(

�̂(x)− cα(�)√
M

≤ �(x) ≤ �̂(x)+ cα(�)√
M

∀x ∈ S(F)

)

→ 1 − α.

Theorem 5 Suppose cα(�) is chosen such that for 0 < α < 1,

P

(√
M sup

0≤p≤1
|�̂∗(p)− �̂(p)| ≤ cα(�)

∣
∣
∣
∣X, Y

)

= 1 − α.

If M1
M → λ as m → ∞, then

P

(

�̂(p)− cα(�)√
M

≤ �(p) ≤ �̂(p)+ cα(�)√
M

∀p ∈ [0, 1]
)

→ 1 − α.

Now, to construct a simultaneous 100(1 − α)% confidence band for �, one
would proceed as follows: first calculate �̂ based on X and Y . Draw bootstrap
samples X∗ and Y∗ and use them to calculate supx∈S(F)

√
M|�̂∗(x) − �̂(x)|.

Repeat this procedure for a large number (B, say) of times to get B such num-
bers. cα(�) is calculated to be the 100(1 − α)th percentile of these numbers. The
required bootstrap confidence band is then �̂± cα(�)√

M
.

Construction of a simultaneous 100(1 − α)% confidence band for � proceeds
similarly.
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5 Numerical studies

5.1 A simulation study

To further investigate the properties of the proposed test procedures, we resorted
to simulation studies. First, we used the χ2 test described in Sect. 3.2 to test for
equality of the two distributions. We chose F ∼ Weibull(θ, 1) and G ∼ Exponen-
tial(1). Testing was done based on balanced ranked set samples from the respective
populations. We chose p = 3 points to be the quartiles of the X -sample. Various
combinations of set size k and the Weibull shape parameter θ were used. The results
of an empirical power study based on 1,000 Monte Carlo simulations are presented
in Table 1. It is evident from the table that even by using BRSS with k1 = k2 = 2,
the power of the proposed test shows a drastic improvement over SRS both at the
null and alternative hypotheses. The improvement is more evident with higher set
size.

For this simulation study, we used the biweight kernel

k(x) = 15

16
(1 − x2)2, −1 < x < 1

with the bandwidth bm for estimating g ◦ G−1 chosen as

bm = min(IQR/1.349, sd)× (4/(3M1))
1/3

where IQR and sd are the interquartile-range and standard deviation, respectively
of the X-sample.

Next, we generated independent BRSS from F ∼ Weibull(1.5, 1) and G ∼
Exponential(1). Two cases were investigated: k1 = k2 = 1 and k1 = k2 = 10. In
each case, the BRSS used m1 = m2 = 30 replications. The resulting empirical
vertical shift functions (smoothed version), the 95% pointwise confidence limits
and 95% bootstrap confidence bands were also obtained. The bootstrap confidence
bands were based on 10, 000 replications. We also plotted the theoretical shift
functions in each case. The results are shown in Fig. 1. When k = 1, the 95%
confidence bands for the two plots include the y = 0 line and hence the data does
not provide enough evidence to conclude that the two distributions are different.
However, when k = 10, the bands become narrower and cross the y = 0 line,
implying that the distributions are different at 5% level of significance. The point-
wise confidence intervals were constructed using bandwidths chosen according to

Table 1 Simulated power of the χ2
3 test for H0 : F = G. Results are based on 1,000 simula-

tions with F ∼Weibull(θ, 1) and G ∼Exponential(1). All calculations are based on balanced
RSS with k1 = k2 = k and m1 = m2 = 30. Test used α = .05

k θ

0.5 1.0 1.5 2.0

1 0.574 0.114 0.181 0.333
2 0.778 0.074 0.265 0.638
5 0.998 0.048 0.719 0.991
10 1.000 0.046 0.999 1.000



774 K. Ghosh and R.C. Tiwari

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
2

0.
0

0.
2

0.
4

0.
6

p

La
m

bd
a(

p)

******************************
***********

*****************************************************
***

****

******************************
***********

*****************************************************
***

****

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
0

0.
1

0.
2

p

La
m

bd
a(

p)

**
*
**
**
***

*******************************************************************************
**********

*

*

**
*
**
**
***

*******************************************************************************
**********

*

*

k = 1

k = 10

(a)

