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Abstract Toric models have been recently introduced in the analysis of
statistical models for categorical data. The main improvement with respect to
classical log-linear models is shown to be a simple representation of structural
zeros. In this paper we analyze the geometry of toric models, showing that a
toric model is the disjoint union of a number of log-linear models. Moreover, we
discuss the connections between the parametric and algebraic representations.
The notion of Hilbert basis of a lattice is proved to allow a special representation
among all possible parametrizations.

Keywords Contingency tables · Hilbert basis · log-linear models · polynomial
algebra · structural zeros · sufficient statistic · toric ideals

1 Introduction

In the past few years, the application of new algebraic non-linear techniques to
Probability and Statistics have been presented. Here we follow the polynomial
representation of random variables on discrete sample spaces as introduced in
Pistone et al. (2001a) and we study some algebraic and geometrical properties
of a class of models introduced as toric models in Pistone et al. (2001b), showing
the links between toric models and log-linear models. See also Diaconis and
Sturmfels (1998), where algebraic techniques were used for the first time in the
analysis of contingency tables.

The polynomial Algebra is used here to describe the geometrical structure
of the statistical toric models on finite sample spaces. The first works in this
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direction, but limited to the analysis of graphical models, are Geiger et al.
(2002) and Garcia et al. (2005).

In this paper we consider a general finite sample space and we use algebraic
techniques in order to obtain a description of the notion of sufficiency. We
show the connections between the parametric representation and the binomial
representation of a toric model. In particular, we study the boundary of the
toric model, and the problem of structural zeros. We present new results which
lead to a parametrization with major properties, see Theorem 4. A number
of classical examples of log-linear models (independence, quasi-independence,
quasi-symmetry) are revisited in order to show the relevance of our analysis.

The term “toric” comes from Commutative Algebra, because of the algebraic
structure of the probabilities. In Commutative Algebra, toric ideals describe the
algebraic relations among power products and in toric models the probabilities
are expressed in terms of power products. See also Sturmfels (1996) and Bigatti
and Robbiano (2001), where toric ideals are studied in details.

Working in the non-negative case, in Sect. 2 we recall some background
material. In Sect. 3, we introduce the class of toric models, both parametric
and binomial, and we present the first results on the relationships between the
two representations. Moreover, we study the behavior of the sufficient statistic
under the sampling, generalizing a result on the exponential models. In Sect. 4,
we study the geometry of toric models and we show that toric models are not
exponential models, but they are disjoint union of log-linear models, i.e., disjoint
union of exponential models. In Sect. 5 we analyze the problem of structural
zeros and its connection with the parametrization of the model. In Sect. 6, we
show that the parametrization plays a fundamental role, and we define a special
parametrization based on the notion of Hilbert basis of a lattice and we show
its properties. Finally, in Sect. 7 we show a detailed example from the classical
literature on log-linear models.

2 Notation and background material

Consider a statistical model on a finite sample space X . Although in contin-
gency tables the sample space is usually a Cartesian product (for example in
the two-way case is a space of the form {(i, j) | i = 1, . . . I, j = 1, . . . , J}), we
assume here, without loss of generality, a generic list of points X , with #X = k.
The sample points are denoted by x ∈ X .

A probability distribution on X is characterized by the value of the parame-
ters px = P[x] for all x ∈ X . In this paper we use the vector notation, that is p
is the k-dimensional vector (px, x ∈ X ). The parameter space for the saturated
model is given by the simplex px ≥ 0, x ∈ X and

∑
x∈X px = 1. A statistical

model is a variety of that simplex. Here we assume that the model is described
by a set of polynomial equations. This means that the model is defined through
the conditions f1(p) = 0, . . . , fm(p) = 0, where f1, . . . , fm are polynomials. The
variety of the simplex is the subset of the simplex where all f1, . . . , fm vanish.
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Let us consider a statistical model on the sample space X of the form

px = Pφ[x] = φ(T(x)), x ∈ X (1)

where T : X −→ N
s is the vector of integer valued components of the sufficient

statistic. Here N denotes the set of non-negative integer numbers. In general
φ ∈ �, where� is a subset of functions from N

s to R. In point of fact, the range
of T is a finite subset T ⊂ N

s.
The set � defines a subset M of the space of the probabilities, and we refer

to this subset as to a statistical model. In other words, M is a subset defined
through

M = {p : p = φT, φ ∈ �} .

