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Abstract For a multidimensional contingency table, we obtain several necessary
and sufficient conditions for collapsibility and strict collapsibility, using the tech-
nique of Möbius inversion formula. As a consequence, the results of Whittemore
(Journal of the Royal Statistical Society B, 40, 328–340, 1978) are stated in a
form which is easy to understand and the proofs are much simpler and straight-
forward. Several new results on collapsibility and strict collapsibility with respect
to more than one interaction parameter, are established, and their relationships
to conditional independence are also pointed out. As applications of our results,
several typical examples on collapsibility, strict collapsibility and conditional inde-
pendence are discussed. It is also shown that Bishop et al. (Discrete Multivariate
Analysis: Theory and Practice, MIT Press, Cambridge, 1975) conditions are nec-
essary and sufficient for strict collapsibility with respect to a set of interaction
factors.

Keywords Collapsibility · Conditional independence · Contingency table ·
Log-linear model · Möbius inversion · Simpson’s paradox · Strict collapsibility

1 Introduction

The analysis of a large dimensional contingency table, using a log-linear model
or other approach is quite involved. It is often very helpful to reduce the dimen-
sion of the table or convenient to look at the condensed (summed over certain
variables) table. In a condensed table, some extraneous association between the
remaining variables may be introduced or an original relationship between cer-
tain variables may be lost and/or the monotonicity of certain dependence between
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variables may also be reversed. This paradox, due to Simpson (1951), known as
Simpson’s paradox. See, also, Lindley and Novick (1981) and Shapiro (1982) and
Cox and Wermuth (2003) for more examples. However, there are certain tables
which do not exhibit Simpson’s paradox. In such cases, it is advantageous to con-
dense (more technically, collapse) the original table, especially when the observed
counts are small in many cells of the table (Ducharme and Lepage 1986). Hence,
it is of practical importance to identify tables which are collapsible. In view of
recent advances in information technology, there is a huge amount of data avail-
able, and the problems of data mining have become statistically challenging ones.
Hence, collapsibility may also be viewed as a “dimension reduction problem” or
condensation of the data. For example, Wermuth (1987) studied the parametric
collapsibility with respect to odds ratio and relative risk, and Guo and Geng (1995)
discussed the collapsibility conditions for logistic regression coefficients. Whitte-
more (1978) obtained, for a n-dimensional table (that is, the data on n-categorical
variables), some necessary and sufficient conditions for collapsibility and strict
collapsibility. However, the results are rather difficult to understand, as they are
based on certain functional representations. The proofs of some of the results are
also difficult, because of the algebraic approach adopted there. Our collapsibility
results are based on interaction factors, appearing in the log-linear models, rather
than in terms of certain arbitrary functions. In this paper, we adopt a novel approach
based on Möbius inversion formula, which is a well-known technique in combi-
natorial methods (Charalambides, 2002). Note that the use of Möbius inversion is
not new in statistics. In fact, it is used as an essential step for proving Hammers-
ley–Clifford theorem (Lauritzen, 1996, p. 36 or Hammersley and Clifford 1971)
which is fundamental for the whole field of graphical models.

In Sect. 2, the log-linear model and some basic results on interaction factors
are presented. In Sect. 3, we obtain a set of equivalent conditions for collapsibility.
As a consequence, Whittemore’s (1978) necessary and sufficient conditions for
collapsibility are stated in a compact form involving interaction factors, and the
proofs are also simple and straightforward. Even for moderately large dimensional
contingency tables, it is of practical importance to collapse the table with respect
to more than one interaction factor. There are no such results available in the liter-
ature. We obtain necessary and sufficient conditions for collapsibility with respect
to τL , where L ⊆ A (with |A| = r ), and k ∈ L , and also for the case { j, k} ∈ L .
As applications, suitable examples are also illustrated. In Sect. 4, we obtain sim-
ilar results for strict collapsibility, and bring out their relationship to conditional
independence of two variables, given other variables, for an n-dimensional table.
Using this result, we show that Bishop et al. (1975) conditions are necessary and
sufficient for strict collapsibility with respect to a set of parameters.

2 The log-linear model for an n-dimensional table

We start with the following result, called Möbius inversion theorem (Lauritzen
1996, p. 239) which is used as an important tool for analyzing the log-linear mod-
els, interaction factors and proving some results on collapsibility. For more details
on posets and properties of Möbius functions, the reader is referred to Charalam-
bides (2002, p. 167).
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Lemma 2.1 Let f and g be functions defined on a locally finite poset P containing
a zero element 0. Then

f (x) =
∑

y≤x

g(y), ∀x ∈ P, (1)

if and only if

g(x) =
∑

y≤x

µ(y, x) f (y), ∀x ∈ P,

where µ(x, y) is the Möbius function. If f and g satisfy Eq. (1), then we call ( f, g)
a Möbius pair.

Remark 2.1 Let P be a finite poset with the partial order relation ⊆ (is a subset of)
and be denoted by (P, ⊆). In that case, the Möbius function is,

µ(A, B) =

⎧
⎪⎨

⎪⎩

1, if A = B
(−1)|B−A|, if A ⊂ B
0, if A �⊆ B.

Let n̄ = {1, 2, . . . , n}. Let X1, . . . , Xn be n categorical variables with the sup-
port S(X j ) = m̄ j , for 1 ≤ j ≤ n. Let i = (i1, . . . , in) denote a cell of the
n-dimensional table, where 1 ≤ ik ≤ mk . Let p(i) be the probability that the
individual observation X = (X1, . . . , Xn) falls in the i-th cell, that is, p(i) =
p(i1, . . . , in) = P(X1 = i1, · · · , Xn = in). Assume p(i) > 0 and

∑
p(i) = 1.