(b)

Fig. 1 Estimating the vertical shift function � based on BRSS from F ∼ Weibull(1.5, 1) and
G ∼ Exponential(1). continuous line: �(x), dashed line: smoothed �̂(x), dotted line: 95%
pointwise confidence limits and ****: 95% bootstrap confidence bands

the recommendations in Hall and Hyndman (2003). The biweight kernel mentioned
earlier was used in all smoothing operations. As expected, the pointwise confidence
intervals are narrower than the confidence bands, but still may fail to reject H0 when
k1 = k2 = 1.
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5.2 Prostate cancer example

One of the measures of cancer burden is the number of deaths due to the
disease. With the introduction of the PSA screening test, the number of deaths
due to prostate cancer has dramatically gone down, thanks to the earlier detection
(and hence treatment). PSA was introduced in the early to mid 1990s, so its effec-
tiveness can be measured by comparing the mortality rates due to prostate cancer
before and after introduction of the test. We obtained the rates of prostate cancer
deaths in the USA (by county) for the two year-groups: 1990–1992 and 1999–2001
using Seer*Stat software available from http://www.seer.cancer.gov/seerstat/. The
mortality data are provided by the National Center for Health Statistics (NCHS)
(http://www.cdc.gov/nchs) which collects it from the death certificates filed for
each death. For each of the 2 year-groups, we found that there were a small per-
centage (e.g. ∼ 1−5%) of counties with zero death rates and few counties with
missing death rates. For this example, we ignored the counties with zero or missing
prostate cancer death rates, since the theoretical development of the shift functions
assumes that F and G are continuous. As a result, we obtained 3,041 counties for
1990–1992 and 3,017 counties from 1999 to 2001 with non-missing positive death
rates.

Let F denote the 1990–1992 prostate cancer mortality distribution and G
denote that for 1999–2001. First, we selected independent BRSS from the two
populations with k1 = k2 = 1 and m1 = m2 = 30. The WMW test for the
equality of the two distributions gave a z-value (corresponding p-value in paren-
thesis) of 1.881(.0599) and the Z -test for location-scale shift gave a z-value of
−0.3457(0.7296). We repeated the same process with independent BRSS with
k1 = k2 = 10 and m1 = m2 = 30. The corresponding z-values came out to
be 23.1175(0) and 0.075(0.9402), respectively. Thus, based on independent SRS,
we are unable to conclude that the distributions are different. However, the inde-
pendent BRSS with k1 = k2 = 10 provide us with strong evidence that the two
distributions are different but are location-scale shifts of each other. The findings
are supported by the side-by-side boxplots of the two populations given in Fig. 2.

6 Discussion and conclusion

In this article, we have discussed the theoretical aspects of shift-functions in non-
parametric two-sample problems based on independent ranked set samples. Our
results generalize those already known for SRS and show that one can improve
upon the inferential procedures by increasing the ranked set size “k” in BRSS,
whether one is working with the shift function as a whole, the function evaluated
at specific points, or, with its integral. The limiting distributions of the two shift
processes depend on the unknown F and G; hence one has to use resampling tech-
niques to construct tests or confidence bands. However, under the null hypothesis
H0 : F = G, the vertical shift function is asymptotically distribution free and
exact cut-offs can be obtained without resorting to resampling.

If one is interested in comparing he distributions F and G at the p th quantile
instead of over their common entire support, �(p) = G ◦ F−1(p) − p is the
quantity of interest. Based on independent BRSS Xk×m and Y k×m , we have from
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Fig. 2 Boxplots comparing prostate cancer mortality rates in the USA during 1990–1992 and
1999–2001

Corollary 2

√
km(�̂BRSS(p)−�(p))

d→ N (0, 2σ 2
BRSS(p)),

where

σ 2
BRSS(p) =

{

p − 1

k

k∑

i=1

B2
i, k(p)

}

.