By the well known factorization theorem, T is a sufficient statistic of this model.

3 Parametric and binomial toric models

We specialize Eq. (1), by assuming that there exists a parametrization with
non-negative parameters ζ1, . . . , ζs such that the probabilities assume the form

px = L(ζ , x)
∑

y∈X L(ζ , y)
, (2)

with L(ζ , x) = ζT(x). Here T(x) = (T1(x), . . . , Ts(x)) and
∑

y∈X L(ζ , y) is the
normalizing constant. Consistently with the vector notation, ζT(x) denotes the
monomial ζT1(x)

1 · · · ζTs(x)
s . Apart from the normalizing constant, the function

L(ζ , x) is the likelihood of the statistical model.
It is known, see Pistone et al. (2001a,b), that the probabilities expressed in

the form (2) lead to a binomial representation of the statistical model, called
toric model.

We recall briefly the construction of the relevant binomials. For the basic
Commutative Algebra we refer to Kreuzer and Robbiano (2000).

Consider the polynomial ring Q[p, ζ ], i.e. the set of all polynomials in the
indeterminates p1, . . . , pk, ζ1, . . . , ζs. Define the binomials px − L(ζ , x), x ∈ X
and take the ideal I generated by such binomials.

The relevant set of binomials B is obtained by elimination of the ζ indeter-
minates, see Pistone et al. (2001a). B is a set of generators of the ideal

IM = Elim(ζ , I) (3)

It is known that the set of generators is not unique. Among others, we consider
here B as a Gröbner basis of the ideal IM, see Sturmfels (1996) for algebraic
details. The computation of the elimination ideal in Eq. (3) and its Gröbner basis
can be performed with symbolic software, such as CoCoA, see CoCoATeam
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(2004). In point of fact, there exist other methods for the computation of the
relevant ideal. The elimination method cited here is the simplest, while other
methods based on the algebraic technique of saturation are faster and com-
putationally feasible. For a review on such methods, see for example Rapallo
(2003).

Definition 1 If a statistical model M consists of all probability functions of the
form in Eq. (2), then we say that the model is a parametric toric model.

Example 1 Following Pistone et al. (2001a), we show the computation of the
binomial for the classical 4-cycle, the conditional independence model for
4 binary random variables X1, X2, X3, X4, see Lauritzen (1996). Here X =
{1, 2}4. The model is defined through the conditional independence statements
X1⊥X3|{X2, X4} and X2⊥X4|{X1, X3}. The parametric toric model is expressed
for example by the set of equations below.

p1111 = ζ0

p2111 = ζ0ζ1

p1211 = ζ0ζ2

p1121 = ζ0ζ3

p1112 = ζ0ζ4

p2211 = ζ0ζ1ζ2ζ5

p2121 = ζ0ζ1ζ3

p2112 = ζ0ζ1ζ4ζ6

p1221 = ζ0ζ2ζ3ζ7

p1212 = ζ0ζ2ζ4

p1122 = ζ0ζ3ζ4ζ8

p2221 = ζ0ζ1ζ2ζ3ζ5ζ7

p2212 = ζ0ζ1ζ2ζ4ζ5ζ6

p2122 = ζ0ζ1ζ3ζ4ζ6ζ8

p1222 = ζ0ζ2ζ3ζ4ζ7ζ8

p2222 = ζ0ζ1ζ2ζ3ζ4ζ5ζ6ζ7ζ8

In the statistical model, the coding {1, 2} is merely a notational fact. More-
over, the conditional independence statements are invariant under the shift of
indices. Thus, all equations have to be invariant under the action of the group
(S2)