Define l(i) = ln p(i). For example, when n = 3 (3-dimensional table), the log-
linear model is defined as (see, Bishop et al., 1975, p. 33

l(3)(i1, i2, i3) = τ
(3)
123(i1, i2, i3) + τ

(3)
12 (i1, i2) + τ

(3)
13 (i1, i3) + τ

(3)
23 (i2, i3)

+ τ
(3)
1 (i1) + τ

(3)
2 (i2) + τ

(3)
3 (i3) + τ

(3)
φ

=
∑

A

τ
(3)
A (i A),

where A is any subset of {1, 2, 3}. Also, it can be seen that, for example

l̃(3)
12 (i1, i2) := 1

m3

∑

i3

l(3)(i1, i2, i3),

= τ
(3)
12 (i1, i2) + τ

(3)
1 (i1) + τ

(3)
2 (i2) + τ

(3)
φ

=
∑

Z⊆{1,2}
τ

(3)
Z (iZ ).
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Consider next the n-dimensional contingency table with

l(n)(i) = l(i1, · · · , in) = ln(p(i1, · · · , in)).

Let

l(n)(i) =
∑

Z⊆n̄

τ
(n)
Z (iZ )

be the log-linear model, where τ
(n)
A (i A) denotes the r -factor interaction, if |A|=r .

For example, when n̄ = {1, 2, . . . , 10}, and A = {1, 3, 5}, then τ
(n)
A (i A) =

τ
(10)
135 (i1, i3, i5) denotes the three factor interaction between X1, X3 and X5. In

fact, our aim is to first obtain τ
(n)
Z (iZ ) and establish its properties. Define

l̃(n)
A (i A) = 1∏

j∈Ac m j

∑
i j : j∈Ac

l(n)(i). (2)

Then, as observed in three-dimensional table,

l̃(n)
A (i A) =

∑

Z⊆A

τ
(n)
Z (iZ ), ∀A ⊆ n̄. (3)

Indeed, we will prove this result rigorously later (see Lemma 2.3), after obtaining
the expression for τZ (iZ ).

Considering the poset (P, ⊆), and l̃ A as the function on (P, ⊆), we obtain from
Eq. (3), using Möbius inversion theorem (see Remark 2.1),

τ
(n)
A (i A) =

∑

Z⊆A

µ(Z , A)l̃(n)
Z (iZ ) =

∑

Z⊆A

(−1)|A−Z |l̃(n)
Z (iZ ), ∀ A ⊆ n̄. (4)

Note that by Möbius inversion theorem (see Lemma 2.1), Eq. (3) holds if and only
if Eq. (4) holds. Observe also that Möbius inversion can not be applied directly to
l(n)(i) to obtain the form of τ

(n)
A .

Remark 2.2 Whittemore (1978) defined first τ (n)
A (i A), given in Eq. (4), as a straight-

forward extension, and later remarked that l(i) = ∑
Z⊆n̄ τZ (iZ ). However, our

approach is more direct, simpler and brings out various hidden properties of the
interaction factors and log-linear models.

We next establish some basic properties of τA’s.

Lemma 2.2 Let A = {1, . . . , r}. Then, the interaction parameters τ
(n)
A , defined in

Eq. (4), satisfies

∑

ik

τ
(n)
A (i A) = 0, ∀k ∈ A.
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Proof Let Ak = A \ {k}, and Zk be any subset of Ak . From Eq. (4),

∑

ik

τ
(n)
A (i A) =

∑

ik

∑

Z⊆A

(−1)|A−Z |l̃Z (iZ )

=
∑

ik

⎡

⎣
∑

Z⊆A;k∈Z

(−1)|A−Z |l̃Z (iZ ) +
∑

Z⊆A;k �∈Z

(−1)|A−Z |l̃Z (iZ )

⎤

⎦

= mk

⎧
⎨

⎩
∑

Z⊆A;k∈A

(−1)|A−Z |
⎛

⎝ 1

mk

∑

ik

l̃Z (iZ )

⎞

⎠+
∑

Z⊆A;k �∈Z

(−1)|A−Z |
⎛

⎝ 1

mk

∑

ik

l̃Z (iZ )

⎞

⎠

⎫
⎬

⎭

= mk

⎧
⎨

⎩
∑

Zk⊆Ak

(−1)|Ak−(Zk∪k)|l̃Zk (iZk ) +
∑

Zk⊆Ak

(−1)|Ak−Zk |l̃Zk (iZk )

⎫
⎬

⎭

= mk

⎧
⎨

⎩
∑

Zk⊆Ak

[
(−1)|Ak−(Zk∪k)| + (−1)|Ak−Zk |] l̃Zk (iZk )

⎫
⎬

⎭

= 0,

which completes the proof. �

Note that the above result is true for any interaction factor τ
(n)
A , where A is any

subset of n̄.

Remark 2.3 Whittemore (1978) first proved the above result for an n-dimensional
table. However, her proof is complicated as it uses her Lemma 3.1 which is rather
involved. Our proof is simpler, straightforward, and uses the only fact {Z |Z ⊆ A;
k ∈ Z} = {Zk ∪ {k}|Zk ⊆ Ak}.
The next lemma shows another interesting property of log-linear model.

Lemma 2.3 Let τZ (iZ ), Z ⊆ n̄, satisfy Lemma 2.2, Then, the log-linear model

l(n)(i) =
∑

Z⊆n̄

τ
(n)
Z (iZ ) (5)

if and only if

l̃A(i A) =
∑

Z⊆A

τ
(n)
Z (iZ ), ∀A ⊆ n̄, (6)

where l̃(n)
A is defined in Eq. (2).