On the other hand, if one decides to use independent nomination samples consist-
ing of the sample pth quantiles (based on samples of size k) as the nominee, we
have from Theorem 2

√
m(�̂NOM(p)−�(p))

d→ N (0, 2σ 2
NOM(p)),

where

σ 2
NOM(p) =

{
B[pk]+1, k(p)− B2[pk]+1, k(p)

b2[pk]+1, k(p)

}

and bm, n(x) denotes the Beta(m, n −m +1) density at x . The asymptotic relative
efficiency (ARE) of �̂NOM(p) with respect to �̂BRSS(p) is given by

ARE(�̂NOM(p), �̂BRSS(p)) = σ 2
BRSS(p)

kσ 2
NOM(p)

= h(p) say.

A plot of h(p) against p for different values of k appears in Fig. 3a, suggesting
that BRSS is asymptotically more efficient than NOM. Note, however, that BRSS
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is based on an “effective sample size” of 2km while NOM is based on an “effective
sample size” of 2m. Hence, to make the ARE comparison fair, we should have
NOM based on km replicates (instead of m). The revised plot incorporating this
correction appears in Fig. 3b. It is apparent that in this adjusted setup, NOM is more
efficient than BRSS. Thus, if one is interested in comparing a particular percentile
point of the two distributions, it is more advantageous to use nomination sampling
based on the same sample size as BRSS.

Note that in each of the graphs, the ARE is maximized at p = 1/2 and increases
with k. Table 2 gives the ARE at p = 1/2 for selected values of k. It is interesting
to note that the jump in efficiency is twofold by moving from SRS to the case with
k = 2. The case with k = 2 is the most practical one to use, since it requires sorting
only two observations at a time.

The asymptotic results obtained in this paper can be used to derive the limiting
distributions of various test statistics that are based on the notion of “divergence”
between F and G such as the functional

∫ {G ◦ F−1(p)}2d p or the Kolmogo-
rov–Smirnov distance supx |F(x)− G(x)|. One can also use the results to obtain
the asymptotic distribution of the crossing point of two distributions as discussed
in Hawkins and Kochar (1991). The results may also be extended to the case of
multiple comparisons, where instead of two samples, one may have independent
ranked set samples from several distributions, possibly along the lines of Nair
(1982). It would be interesting to investigate the behavior of these processes under
imperfect ranking or to extend the results when F is a nonparametric distribution
and G is a parametric distribution or to the case when the two GRSS are randomly
right censored. The latter extensions should be straightforward and can be carried
out along the lines of Lu et al. (1994) and Li et al. (1996, 1999).

Note that the horizontal shift functions have easily distinguishable features for
location-scale models and are natural candidates for detecting them. However, the
limiting distribution of the horizontal shift function, even under the null hypothesis
F = G depends on the unknown F and G, which need to be estimated from the
data. In contrast, the vertical shift process, under the null hypothesis, is asymptot-
ically distribution free, making it statistically more reliable.

In the numerical studies in Sect. 5, we compared results based on SRS and
BRSS with k = 10. Our calculations showed that inferences based on BRSS were
more powerful than those based on SRS of the same size. It should be noted that this
is based on the assumption that cost of sampling (and ranking) a unit is negligible
compared to measuring it based on the attribute of interest. Hence, even though
one needs to sample k2 units to obtain a BRSS of size k, the cost is no more greater
than obtaining an SRS of size k. In situations where that is not the case, one would

Table 2 Asymptotic relative efficiency of NOM with respect to BRSS in estimating vertical shift
at the median. Calculations are based on equal sample sizes

k ARE(NOM, BRSS)

1 100.00
2 200.00
5 288.96
10 440.19
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need to take into account the cost considerations to make an appropriate decision.
Further research is needed to incorporate the cost structure into the decision-making
process and is beyond the scope of the current paper.

Finally, it would be more interesting to think of other applications such as com-
paring the cancer incidences of two groups where complete data is not available
due to lack of a national registry and to apply the proposed method.

Appendix: Proofs

Proof of Lemma 1 By standard result on empirical processes (see, for example
Billingsley, 1968, Theorem 16.4), as m1 → ∞, we have independently for each i ,

√
m1i (F̂(r1i :k1i ) − F(r1i :k1i ))

d→ Wi ,

where Wi is a zero-mean Gaussian process with covariance kernel

Ki (x, y) = F(r1i :k1i )(x ∧ y)− F(r1i :k1i )(x)F(r1i :k1i )(y).