4 × C4, where S2 is the group of permutations over the set of codings {1, 2}
and C4 is the cyclic sub-group of S4 generated by the permutation (2, 3, 4, 1).
(S2)

4 acts componentwise on the indices, while C4 naturally acts as permutation
over four elements. The use of symmetries and group actions in this context is
carefully discussed in Aoki and Takemura (2005). We exploit this fact in order
to give a synthetic description of the ideal. In particular, the following binomials
and their orbits give a system of generators of the elimination ideal in Eq. (3):

• p1111p1212 − p1211p1112 (orbit of cardinality 8);
• p1112p1221p2122 − p1121p2112p1222 (orbit of cardinality 16);
• p1111p1221p1212p2122 − p1211p1121p2112p1222 (orbit of cardinality 32);
• p2111p1221p1212p2122 − p1211p2121p2112p1222 (orbit of cardinality 8).

For a discussion on the meaning of such binomials, see Pistone and Wynn
(2003) and Sturmfels (2002). In this paper we investigate deeply the relation-
ships between the parametric representations and the binomial representation.

In Definition 1, the ζ parameters are unrestricted, except the non-negativity
constraint. Note that in general a toric model is bigger than the exponential
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model, as we do not assume positive probabilities, and with the constraint
px > 0 for all x ∈ X it is a log-linear model. Let M>0 be the subset of the toric
model M with the restriction px > 0 for all x ∈ X . Then

log px =
∑

j

(log ζj)Tj(x)+ log ζ0 ,

where ζ0 = (
∑

x L(ζ , x))−1 is the normalizing constant. M>0 is a log-linear, and
thus an exponential model with sufficient statistic T and canonical parameters
log ζj, j = 1, . . . , s.

Note that the representation of the toric model in Eq. (2) points to the notion
of multiplicative form of a log-linear model, see for example Goodman (1979).

Example 2 Denote by IA the indicator function of the set A (i.e. IA(x) = 1 if
x ∈ A and IA = 0 otherwise). A first example of toric model is a model with
sufficient statistic consisting of the counts over the sets A1, . . . , As ⊆ X , possibly
overlapping:

T : x �−→ (
IA1(x), . . . , IAs(x)

)

In most examples in the literature X ⊆ {1, . . . , I1} × · · · × {1, . . . , Id} is a d-way
array, possibly incomplete.

Example 3 A second example is a log-linear model of the type

log Pψ(x) =
s∑

i=1

ψiTi(x)− k(ψ) (4)

with integer valued Ti’s and parameters ψ = (ψ1, . . . ,ψs), see Fienberg (1980).
Note that in Eq. (1) the strict positivity implied by the log-linear model in
Eq. (4) is not assumed.

For simplicity we state the following definition for the binomial representa-
tion of a toric model.

Definition 2 Given a parametric toric model, the corresponding binomial toric
model is the zero set of the polynomial ideal defined in Eq. (3).

The connections between the two representations of toric models will be
analyzed in the next sections. The following Lemma shows a first relationship
among parametric toric models and binomial toric models.

Lemma 1 Given a parametric toric model, the corresponding binomial toric
model contains the parametric model.

Proof Let γ : R
s
≥0 −→ R

n be the function such that γ (ζ ) = (px(ζ ), x ∈ X ) and
let V(IM) be the zero set of the ideal IM. It is enough to prove that γ (Rs

≥0) ⊆
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V(IM). By definition IM = Elim(ζ , I), where I = Ideal(px − px(ζ ), x ∈ X ). If
p = p(γ ) ∈ γ (Rs

≥0), for all polynomial g ∈ IM ⊂ I there exist polynomials
qx(p, ζ ), x ∈ X such that

g =
∑

x∈X
qx(p, ζ )(px − px(ζ ))

and thus g = 0, as all terms (px − px(ζ )) vanish. �	
It is known that different parametrizations can lead to the same set of binomi-

als, i.e. to the same binomial toric model. Thus, we state the following definition.