Proof Let

l(n)(i) =
∑

Z⊆n̄

τ
(n)
Z (iZ ),
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where the τ
(n)
Z satisfy Lemma 2.2, and m A = ∏

j∈Ac m j . From Eq. (2),

l̃(n)
A (i) = 1

m A

∑

i j : j∈Ac

l(n)(i),

= 1

m A

∑

i j : j∈Ac

∑

Z⊆n̄

τ
(n)
Z (iZ )

= 1

m A

⎡

⎣
∑

i j : j∈Ac

⎧
⎨

⎩
∑

Z :Z∩Ac=φ

τ
(n)
Z (iZ ) +

∑

Z :Z∩Ac �=φ

τ
(n)
Z (iZ )

⎫
⎬

⎭

⎤

⎦

=
∑

Z⊆A

τ
(n)
Z (iZ ) + 1

m A

∑

Z :Z∩Ac �=φ

⎧
⎨

⎩
∑

i j : j∈Zc∩Ac

∑

i j : j∈Z∩Ac

τ
(n)
Z (iZ )

⎫
⎬

⎭

=
∑

Z⊆A

τ
(n)
Z (iZ ),

since
∑

i j : j∈Z∩Ac τ
(n)
Z (iZ ) = 0, by Lemma 2.2. The sufficiency part trivially fol-

lows by taking A = n̄. �

The above lemma justifies our approach of assuming Eq. (3) and obtaining the
representation for τ

(n)
A , given in Eq. (4), using the Möbius inversion formula.

3 Collapsibility

In this section, we obtain some necessary and sufficient conditions for collapsibility
for an n-dimensional contingency table. First we introduce the basic notations.

Let A = {a1, . . . , ar }, and B = {a1, . . . , ar , ar+1, . . . , as}, where |A| = r ≤
s = |B| < n, be any two subsets of n̄. Let now

pB(iB) =
∑

i j : j∈Bc

p(i)

denote the cell probabilities of the marginal (condensed over Bc) table. Define,
similarly,

l(s)(i) = ln(pB(iB))

and

l̃(s)Z (iZ ) = 1∏
j∈B\Z m j

∑

i j : j∈B\Z

l(s)(i), (7)

where Z ⊆ B. Let

l(s)(i) =
∑

Z⊆B

η
(s)
Z (iZ )
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be the log-linear model for the marginal table. It follows from Lemma 2.3 that,

l̃(s)A (i A) =
∑

Z⊆A

η
(s)
Z (iZ ) (8)

for every A ⊆ B. Note in general η
(s)
Z �= τ

(n)
Z , defined in Eq. (5).

The following definition is due to Whittemore (1978) and is sometimes also
called model-collapsibility.

Definition 3.1 (Collapsibility) An n-dimensional table is collapsible (over Bc) to
an s-dimensional table with respect to τ

(n)
A , A ⊆ B, if

τ
(n)
A (i A) = η

(s)
A (i A) for all i A.

Let now

d(B)(iB) = ln(pB(iB)) − l̃(n)
B (iB) = l(s)(i) − l̃(n)

B (iB) (9)

and for any Z ⊆ B

d̃(B)
Z (iZ ) = 1∏

j∈B\Z m j

∑

i j : j∈B\Z

d(B)(iB). (10)

The following result characterizes the situations under which collapsibility holds
with respect to τ

(n)
A , A ⊆ B.

Theorem 3.1 Let l(n)(i) = ∑
Z⊆n̄ τ

(n)
Z (iZ ), and l(s)(i) = ∑

Z⊆B η
(s)
Z (iZ ) be

respectively the log-linear models for an n-dimensional and the marginal s-dimen-
sional tables. Let δZ = (η

(s)
Z − τ

(n)
Z ), for Z ⊆ B. Then the following conditions

are equivalent:

(i) δA(i A) = 0;
(ii) d̃(B)

A (i A) = ∑
Z⊂A δZ (iZ );

(iii)
∑

Z⊆A(−1)|A−Z |d̃(B)
Z (iZ ) = 0,

where d̃(B)
Z is defined in Eq. (10), and A ⊆ B.

Proof From Eq. (9),

l(s)(i) = l̃(n)
B (iB) + d(B)(iB). (11)

Also, for any Z ⊆ B, we have from Eqs. (7), (10) and (11)

l̃(s)Z (iZ ) = 1∏
j∈B\Z m j

∑

i j : j∈B\Z

{
l̃(n)
B (iB) + d(B)(iB)

}

= l̃(n)
Z (iZ ) + d̃(B)

Z (iZ )
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which, using Eqs. (6) and (8), leads to

d̃(B)
Z (iZ ) = l̃(s)Z (iZ ) − l̃(n)

Z (iZ ) (12)

=
∑

X⊆Z

(η
(s)
X (iX ) − τ

(n)
X (iX ))

=
∑

X⊆Z

δX (iX ). (13)

Applying Möbius inversion formula to Eq. (13), with Z = A,

δA(i A) =
∑

Z⊆A

(−1)|A−Z |d̃(B)
Z (iZ ). (14)

Thus, (i)⇐⇒(ii) follows from Eq. (13) and (i)⇐⇒(iii) follows from Eq. (14). �

Remark 3.1 The equivalence of (i) and (i i) is similar to Theorem 2 of Whittemore
(1978). But, her result involves sums of certain functions which are not specifically
stated. Whereas, our conditions are more explicit and involve only the interaction
functions, which are easy to understand.

Next we obtain a necessary and sufficient condition for collapsibility with
respect to more than one parameter.