Since the map (x1, . . . , xn1) 
→ x1 + · · · + xn1 is continuous, we get (see
Billingsley, 1968, Theorem 5.1)

√
M1(F̂q1

− Fq1
) = √

M1

n1∑

i=1

q1i (F̂(r1i :k1i ) − F(r1i :k1i ))

=
n1∑

i=1

√
m1i (F̂(r1i :k1i ) − F(r1i :k1i ))

q1i√
m1i/M1

d→
n1∑

i=1

√
q1i Wi

de f n= WF , say. (18)

It is easily verified that WF is a zero-mean Gaussian process with covariance kernel
given by (12).

Since h1 is differentiable on (0, 1) with a non-vanishing derivative and is
continuous at both the end points, by the mean value theorem, for all x

F̂(x)− F(x) = h−1
1 ◦ F̂q1

(x)− h−1
1 ◦ Fq1

(x)

= (F̂q1
(x)− Fq1

(x))
1

h′
1 ◦ h−1

1 ◦ F̃q1
(x)

,

where F̃q1
(x) ∈ l(F̂q1

(x), Fq1
(x)), the line segment joining F̂q1

(x) and Fq1
(x).

By Glivenko–Cantelli theorem, as m1 → ∞, we have for each i ,

sup
x

∣
∣
∣F̂(r1i :k1i )(x)− F(r1i :k1i )(x)

∣
∣
∣

a.s.→ 0.
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Hence,

sup
x

∣
∣
∣F̂q1

(x)− Fq1
(x)
∣
∣
∣ = sup

x

∣
∣
∣
∣
∣

n1∑

i=1

q1i (F̂(r1i :k1i )(x)− F(r1i :k1i )(x))

∣
∣
∣
∣
∣

≤
n1∑

i=1

q1i sup
x

|F̂(r1i :k1i )(x)− F(r1i :k1i )(x)|
a.s.→ 0. (19)

Hence,

sup
x

∣
∣
∣F̃q1

(x)− Fq1
(x)
∣
∣
∣ ≤ sup

x

∣
∣
∣F̂q1

(x)− Fq1
(x)
∣
∣
∣

a.s.→ 0. (20)

By continuity of h′
1 ◦ h−1

1 on [0, 1], we have

sup
x

∣
∣
∣
∣
∣

1

h′
1 ◦ h−1

1 ◦ F̃q1
(x)

− 1

h′
1 ◦ F(x)

∣
∣
∣
∣
∣

= sup
x

∣
∣
∣
∣
∣

1

h′
1 ◦ h−1

1 ◦ F̃q1
(x)

− 1

h′
1 ◦ h−1

1 ◦ Fq1
(x)

∣
∣
∣
∣
∣

a.s.→ 0. (21)

Combining (18) and (21) yields

√
M1(F̂ − F)

d→ WF

h′
1 ◦ F

.

The proof of (11) is identical. The proof of (14) follows directly from the indepen-
dence of the two limiting processes. ��

Lemma 2 Let φ : D(R)× D(R) → D(R) be defined by

φ(F, G) = G−1 ◦ F.

Then the Hadamard derivative of φ at (F, G) tangentially to (h, k) is given by

dφ(F, G) . (h, k) = h − k ◦ G−1 ◦ F

g ◦ G−1 ◦ F
.

Proof of Lemma 2 Let B1 = D(R), B2 = D(R). Take any sequence (hn, kn) ∈
B1 × B2 and an ∈ R such that (hn, kn)

‖·‖∞→ (h, k) ∈ C([F−1(a), F−1(b)]) ×
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C([F−1(a), F−1(b)]) and an → 0 as n → ∞. Now,

∥
∥
∥
∥
φ((F, G)+ an(hn, kn))− φ(F, G)

an
− h − k ◦ G−1 ◦ F

g ◦ G−1 ◦ F

∥
∥
∥
∥

≤ sup
t

∣
∣
∣
∣
(G + ankn)

−1 ◦ (F + anhn)(t)− G−1 ◦ (F + anhn)(t)

an

+ k ◦ G−1 ◦ F(t)

g ◦ G−1 ◦ F(t)

∣
∣
∣
∣

+ sup
t

∣
∣
∣
∣
G−1 ◦ (F + anhn)(t)− G−1 ◦ F(t)

an
− h(t)

g ◦ G−1 ◦ F(t)