Definition 3 Two parametric toric models are said to be b-equivalent if they have
the same binomial representation.

A number of parametrizations exist for the same binomial toric model. How-
ever, the different parametrizations allow differences only on the boundary of
the model.

Lemma 2 Two b-equivalent parametric toric models restricted to M>0 define the
same variety.

Proof In the strictly positive case the parametric toric model assumes the form
log p = T log ζ , where T is the matrix of the exponents of the monomials. Let

log p = T log ζ and log p = T̃ log ζ̃ (5)

be two b-equivalent parametric toric models. From Theorem 2.10 in Bigatti
and Robbiano (2001) follows that Image(T) = Image(T̃) and then there exists
parameters ζ and ζ̃ such that the relationships in Eq. (5) are both verified. �	
Example 4 Consider the simple case of the independence model for 2×2 tables.
The binomial toric model is given by the binomial

p11p22 − p12p21

and the following two parametric toric models are b-equivalent:

(p11, p12, p21, p22) = (ζ0, ζ0ζ1, ζ0ζ2, ζ0ζ1ζ2) or (ζ0ζ2, ζ0ζ3, ζ1ζ2, ζ1ζ3) . (6)

The second parametrization is used in many books, see for example Agresti
(2002).

In view of Lemmas 1 and 2, it is clear why we use the analysis of parametric
toric models in order to study the structural zeros.

Consider the problem of sampling. It is easy to generalize a result well-known
in the case of exponential models, that is when we suppose px > 0 for all x ∈ X .
We denote by (x1, . . . , xN) a sample of size N drawn from a vector (X1, . . . , XN)



Toric statistical models 733

of independent and identically P-distributed random variables with values in
X . As the probabilities can be written in the form

px = ζ0ζ
T1(x)
1 · · · ζTs(x)

s

the probability of a sample (x1, . . . , xN) is

px1 · · · pxN = ζN
0 ζ

∑
i T1(xi)

1 · · · ζ
∑

i Ts(xi)
s

i.e., the sufficient statistic for the sample of size N is the sum of the sufficient
statistics of the N components of the sample. Note that this result is formally
the same as in the positive case where the theory of exponential models applies.
The proof can be carried out by straightforward computation. In fact, the j-th
component of the sufficient statistic for the sample of size N can be written as

∑

i

Tj(xi) =
∑

a∈X
Tj(a)Fa(x1, . . . , xN)

where

Fa(x1, . . . , xN) =
N∑

i=1

Ia(xi)

is the count of the cell a.

4 Geometry of toric models

Define the matrix AT in the following way. AT is a matrix with k rows and s col-
umns and its generic element AT(i, j) is Tj(xi) for all i = 1, . . . k and j = 1, . . . , s.

If ηj = E(Tj) are the expectation parameters and p is the row vector of the
probabilities, then

η = pAT (7)

The matrix AT can also be used in order to describe the geometric structure
of the statistical model. First, we can state the following result.

Proposition 1 Choose a parameter ζj and take the set X ′ of points x ∈ X such
that Tj(x) > 0. Suppose that X ′ �= X . If we set ζj = 0, we obtain a model on the
remaining sample points and this model is again a toric model.
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Proof Without loss of generality, suppose j = 1 and T1(x) = 0 for i = 1, . . . , k′
and T1(x) > 0 for i = k′ + 1, . . . , k. The matrix AT can be partitioned as

AT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
... A′

T
0
∗
...
∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where ∗ denotes non-zero entries. Now, the matrix A′
T is non-zero and it is the

representation of a toric model on the first k′ sample points. �	
Thus, the geometric structure of the toric model is an exponential model

and at most s toric models with (s − 1) parameters on appropriate subsets of
the sample space X . Moreover, by applying recursively the above theorem we
obtain the following result.

Theorem 1 Let ζj1 , . . . , ζjr be a set of parameters and take the set X ′ of points
x ∈ X such that Tib(x) > 0 for at least one b ∈ {1, . . . , r} and Tib(x) = 0 for all
b = 1, . . . , r and x ∈ X − X ′. Suppose that X ′ �= X . If we set ζjb = 0 for all
b = 1, . . . , r, we obtain a toric model on the remaining sample points.