First note that a log-linear model l(n)(i) = ∑
Z⊆n̄ τ

(n)
Z is said to be hierarchical

if τ
(n)
B �= 0 �⇒ τ

(n)
A �= 0 for A ⊂ B or equivalently τ

(n)
C = 0 �⇒ τ

(n)
D = 0

for D ⊃ C (See, Whittaker 1990 or Simonoff 2003, p. 319). Consider now the
following table:

X4 1 2
X3 1 2 1 2

X2
X1 1 2 1 2 1 2 1 2
1 30 120 2 16 16 65 1 9
2 490 400 10 55 80 65 2 9

Consider the hierarchical log-linear model [12][23][34], namely,

l(4)(i)=τ
(4)
φ +τ

(4)
1 (i)+τ

(4)
2 ( j)+τ

(4)
3 (k)+τ

(4)
4 (l)+τ

(4)
12 (i, j)+τ

(4)
23 ( j, k)+τ

(4)
34 (k, l).

Then the expected numbers (cell counts) for the above data (Andersen, 1990, p.
233) under the model [12][23][34] are:

X4 1 2
X3 1 2 1 2

X2
X1 1 2 1 2 1 2 1 2
1 30.43 119.56 1.8 16.37 16.58 65.15 .98 8.92
2 489.54 400.32 10.33 54.82 79.45 64.97 1.68 8.9
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For the above table, we obtain

τφ =3.1567, τ1(1)=1.333, τ2(1)=−0.6308, τ3(1)=−0.5653, τ4(1)=0.6064;
τ12(1, 1) = 0.339, τ23(1, 1) = −0.2638, τ34(1, 1) = −0.3028.

Suppose we collapse the table over X2. Then for marginal table

η
(3)
13 (1, 1)=−0.126, η

(3)
14 (1, 1)=0, η

(3)
34 (1, 1)=−0.3028, η

(3)
4 (1) = 0.6064.

Thus, we see that Simpson’s paradox occurs, since there is no or weak (condi-
tional) association between X1 and X3 in the original table, but strong association
between those variables in the marginal table. However, if one is interested in
studying relationships between X4 and other variables, (e.g., conditional indepen-
dence between X4 and X1), then the table can be collapsed into a 3-dimensional
table with respect to τL , where L ⊆ {1, 3, 4} and {4} ∈ L .

The above example motivates the following general result.

Theorem 3.2 Let B ⊂ n̄ with |B| = s < n, and A ⊆ B. An n-dimensional
table is collapsible (over Bc) into s-dimensional table with respect to the set Ck =
{τ (n)

L |{k} ⊆ L ⊆ A} of interaction factors if and only if

d̃(B)
A (i A) = d̃(B)

Ak
(i Ak ), (15)

where Ak = A \ {k} and 1 ≤ k ≤ s.

Proof Using Eq. (12), the condition

d̃(B)
Ak

(i Ak ) = d̃(B)
A (i A)

is equivalent to

l̃(n)
A (i A) − l̃(n)

Ak
(i Ak ) = l̃(s)A (i A) − l̃(s)Ak

(i Ak ),

as A and Ak are subsets of B. Using Eqs. (6) and (8), the above equation is equiv-
alent to

∑

Z⊆A

τ
(n)
Z (iZ ) −

∑

Z⊆Ak

τ
(n)
Z (iZ ) =

∑

Z⊆A

η
(s)
Z (iZ ) −

∑

Z⊆Ak

η
(s)
Z (iZ ),

or, equivalently,
∑

Z⊆Ak

τ
(n)
Z∪k(iZ , ik) =

∑

Z⊆Ak

η
(s)
Z∪k(iZ , ik). (16)

We next show that Eq. (16) holds if and only if the n-dimensional table is collapsible
with respect to τ

(n)
L , for any L ⊆ A and k ∈ L .

First suppose Eq. (16) holds. Summing over all i j except ik , we obtain

τ
(n)
k (ik) = η

(s)
k (ik), (17)
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since, by Lemma 2.2,
∑

i j
τZ∪{k}(iZ , ik) = 0 for every nonempty set Z ⊆ Ak .

Substituting Eq. (17) in Eq. (16), we get
∑

Z⊆Ak
Z �=φ

τ
(n)
Z∪k(iZ , ik) =

∑

Z⊆Ak
Z �=φ

η
(s)
Z∪k(iZ , ik). (18)

Summing now over im , for all m ∈ A jk = A \ { j, k} in Eq. (18), leads to

τ
(n)
jk (i j , ik) = η

(s)
jk (i j , ik).

Continuing this process, we get

τ
(n)
L (iL) = η

(s)
L (iL), for all L ⊆ A, and k ∈ L .

Conversely, assume now the table is collapsible with respect to τL , so that

τ
(n)
L (iL) = η

(s)
L (iL), for all iL ,

where L ⊆ A and k ∈ L . This implies
∑

L⊆A
k∈L

τ
(n)
L (iL) =

∑

L⊆A
k∈L

η
(s)
L (iL),

which is equivalent to
∑

Z⊆Ak

τ
(n)
Z∪k(iZ , ik) =

∑

Z⊆Ak

η
(s)
Z∪k(iZ , ik)

and thus Eq. (16) holds. This completes the proof. �

We next consider an application of the Theorem 3.2.

Example 3.1 (Simonoff, 2003, p. 354) The following table contains the data on a
clinical trial involving 1502 premature infants, conducted to study the effectiveness
of the drug Palivizumab. The subjects were given either placebo or Palivizumab to
see if they were hospitalized for RSV (respiratory syncytial virus). Let X1 denotes
the treatment (X1 = 1 for placebo and X1 = 2 for Palivizumab), X2 = 1 denotes
RSV hospitalization (while X2 = 2, its negation) and X3 denotes the location 1,2
and 3 respectively for US, UK, Canada.