∣
∣
∣
∣

= sup
t

∣
∣
∣
∣

(
(G + ankn)

−1 − G−1

an
+ k ◦ G−1

g ◦ G−1

)

◦ (F + anhn)(t)

∣
∣
∣
∣

+ sup
t

∣
∣
∣
∣

(
k ◦ G−1

g ◦ G−1

)

◦ (F + anhn)(t)−
(

k ◦ G−1

g ◦ G−1

)

◦ F(t)

∣
∣
∣
∣

+ sup
t

∣
∣
∣
∣
G−1 ◦ (F + anhn)(t)− G−1 ◦ F(t)

an
− h(t)

g ◦ G−1 ◦ F(t)

∣
∣
∣
∣

≤
∥
∥
∥
∥
(G + ankn)

−1 − G−1

an
+ k ◦ G−1

g ◦ G−1

∥
∥
∥
∥∞

+ sup
t

∣
∣
∣
∣

(
k ◦ G−1

g ◦ G−1

)

◦ (F + anhn)(t)−
(

k ◦ G−1

g ◦ G−1

)

◦ F(t)

∣
∣
∣
∣

+ sup
t

∣
∣
∣
∣

hn(t)

g ◦ G−1 ◦ F̃(t)
− h(t)

g ◦ G−1 ◦ F(t)

∣
∣
∣
∣ , (22)

where F̃(t) ∈ l(F(t), F(t)+ anhn(t)). Since hn
‖·‖∞→ h, an → 0 and g and k are

continuous, we have all the three terms in (22) converging to zero. ��
Lemma 3 Let B1 = D(R), B2 = D[F−1(a), F−1(b)] and B3 = D[a, b], where
R = [−∞, ∞] and 0 < a < b < 1. Let C(R) denote the subspace of continuous
functions in B1. Define φ : B1 × B2 → B3 by

φ(F, G) = G ◦ F−1.

Suppose F is continuously differentiable on R with positive derivative, and G is
continuously differentiable on R. Then, φ is compactly differentiable at (F, G)
tangentially to C([F−1(a), F−1(b)])× C([F−1(a), F−1(b)]) and the derivative
is given by

dφ(F, G) . (h, k) = −h ◦ F−1

f ◦ F−1 g ◦ F−1 + k ◦ F−1

for (h, k) ∈ C([F−1(a), F−1(b)]) × C([F−1(a), F−1(b)]), where f is the
ordinary derivative of F and g is the ordinary derivative of G.
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Proof of Lemma 3 Take any sequence (hn, kn) ∈ B1 × B2 and an ∈ R such

that (hn, kn)
‖·‖∞→ (h, k) ∈ C([F−1(a), F−1(b)]) × C([F−1(a), F−1(b)]) and

an → 0 as n → ∞. Now,

φ((F, G)+ an(hn, kn))− φ(F, G)

an

= (G + ankn) ◦ (F + anhn)
−1 − G ◦ F−1

an

= G ◦ (F + anhn)
−1 + ankn ◦ (F + anhn)

−1 − G ◦ F−1

an

= G ◦ (F + anhn)
−1 − G ◦ F−1

an
+ kn ◦ (F + anhn)

−1

= (F + anhn)
−1 − F−1

an
g ◦ F−1

n + kn ◦ (F + anhn)
−1,

where F−1
n is a function on [a, b] such that F−1

n (p) is between F−1(p) and
(F + anhn)

−1(p).

Let F̃(t) = F(t)+ anhn(t) and J = [F−1(a), F−1(b)]. Since hn
‖·‖∞→ h, we

have

sup
t∈J

∣
∣
∣
∣
∣

F̃(t)− F(t)

an
− h(t)

∣
∣
∣
∣
∣
→ 0.

Hence,

sup
p∈[a, b]

∣
∣
∣
∣
∣

F̃ ◦ F−1(p)− F ◦ F−1(p)

an
− h ◦ F−1(p)

∣
∣
∣
∣
∣
→ 0.

That is,

sup
p∈[a, b]

∣
∣
∣
∣
∣

F̃ ◦ F−1(p)− p

an
− h ◦ F−1(p)

∣
∣
∣
∣
∣
→ 0.