Proof Apply b times Proposition 1. �	
These results lead to a geometrical characterization of a toric model.

Theorem 2 A toric model is the disjoint union of exponential models.

Proof The result follows from the application of Theorem 1 for all possible sets
of parameters ζj1 , . . . , ζjb for which X ′ �= X . �	
Example 5 Consider the independence model for 3 × 2 tables. The matrix rep-
resentation of the sufficient statistic is

AT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0
1 0 0 0 1
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the toric model is, apart from the normalizing constant,

(p11, p12, p21, p22, p31, p32) = (ζ1ζ4, ζ1ζ5, ζ2ζ4, ζ2ζ5, ζ3ζ4, ζ3ζ5) .

If ζ > 0 we have the log-linear model. Moreover, we can choose the following
sets X ′ in Theorem 1:
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• X ′ = {(1, 1), (1, 2)} corresponding to ζ1 = 0. In this cases we obtain the
independence model for the 2 × 2 table X − X ′. Similarly for ζ2 = 0 and
ζ3 = 0;

• X ′ = {(1, 1), (2, 1), (3, 1)} corresponding to ζ4 = 0. In this case we obtain the
multinomial model for the second column. Similarly for ζ5 = 0.

• X ′ = {(1, 1), (1, 2), (2, 1), (2, 2)} corresponding to ζ1 = ζ2 = 0. In this case we
obtain the Bernoulli model for the third row. Similarly for ζ1 = ζ3 = 0 and
ζ2 = ζ3 = 0.

• X ′ = {(1, 1), (1, 2), (2, 1), (3, 1)} corresponding to ζ1 = ζ4 = 0 and similarly
for ζ1 = ζ5 = 0, ζ2 = ζ4 = 0, ζ2 = ζ5 = 0, ζ3 = ζ4 = 0 and ζ3 = ζ5 = 0. In
this case we obtain 6 Bernoulli models on the columns of the independence
models found above.

• corresponding to the six conditions ζ1 = ζ2 = ζ4 = 0, ζ1 = ζ2 = ζ5 = 0,
ζ1 = ζ3 = ζ4 = 0, ζ1 = ζ3 = ζ5 = 0, ζ2 = ζ3 = ζ4 = 0 and ζ2 = ζ3 = ζ5 = 0
we obtain 6 trivial distributions on one sample point.

The toric model is then formed by 21 models: the log-linear model on 6
points, 3 models on 4 points, 2 models on 3 points, 9 models on 2 points and 6
trivial models on 1 point.

5 Structural zeros

The procedure in Theorem 1, applied as in Example 5 can also be used to define
the admissible sets of structural zeros.

Definition 4 A subset X ′ ⊂ X is an admissible set of structural zeros for a para-
metric toric model with parameters ζ1, . . . , ζs if there exist parameters ζi1 , . . . , ζir
such that the condition of Theorem 1 holds.

Now, we consider the behavior of the η-parametrization in the different expo-
nential models. Starting from the representation of the η parameters as function
of the ζ parameters in Eq. (7), we can easily prove that the η parametrization
is coherent, as stated in the following proposition.

Proposition 2 The η parameters for the reduced models are the same as in the
exponential case, provided that a component is fixed to zero.

Proof For the proof, it is enough to combine the linear relation between η and
ζ given in Eq. (7) and Theorem 1. �	

Related work about the relationships among the parametrizations and the
exponential family are presented in Geiger et al. (2001). Moreover, in the
strictly positive case, the geometry of independence and conditional indepen-
dence models is analyzed in the context of graphical models in Geiger et al.
(2002).
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6 Analysis of parametric toric models

The geometric representation of the structural zeros as presented in the previ-
ous definition needs some further discussions. Let us consider a simple example.