X3 1 2 3
X2

X1 1 2 1 2 1 2
1 44 382 4 36 5 29
2 39 812 3 80 6 62

For the above table, it can be seen that

d̃12(i, j) =
{

1.70, if i = 1, j ∈ {1, 2}
1.80, if i = 2, j ∈ {1, 2}; d̃1(i) =

{
1.70, if i = 1
1.80, if i = 2
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which implies

d̃12(i, j) = d̃1(i).

By Theorem 3.2, the table is collapsible with respect to τ
(3)
12 and τ

(3)
2 .

Example 3.2 Consider the table (Whittemore, 1978, p. 382) given below:

X3 1 2 3
X2

X1 1 2 3 1 2 3 1 2 3
1 125 40 75 40 32 120 75 24 45
2 40 32 24 32 64 96 120 96 72
3 75 120 45 24 96 72 45 72 27

For the above table, we have

d̃12(i, j) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1.2024, if i ∈ {1, 3}, j = 1
1.1204, if i ∈ {1, 3}, j = 2
1.1767, if i ∈ {1, 3}, j = 3
1.2767, if i = 2, j = 1
1.1945, if i = 2, j = 2
1.1664, if i = 2, j = 3;

(19)

d̃1(i) =
⎧
⎨

⎩

1.1664, if i = 1
1.2408, if i = 2
1.1664, if i = 3;

(20)

d̃2( j) =
⎧
⎨

⎩

1.1664, if j = 1
1.1449, if j = 2
1.2015, if j = 3.

(21)

It is clear that d̃12 is neither equal to d̃1 or d̃2, and so the condition of Theorem 3.2
is not satisfied. So collapsibility with respect to τ12 and τ1 (or τ12 and τ2) does not
hold simultaneously. However, note that

τ
(3)
12 (i, j) = η

(2)
12 (i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.281, if i = 1, j = 1
−0.562, if i = 1, j = 2

0.281, if i = 1, j = 3
−0.025, if i = 2, j = 1

0.05, if i = 2, j = 2
−0.025, if i = 2, j = 3
−0.26, if i = 3, j = 1

0.52, if i = 3, j = 2
−0.26, if i = 3, j = 3

Hence, collapsibility with respect to τ
(3)
12 holds.

The above example serves as the basis for the following result.
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Theorem 3.3 Let B ⊂ n̄ with |B| = s < n, and A ⊆ B. An n-dimensional
table is collapsible (over Bc) into an s-dimensional table with respect to the set
C j,k = {τ (n)

L |{ j, k} ⊆ L ⊆ A} of interaction factors if and only if

d̃(B)
A (i A) − d̃(B)

Ak
(i Ak ) = d̃(B)

A j
(i A j ) − d̃(B)

A jk
(i A jk ), (22)

where Ak = A \ {k} and A jk = A \ { j, k}.
Proof Note first that the Eq. (22) is equivalent to

l̃(n)
A (i A) − l̃(n)

Ak
(i Ak ) − l̃(n)

A j
(i A j ) + l̃(n)

A jk
(i A jk )

= l̃(s)A (i A) − l̃(s)Ak
(i Ak ) − l̃(s)A j

(i A j ) + l̃(s)A jk
(i A jk ). (23)

Using Eqs. (6) and (8), Eq. (23) becomes
∑

Z⊆A

τ
(n)
Z (iZ ) −

∑

Z⊆Ak

τ
(n)
Z (iZ ) −

∑

Z⊆A j

τ
(n)
Z (iZ ) +

∑

Z⊆A jk

τ
(n)
Z (iZ )

=
∑

Z⊆A

η
(s)
Z (iZ ) −

∑

Z⊆Ak

η
(s)
Z (iZ ) −

∑

Z⊆A j

η
(s)
Z (iZ ) +

∑

Z⊆A jk

η
(s)
Z (iZ ). (24)

Note that Eq. (24) is equivalent to
∑

Z⊆Ak

τ
(n)
Z∪k(iZ , ik) −

∑

Z⊆A jk

τ
(n)
Z∪k(iZ , ik) =

∑

Z⊆Ak

η
(s)
Z∪k(iZ , ik) −

∑

Z⊆A jk

η
(s)
Z∪k(iZ , ik)

which in turn is equivalent to
∑

Z⊆A jk

τ
(n)
Z∪{ j,k}(iZ , i j , ik) =

∑

Z⊆A jk

η
(s)
Z∪{ j,k}(iZ , i j , ik). (25)

Thus, (22) ⇐⇒ (25).
Summing now over il , for all l ∈ A jk , we get from Eq. (25),

τ
(n)
jk (i j , ik) = η

(s)
jk (i j , ik),

and repeating the arguments similar to the proof of Theorem 3.2, we obtain

τ
(n)
L (iL) = η

(s)
L (iL),

for all subsets L of A containing { j, k}.
Conversely, let

τ
(n)
L (iL) = η

(s)
L (iL),

where L ⊆ A and j, k ∈ L . This implies
∑

L⊆A
{ j,k}⊆L

τ
(n)
L (iL) =

∑

L⊆A
{ j,k}⊆L

η
(s)
L (iL),
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or, equivalently
∑

Z⊆A jk

τ
(n)
Z∪{ j,k}(iZ , i j , ik) =

∑

Z⊆A jk

η
(s)
Z∪{ j,k}(iZ , i j , ik),

which is same as Eq. (25). This completes the proof. �

Remarks 3.1

(i) For the collapsibility of a 3-dimensional table into a 2-dimensional table with
respect to τ