Since h is continuous, using arguments similar to Vervaat (1972), we have for every
ε > 0,

sup
p∈[a, b−ε]

∣
∣
∣
∣
∣

F ◦ F̃−1(p)− p

an
+ h ◦ F−1(p)

∣
∣
∣
∣
∣
→ 0. (23)

Note that, by the mean value theorem,

F ◦ F̃−1(p)− p = F ◦ F̃−1(p)− F ◦ F−1(p)

= (F̃−1(p)− F−1(p)) f (ηp), (24)

where ηp ∈ l(F̃−1(p), F−1(p)). From (23), we also have

sup
p∈[a, b−ε]

|F ◦ F̃−1(p)− p| → 0,
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from which it follows that

sup
p∈[a, b−ε]

|ηp − F−1(p)| → 0. (25)

From (23), (24) and (25), we get

sup
p∈[a, b−ε]

∣
∣
∣
∣
∣

F̃−1(p)− F−1(p)

an
f (ηp)+ h ◦ F−1(p)

∣
∣
∣
∣
∣
→ 0.

Since f is continuous and positive,

sup
p∈[a, b−ε]

∣
∣
∣
∣
∣

F̃−1(p)− F−1(p)

an
+ h ◦ F−1(p)

f ◦ F−1(p)

∣
∣
∣
∣
∣
→ 0. (26)

Also, since the above is true for every ε > 0, we have

(F + anhn)
−1 − F−1

an

‖·‖∞→ − h ◦ F−1

f ◦ F−1 .

Since F̃−1 ‖·‖∞→ F−1 and g is continuous, we have from (26)

g ◦ F̃−1 ‖·‖∞→ g ◦ F−1.

Finally,

sup
p∈[a, b−ε]

|kn ◦ (F + anhn)
−1(p)− k ◦ F−1(p)|

≤ sup
p∈[a, b−ε]

|kn ◦ (F + anhn)
−1(p)− k ◦ (F + anhn)

−1(p)|

+ sup
p∈[a, b−ε]

|k ◦ (F + anhn)
−1(p)− k ◦ F−1(p)|

≤ ‖kn − k‖∞ + sup
p∈[a, b−ε]

|k ◦ (F + anhn)
−1(p)− k ◦ F−1(p)| → 0

since kn
‖·‖∞→ k, k is continuous and (F + anhn)

−1 ‖·‖∞→ F−1. Combining all of the
above, the result follows. ��
Proof of Theorem 1 Use Lemmas 1, 3 and the functional δ method of Gill (1989)
and Andersen et al. (1992). ��
Proof of Theorem 2 Use Lemmas 1, 2 and the functional δ method of Gill (1989)
and Andersen et al. (1992). ��
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Proof of Theorem 3 Note that T can be alternately written as

T =
1∫

0

E DFY ◦ E DF−1
X (p)d p.

Also recall that

E DFX (x) = F̂q1
(x)+ op(1) = h1 ◦ F̂(x)+ op(1).

Hence,

T =
1∫

0

h2 ◦ Ĝ ◦ F̂−1 ◦ h−1
1 (p)d p + op(1).

Defining

φ(S) = h2 ◦ S ◦ h−1
1 ,

we have from Theorem 2 and the functional δ method of Gill (1989),

√
M(φ(�̂)− φ(�))

d→ h′
2 ◦� ◦ h−1

1 × Z�, GRSS ◦ h−1
1 .

Note that
∫ 1

0 h2 ◦ Ĝ ◦ F̂−1 ◦ h−1
1 (p)d p = ∫

φ(�̂)(p)d p. By another application

of the functional δ method with ψ(S) = ∫ 1
0 S(p)d p, we get the desired result. ��

Proof of Corollary 5 For BRSS, h1(x) = h2(x) = x . The rest follows directly
from Theorem 3. ��
Lemma 4 Suppose that

√
M((F̂, Ĝ)− (F, G))

d→
(

WF

h′
1 ◦ F

,
WG

h′
2 ◦ G

)

.