Example 6 Consider the independence model for 2 × 2 contingency tables and
its two parametrizations in Eq. (6). The parametric toric models are different.
In fact, the second parametrization contains for example the Bernoulli model
on the two points (1, 1) and (1, 2), while the first parametrization does not.

Now, consider the binomial equations obtained from a toric model by elimi-
nation of the ζ indeterminates as described in Sect. 3. In this way we obtain a set
of binomials which defines a statistical model, but in general the binomial toric
model differs from the parametric toric model. The binomial model is indepen-
dent on the parametrizations and it can allow some boundaries excluded from
the parametric model, as in the previous example.

Moreover, we can also restate the definition of set of structural zeros for a
binomial toric model.

Definition 5 Let B be the set of binomials defined by elimination as described
in Sect. 3. A subset X ′ ⊂ X is an admissible set of structural zeros independent
from the parametrization if the polynomial system B = 0 together with px = 0
for all x ∈ X ′ has a non-negative normalized solution.

In order to show the difference between Definitions 4 and 5, let us discuss
the following example.

Example 7 Consider the parametric toric model of independence for 2 × 2
contingency tables with the parametrization

(p11, p12, p21, p22) = (ζ0, ζ0ζ1, ζ0ζ2, ζ0ζ1ζ2)

and binomial representation

B = {p11p22 − p12p21} .

The set X ′ = {(1, 1), (1, 2)} is an admissible set of structural zeros independent
from the parametrization as (p11, p12, p21, p22) = (0, 0, 1/2, 1/2) is a non-negative
normalized solution of B = 0, but it is not an admissible set of structural
zeros for this parametrization as p11 = 0 implies ζ0 = 0 which in turn implies
(p11, p12, p21, p22) = (0, 0, 0, 0).

In general, it is difficult to find a parametrization such that the parametric
form of the toric model contains all the exponential sub-models.

Definition 6 If a parametrization defines a parametric toric model which con-
tains all the exponential sub-models, we say that the parametrization is a full
parametrization.
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In view of Example 6 and Definition 6, it follows that not all matrix rep-
resentations of the sufficient statistic are equivalent. In general there is an
infinite number of non-negative integer valued bases of the sub-space spanned
by T, but not all of these contains all the exponential sub-models. This hap-
pens because the columns of the matrix AT are defined in the vector space
framework, but in the power product representation we need non-negative
exponents and then we need linear combinations with non-negative integer
coefficients. In general, it is difficult to find a full parametrization, but it is easy
to characterize all the parametrizations which lead to a given binomial toric
model.

Theorem 3 Let AT be the matrix representation of the sufficient statistic of a toric
model. If v1, . . . , vs is a non-negative integer system of generators of the image of
AT, then

px = ζ
v1(x)
1 · · · ζ vs(x)

s

for x ∈ X is a parametrization and all parametrizations of this kind lead to the
same binomial toric model.

Proof Let Av be the matrix formed by the column vectors v1, . . . , vs, i.e., Av =
(v1, . . . , vs). By the definition of the v’s it follows that Image(AT) = Image(As)

and thus the kernels of the systems Av = 0 and AT = 0 are the same. As a
consequence of the construction of the toric ideals presented in Sect. 3, the toric
models defined through AT and Av are represented by the same binomials. �	

Among others, one can consider the image of AT as a lattice and then con-
sider a Hilbert basis of such lattice. We look at AT as an operator from N

k to N
s.

The corresponding linear system has natural coefficients and we are interested
in its solution with natural components.

Definition 7 Let S ⊆ N
k be the set of integer solutions of a diophantine system

pAT = 0. A set of integer vectors H = {v1, . . . , vh} is a Hilbert basis of S if for all
β ∈ S

β =
∑

v∈H
cvv

where cv ∈ N.

The notion of Hilbert basis has major applications both in combinatorics and
integer programming. It is known that such a set H exists and is unique. The
number of elements in H in general differs from the dimension of the image
of AT as vector sub-space. For details about the properties of the Hilbert basis
and the algorithms for its computation, see Sturmfels (1993) and Kreuzer and
Robbiano (2005).
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Theorem 4 Let v1, . . . , vs be the columns of the matrix AT and suppose that
{v1, . . . , vs} is the Hilbert basis of the image of AT. Then the parametrization

px = ζ
v1(x)
1 · · · ζ vs(x)

s

for x ∈ X is the bigger parametrization of the toric model.