(3)
A , there is only one possibility of L = A. Hence, Eq. (22) is

necessary and sufficient condition for collapsibility with respect to τ
(3)
A . Also,

in this case, condition (22) reduces to the condition (iii) of Theorem 3.1.
(ii) Theorem 3.3 can be extended to obtain the conditions of collapsibility with

respect to the set {τ (n)
L }, where L is any subset of A containing three or more

indices. For example, a necessary and sufficient condition of collapsibility
with respect to {τ (n)

L }, where L is any subset of A containing { j, k, l}, is

d̃(B)
A (i A) − d̃(B)

Ak
(i Ak )=

{
d̃(B)

A j
(i A j )−d̃(B)

A jk
(i A jk )

}
+

{
d̃(B)

Al
(i Al ) − d̃(B)

Alk
(i Alk )

}

−
{

d̃(B)
A jl

(i A jl ) − d̃(B)
A jkl

(i A jkl )
}

.

If we continue this process to the case L = A, the necessary and sufficient condi-
tions for collapsibility with respect to τ

(n)
A (only) leads to condition (iii) of Theorem

3.1.

Example 3.2 (continued) Consider the contingency table discussed in Example 3.2.
It can be shown that d̃φ = 1.2. Also, from Eqs. (19)–(21),

d12(i, j) − d̃1(i) = d̃2( j) − d̃φ,

and so the condition (22) is satisfied. Hence, the table is collapsible with respect
to τ

(3)
12 , as observed already in Example 3.2.

4 Strict collapsibility

We next look at a stronger version of collapsibility, namely, strict collapsibility
(Whittemore, 1978). We assume in this section, for simplicity, A = {1, 2, . . . , r},
and B = {1, 2, . . . , s}, where s ≥ r .

Definition 4.1 (Strict Collapsibility) An n-dimensional table is said to be strictly
collapsible into an s-dimensional table (over B) with respect to τ

(n)
A , A ⊆ B, if

(i) τ
(n)
A = η

(s)
A , and

(ii) τ
(n)
Z = 0, ∀ Z ⊇ A, Z ∩ Bc �= φ.

Note, condition (i) of above definition is the definition of collapsibility. First, we
obtain an equivalent condition for condition (ii) of strict collapsibility.
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Lemma 4.1 For an n-dimensional contingency table,

τ
(n)
Z (iZ ) = 0, f or all Z ⊇ A, Z ∩ Bc �= φ,

if and only if
∑

Z⊇A
Z∩Bc �=φ

τ
(n)
Z (iZ ) = 0. (26)

Proof The necessary part is obvious. Suppose now Eq. (26) holds. Then,
∑

Z⊆Ac
Z∩Bc �=φ

τ
(n)
A∪Z (i A, iZ ) = 0. (27)

Summing over im, m ∈ Ac \ {k}, for k ∈ Bc, leads to

τ
(n)
A∪{k}(i A, ik) = 0, ∀k ∈ Bc. (28)

Substituting Eq. (28) in Eq. (27), we obtain
∑

Z⊆Ac
Z∩Bc �=φ,Z �={k}

τ
(n)
A∪Z (i A, iZ ) = 0, ∀k ∈ Bc.

Repeating the arguments as done earlier, we get

τ
(n)
Z (iZ ) = 0, for all Z ⊇ A, Z ∩ Bc �= φ,

which completes the proof. �
Theorem 4.1 Let B ⊂ n̄ with |B| = s < n, and A ⊆ B. Suppose an n-dimen-
sional contingency table is collapsible (over Bc) to an s-dimensional table with
respect to τ

(n)
A . Then, it is also strictly collapsible if and only if

∑

Z⊆A

(−1)|A−Z |l̃(n)
Z∪Ac(iZ , i Ac) =

∑

Z⊆A

(−1)|A−Z |l̃(n)
Z∪Ac\Bc(iZ , i Ac\Bc). (29)

Proof First suppose Eq. (29) holds, which is equivalent to

l(n)(i) − l̃(n)
A∪Ac\Bc(i A, i Ac\Bc) +

∑

Z⊂A

(−1)|A−Z | {l̃(n)
Z∪Ac(iZ , i Ac)

−l̃(n)
Z∪Ac\Bc(iZ , i Ac\Bc)

}
= 0. (30)

Observe now that

l(n)(i) − l̃(n)
A∪Ac\Bc(i A, i Ac\Bc) =

∑

Z⊆n̄

τ
(n)
Z (iZ ) −

∑

Z⊆A∪Ac\Bc

τ
(n)
Z (iZ ),

=
∑

Z⊆n̄
Z∩Bc �=φ

τ
(n)
Z (iZ ),

=
∑

Z⊇A
Z∩Bc �=φ

τ
(n)
Z (iZ ) +

∑

Z �⊇A
Z∩Bc �=φ

τ
(n)
Z (iZ ). (31)
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Note also that

∑

Z �⊇A
Z∩Bc �=φ

τ
(n)
Z (iZ )=

r∑

j=1

∑

Z⊆A j ∪Ac

Z∩Bc �=φ

τ
(n)
Z (iZ )−

r∑

j,l=1

∑

Z⊆A jl ∪Ac

Z∩Bc �=φ

τ
(n)
Z (iZ )+· · · +(−1)|A|+1

∑

Z⊆Ac
Z∩Bc �=φ

τ
(n)
Z (iZ )

=
r∑

j=1

⎧
⎨

⎩
∑

Z⊆A j ∪Ac

τ
(n)
Z (iZ ) −

∑

Z⊆A j ∪Ac\Bc

τ
(n)
Z (iZ )