Let F̂∗ and Ĝ∗ be the bootstrap versions of F and G, respectively. Letφ : B1 → B2
is compactly differentiable at (F, G), and let ψ : B2 → R be measurable and
continuous in a subset of B2. Then,

L∗ (ψ
(√

M
(
φ(F∗, G∗)− φ(F̂, Ĝ)

)))

P→ L

(

ψ

(

dφ(F, G)

(
WF

h′
1 ◦ F

,
WG

h′
2 ◦ G

)))

,

where L and L∗ denote, respectively, the “law” of the original samples X, Y and
the bootstrapped samples X∗, Y∗.
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Proof of Lemma 4 By the Skorohod–Dudley–Wichura (SDW) representation
theorem (see, for example Billingsley, 1968), we can construct a sequence (F̂ ′, Ĝ ′)
d= (F̂, Ĝ) with

√
M((F̂, Ĝ)− (F, G))

‖·‖∞→ (U ′, V ′) a.s.

where W ′ d= W . Let F̂ ′∗, Ĝ ′∗ be the bootstrap versions based on F̂ ′, Ĝ ′. Then,

√
M((F̂ ′∗, Ĝ ′∗)− (F̂ ′, Ĝ ′)) d→ W ∗ d= W ′.

By SDW again, we can get F̂ ′∗′ d= F̂ ′∗ and Ĝ ′∗′ d= Ĝ ′∗ such that

√
M((F̂ ′∗′ − Ĝ ′∗′

)− (F̂ ′, Ĝ ′)) ‖·‖∞→ W ∗′ d= W ∗ a.s.

Hence,
√

M(F̂ ′∗′
, Ĝ ′∗′

)− (F, G)
‖·‖∞→ W ∗′ + W ′

and
√

M((F̂ ′, Ĝ ′)− (F, G))
‖·‖∞→ W ′.

Hence,
√

M
{
φ(F̂ ′∗′

, Ĝ ′∗′
)− φ(F̂ ′, Ĝ ′)

}

= √
M
{
φ(F̂ ′∗′

, Ĝ ′∗′
)− φ(F, G)

}
− √

M
{
φ(F̂ ′, Ĝ ′)− φ(F, G)

}

‖·‖∞→ dφ(F, G)(W ∗′ + W ′)− dφ(F, G)(W ′)
= dφ(F, G)(W ∗′

) a.s.

Since ψ is continuous at dφ(F, G)(W ) a.s.,

ψ
[√

m
{
φ(F̂ ′∗′

, Ĝ ′∗′
)− φ(F̂ ′, Ĝ ′)

}] ‖·‖∞→ ψ
[
dφ(F, G)(W ∗′

)
]

a.s.

Since

ψ[√M{φ(F̂ ′∗′
, Ĝ ′∗′

)− φ(F̂ ′, Ĝ ′)}] d= ψ[√M{φ(F̂ ′∗, Ĝ ′∗)− φ(F̂ ′, Ĝ ′)}],
we have

ψ[√M{φ(F̂ ′∗, Ĝ ′∗)− φ(F̂ ′, Ĝ ′)}] d→ ψ[dφ(F, G)(W )]
Hence,

d〈L∗[ψ[√M{φ(F̂ ′∗, Ĝ ′∗)− φ(F̂ ′, Ĝ ′)}]], L[ψ{dφ(F, G)(W )}]〉 a.s.→ 0.

Since (F̂, Ĝ)
d= (F̂, Ĝ), we have

d〈L∗[ψ[√M{φ(F̂∗, Ĝ∗)− φ(F̂, Ĝ)}]], L[ψ{dφ(F, G)(W )}]〉 P→ 0.

��
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Theorem 6 Let g◦G−1(·) be continuous and bounded away from zero on [a2, b2].
Then, as m → ∞,

√
M(�̂∗ − �̂)

d→ Z�,

where Z� is as in Theorem 1.

Proof of Theorem 6 Follows from Lemma 4 and Theorem 1 using φ(F, G) =
G−1 ◦ F and ψ ≡ identity . ��
Theorem 7 As m → ∞,

√
M(�̂∗ − �̂)

d→ Z�,

where Z� is as in Theorem 2.

Proof of Theorem 7 Follows from Lemma 4 and Theorem 2 using φ(F, G) =
G ◦ F−1 and ψ ≡ identity .
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