Proof Consider another parametrization

px = θ
u1(x)
1 · · · θut(x)

t

As {v1, . . . , vs} is a Hilbert basis, any ui(x) can be written in the form

ui(x) =
s∑

j=1

ci,jvj(x)

with non-negative integer coefficients ci,j. Thus,

px = θ
u1(x)
1 · · · θut(x)

t = θ

∑s
j=1 c1,jvj(x)

1 · · · θ
∑s

j=1 ct,jvj(x)
t =

rearranging the exponents

=
(

t∏

i=1

θ
ci,1
i

)v1(x)

· · ·
(

t∏

i=1

θ
ci,s
i

)vs(x)

and the result is proved. �	
The Hilbert basis can be computed using symbolic software, for example the

free software 4ti2, see Hemmecke et al. (2005).

Example 8 Consider again the simple independence model for 2 tables of
Examples 4 and 6. The image of AT is generated by the three vectors u1 =
(1, 1, 1, 1)t, u2 = (1, 0, 1, 0)t and u3 = (0, 0, 1, 1)t. The vectors u1, u2, u3 generate
the first parametrization in Eq. (6). The Hilbert basis of the image of AT con-
sists of the four vectors v1 = (1, 1, 0, 0)t, v2 = (0, 0, 1, 1)t, v3 = (1, 0, 1, 0)t and
v4 = (0, 1, 0, 1)t. These vectors lead to the second parametrization in Eq. (6).

7 A final example

Classical books on log-linear models state that the quasi-independence model is
equivalent to the quasi-symmetry model in the case of 3 × 3 contingency tables,
see for example Agresti (2002), page 427. We shortly recall two such models.
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In the usual notation for log-linear models, see for example Bishop et al.
(1975), the quasi-independence model has the form

logµij = λ+ λX
i + λY

j + δiI{i=j} (8)

where the µij’s are the expected frequencies, the λX
i ’s are the effects of the first

variable X with values 1, . . . , 3, the λY
j ’s are the effects of the second variable

Y with values 1, . . . , 3 and the δi’s are the effects of the diagonal cells (here the
indicator I{i=j} equals 1 when i = j and 0 otherwise).

The quasi-symmetry model has the form

logµij = λ+ λX
i + λY

j + λij (9)

with λij = λji for all i, j = 1, . . . , 3.
Using the technique described in Example 3, one can found the parametric

toric models. For the quasi-independence model the following parametrization
comes out:

(p11, p12, p13, p21, p22, p23, p31, p32, p33)

= (ζ1ζ4ζ7, ζ1ζ5, ζ1ζ6, ζ2ζ4, ζ2ζ5ζ8, ζ2ζ6, ζ3ζ4, ζ3ζ5, ζ3ζ6ζ9) . (10)

The binomial toric model is represented by one binomial. In fact, applying the
elimination algorithm, we find:

Bqi = {p12p23p31 − p13p21p32} (11)

For the quasi-symmetry, the parametric representation is

(p11, p12, p13, p21, p22, p23, p31, p32, p33)

= (ζ1ζ4ζ7, ζ1ζ5ζ10, ζ1ζ6ζ11, ζ2ζ4ζ10, ζ2ζ5ζ8, ζ2ζ6ζ12, ζ3ζ4ζ11, ζ3ζ5ζ12, ζ3ζ6ζ9)

(12)

and the binomial toric model is again:

Bqs = Bqi = {p12p23p31 − p13p21p32} (13)

The two parametric toric models are b-equivalent, but the boundaries differ.
For instance, the set X ′ = {(1, 3), (3, 1)} is a set of structural zeros for the
quasi-symmetry model, but it does not for the quasi-independence model.
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