⎫
⎬

⎭

−
r∑

j,l=1

⎧
⎨

⎩
∑

Z⊆A jl∪Ac

τ
(n)
Z (iZ ) −

∑

Z⊆A jl∪Ac\Bc

τ
(n)
Z (iZ )

⎫
⎬

⎭

+ · · · + (−1)|A|+1

⎧
⎨

⎩
∑

Z⊆Ac

τ
(n)
Z (iZ ) −

∑

Z⊆Ac\Bc

τ
(n)
Z (iZ )

⎫
⎬

⎭

=
r∑

j=1

{
l̃(n)
A j ∪Ac(i A j , i Ac) − l̃(n)

A j ∪Ac\Bc(i A j , i Ac\Bc)
}

−
r∑

j,l=1

{
l̃(n)
A jl∪Ac(i A jl , i Ac) − l̃(n)

A jl∪Ac\Bc(i A jl , i Ac\Bc)
}

+ · · · + (−1)|A|+1
{

l̃(n)
Ac (i Ac) − l̃(n)

Ac\Bc(i Ac\Bc)
}

= −
∑

Z⊂A

(−1)|A−Z | {l̃(n)
Z∪Ac(iZ , i Ac) − l̃(n)

Z∪Ac\Bc(iZ , i Ac\Bc)
}

. (32)

Substituting Eq. (32) in Eq. (31), we get

l(n)(i) − l̃(n)
A∪Ac\Bc(i A, i Ac\Bc)

=
∑

Z⊇A
Z∩Bc �=φ

τ
(n)
Z (iZ ) −

∑

Z⊂A

(−1)|A−Z | {l̃(n)
Z∪Ac(iZ , i Ac) − l̃(n)

Z∪Ac\Bc(iZ , i Ac\Bc)
}

.

(33)

Substituting Eq. (33) in Eq. (30), we obtain
∑

Z⊇A
Z∩Bc �=φ

τ
(n)
Z (iZ ) = 0. (34)

Note all the Eqs. (29)–(34) are equivalent. The proof now follows from Lemma
4.1. �
Example 4.1 Consider the 3-dimensional table, given in Example 3.2, which is
collapsible with respect to τ

(3)
12 . Let A = {1, 2} so that Ac = Bc = {3}. It can be

checked that
∑

Z⊆{1,2}
(−1)|A−Z | {l̃(3)

Z∪{3}(iZ , ik) − l̃(3)
Z (iZ )

}
= 0
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and so Eq. (29) is satisfied. Thus, the table is strictly collapsible with respect to
τ

(3)
12 .

The following conditions for strict collapsibility are the analogues of Theorems
3.2 and 3.3.

Theorem 4.2 Let B ⊂ n̄ with |B| = s < n, and A ⊆ B. An n-dimensional table
is strictly collapsible (over Bc) into an s-dimensional table with respect to the set
Ck = {τL |{k} ⊆ L ⊆ A} of interaction factors if and only if

d̃(B)
A (i A) = d̃(B)

Ak
(i Ak ) (35)

and

l(n)(i) − l̃(n)
n̄k

(in̄k ) = l̃(n)
s̄ (is̄) − l̃(n)

s̄k
(is̄k ), (36)

where, for example, s̄k = s̄ \ {k}.
Proof The collapsibility follows from Eq. (35) by Theorem 3.2. Let now CL =
{Z | Z ⊇ L and Z ∩ Bc �= φ}. Note that, if L1 ⊂ L2, then CL1 ⊆ CL2 . Hence, it
suffices to show the equivalence of Eq. (36) and the strict collapsibility condition
(ii) for L = {k}. By Theorem 4.1, with L = {k},

τ
(n)
Z (iZ ) = 0, for all Z ⊇ {k}, Z ∩ Bc �= φ

if and only if
∑

Z⊆L

(−1)|L−Z |l̃(n)
Z∪Lc(iZ , iLc) =

∑

Z⊆L

(−1)|L−Z |l̃(n)
Z∪Lc\Bc(iZ , iLc\Bc). (37)

Also, when L = {k}, Lc = n̄ \ {k} and Lc \ Bc = s̄ \ {k}. Therefore, Eq. (37)
is now equivalent to

l(n)(i) − l̃(n)
n̄k

(in̄k ) = l̃(n)
s̄ (is̄) − l̃(n)

s̄k
(is̄k ),

which completes the proof. �

Example 4.2 Consider the following 3-dimensional table.

X3 1 2
X2

X1 1 2 1 2
1 31.5 141.175 21.115 19.106
2 1.733 1.162 31.5 4.263

It can be shown that

d̃12(i, j) =
{

0.713, if j = 1, i ∈ {1, 2}
1.127, if j = 2, i ∈ {1, 2}; d̃2( j) =

{
0.713, if j = 1
1.127, if j = 2

which implies

d̃12(i, j) = d̃2( j).
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Hence, the table is collapsible with respect to τ
(3)
12 and τ

(3)
1 . Also it can be seen

that

l(3)(i, j, k) − l̃(3)
23 ( j, k) = l̃(3)

12 (i, j) − l̃(3)
2 ( j).

Hence the table is strictly collapsible into 2-dimensional table with respect to
τ

(3)
1 and τ

(3)
12 .

Remark 4.1 The necessary and sufficient conditions for strict collapsibility (over
Bc) with respect to the set {τL |{ j, k} ⊆ L ⊆ A ⊆ B} can be obtained in the similar
way. Indeed, the conditions are

d̃(B)
A (i A) − d̃(B)

Ak
(i Ak ) = d̃(B)

A j
(i A j ) − d̃(B)

A jk
(i A jk ),

and
∑

Z⊆{ j,k}
(−1)|Z | {l̃(n)

n̄\{ j,k}∪Z (in̄\{ j,k}, iZ ) − l̃(n)
s̄\{ j,k}∪Z (is̄\{ j,k}, iZ )

}
= 0.

4.1 Conditional independence

In this section, we explore the relationship between strict collapsibility and con-
ditional independence. Suppose X1, . . . , Xn are n categorical variables. Then X j
and Xk are said to be conditionally independent given the remaining variables if

p(i1, . . . , in) =
∑

i j
p(i1, . . . , in)

∑
ik

p(i1, . . . , in)
∑

i j ,ik
p(i1, . . . , in)

.

For an n-dimensional table, it is easy to see that variables X j and Xk are condi-
tionally independent, given all other variables, if and only if

l(n)(i) − l̃(n)
n̄k

(in̄k ) = l̃(n)
n̄ j

(in̄ j ) − l̃(n)
n̄ jk

(in̄ jk ),

where n̄ j = n̄ \ { j}. A similar result is true for the following more general case.
Let A ∪ B ∪ C = n̄ be a partition of n̄. Then X A ⊥ X B | XC if and only if

l(n)(i) − l̃(n)
n̄ A

(in̄ A) = l̃(n)
n̄B

(in̄B ) − l̃(n)
n̄ A∪B

(in̄ A∪B ). (38)

Indeed, one can show that, using the above results, for an n-dimensional table,
X j and Xk are independent, given all other variables, if and only if

∑

Z⊇{ j,k}
τ

(n)
Z (iZ ) = 0.

This result is due to Teugels and Horebeek (1998), which is an extension of a result
for conditional independence for the 3-dimensional case due to Birch (1963).

Example 4.3 Consider the following 3-dimensional table:
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X3 1 2 3
X2

X1 1 2 1 2 1 2
1 4 2 2 1 1 4
2 2 1 4 2 1 4

For the above table, it can be seen that

l(3)
123(i, j, k) − l̃(3)

13 (i, k) = l̃(3)
23 ( j, k) − l̃(3)

3 (k).

Hence, X1 ⊥ X2 | X3.

Let n̄ = A∪ B ∪C , where A,B and C are mutually exclusive. For a hierarchical
log-linear model, the n-dimensional table is collapsible into s-dimensional table
(over C) with respect to τ

(n)
A∪V , where V ⊆ B, if τ

(n)
Z = 0 for all Z ∩ A �= φ and

Z ∩ C �= φ, that is, if X A ⊥ XC | X B .
Bishop et al. (1975, p. 47) stated that the above conditions are necessary and

sufficient. Later, Whittemore (1978) showed that they are only sufficient but not
necessary.

We next show that those conditions are necessary and sufficient for strict col-
lapsibility with respect to a set of interaction parameters.

Theorem 4.3 Let n̄ = A ∪ B ∪ C be a partition of n̄ such that |A ∪ B| = s and
|C | = n − s. Then, an n-dimensional table is strictly collapsible (over C) into an
s-dimensional table with respect to the set CL = {τL |L ⊆ A ∪ B; L ∩ A �= φ} if
and only if X A ⊥ XC | X B.

Proof Note that

X A ⊥ XC | X B ⇐⇒τZ=0, for every Z such that Z ∩ A �= φ; Z ∩ C �= φ. (39)

Let k ∈ A. We now show that the table is collapsible over A ∪ B with respect to
τL , where L ⊆ A ∪ B and k ∈ L . Writing Eq. (38) in terms of interaction factors,

l(n)(i) =
∑

Z⊆A∪B

τZ (iZ ) +
∑

Z⊆B∪C

τZ (iZ ) −
∑

Z⊆B

τZ (iZ ) (40)

which implies

pA∪B(i A∪B) = exp

⎧
⎨

⎩
∑

Z⊆A∪B

τZ (iZ ) −
∑

Z⊆B

τZ (iZ )

⎫
⎬

⎭
∑

i j : j∈C

exp

⎧
⎨

⎩
∑

Z⊆B∪C

τZ (iZ )

⎫
⎬

⎭ .

This is equivalent to

l(s)(i A∪B) =
∑

Z⊆A∪B

τZ (iZ ) −
∑

Z⊆B

τZ (iZ ) + ln

⎛

⎝
∑

i j : j∈C

exp

⎧
⎨

⎩
∑

Z⊆B∪C

τZ (iZ )

⎫
⎬

⎭

⎞

⎠ .

(41)
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From Eqs. (40) and (41), we get

l̃(n)
A∪B(i A∪B) − l̃(n)

Ak∪B(i Ak∪B) = l(s)A∪B(i A∪B) − l̃(s)Ak∪B(i Ak∪B),

where Ak = A \ {k}, and so Eqs. (15) is satisfied. By Theorem 3.2, the table is
collapsible with respect to Ck = {τL |{k} ⊆ L ⊆ A ∪ B}. Since k is arbitrary, the
table is indeed collapsible with respect to τL , where L ⊆ A ∪ B and L ∩ A �= φ.
The strict collapsibility follows again from Eq. (39).

Assume now the table is strictly collapsible so that Eq. (39) holds, which is
equivalent to X A ⊥ XC | X B . This proves the theorem. �

Corollary 4.1 Let k ∈ {1, 2}. Then a 3-dimensional table is strictly collapsible
into a 2-dimensional table with respect to τ

(3)
k and τ

(3)
12 if and only if τ

(3)
123 = 0 and

τ
(3)
k3 = 0.

Note, for example, when k = 1, the conditions τ
(3)
123 = 0 and τ

(3)
13 = 0 are nothing

but Bishop et al. (1975) sufficient conditions for collapsibility with respect to τ
(3)
12

or τ
(3)
23 .
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