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Abstract In this paper we derive the asymptotic expansion of the null distribution
of the F-statistic in one-way ANOVA under non-normality. The asymptotic frame-
work is when the number of treatments is moderate but sample size per treatment
(replication size) is small. This kind of asymptotics will be relevant, for exam-
ple, to agricultural screening trials where large number of cultivars are compared
with few replications per cultivar. There is also a huge potential for the application
of this kind of asymptotics in microarray experiments. Based on the asymptotic
expansion we will devise a transformation that speeds up the convergence to the
limiting distribution. The results indicate that the approximation based on limit-
ing distribution are unsatisfactory unless number of treatments is very large. Our
numerical investigations reveal that our asymptotic expansion performs better than
other methods in the literature when there is skewness in the data or even when the
data comes from a symmetric distribution with heavy tails.

Keywords Analysis of variance, Edgeworth expansion, Cumulants, Characteristic
function, Asymptotic expansion, Non-normality

1 Introduction

In the univariate one-way ANOVA model the response on the j th replication of
the i th treatment group can be described as,

yi j = µ + αi + εi j ; i = 1, · · · , k and j = 1, · · · , ni ,
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where µ is the general mean effect, αi is the i th treatment effect and εi j is iid with
mean 0 and variance σ 2.

Let Sh = 1/(k − 1)
∑k

i=1 ni (ȳi. − ȳ..)
2 and Se = 1/(n − k)

∑k
i=1

∑ni
j=1(ni −

1)Si , where ȳi. = 1/ni
∑ni

j=1 yi j , ȳ.. = 1/n
∑k

i=1
∑ni

j=1 yi j , n = ∑k
i=1 ni and

Si = 1/(ni −1)
∑ni

j=1(yi j − ȳi.)
2, be the between and within group mean squares.

It is well known that when εi j ∼ N (0, σ 2) the statistic F = Sh/Se provides
UMPU and UMPI(with respect to linear transformation) test for the hypothesis
H0 : αi = 0; i =1, . . . , k and it has F(k−1, n−k) distribution. Here F(k−1, n−k)
means F distribution with k − 1 and n − k degrees of freedom. On the other hand
it is known that F converges in distribution to χ2

k−1 when n → ∞ even when the
errors do not have normal distribution. In a recent paper, Fujikoshi, Ohmae and
Yanagihara (1999) took this limiting distribution result further by giving asymp-
totic expansion up to the order o(n−1) in terms of central χ2 distribution. The
extension to univariate linear model was done by Yanagihara (2003). In a same
context, Yanagihara (2000) derived the asymptotic expansion of James’ (1954)
test statistic suited for ANOVA under heterogeneous variances. All these results
are based the assumption that Huber’s condition (Huber, 1973) holds. In the one
way ANOVA model, Huber’s conditions reduces to n/ni = O(1). This condition
means that all the replication sizes ni are large. For the same testing problem,
Fisher and Hall (1990) provide a bootstrap method for obtaining the critical values
which they claim to lead to a test size accurate to the order O(n−2). However, it is
not clear whether Huber’s condition is needed or not. Their simulation results do
not provide any evidence of adequate performance when Huber’s condition is not
met.

On the other hand, it is of interest to know the distribution of F when k is
large and ni ’s (replications) are small and the distribution of εi j is not known. In
agricultural screening trials it is quite common to meet a situation where large
number of cultivars are compared with few replications per cultivar. For instance,
a perennial ryegrass cultivar screening trial, conducted by the Nova Scotia Depart-
ment of Agriculture, Canada (http://www.gov.ns.ca/nsaf), involved the screening
of sixteen forage type cultivars for winter hardiness and disease resistance in a
completely randomized design with four blocks. Data from such experiments are
characterized by fewer replications and the presence of extreme observations, as
a result the assumption of normality is unlikely to hold. For more examples see
Akritas and Arnold(2000) and Brownie and Boos(1994). Needless to say, the con-
dition n/ni = O(1), commonly known as Huber condition, fails in the asymptotic
framework of this paper.

In this large number of treatments setup, the limiting null distribution of F
in balanced one-way and two-way (CRBD) designs was shown to be normal by
Boos and Brownie (1995). They have also noted that the null distribution of the
F-statistic is invariant to the distribution of the data. This result was generalized
to one-way and two-way fixed, random and mixed effects models by Akritas and
Arnold (2000). In addition, Akritas and Arnold’s (2000) results show that the dis-
tribution invariance of F-statistic does not hold in the unbalanced and non-null
cases. Bathke (2002) derived similar results in the null case for m-way balanced
ANOVA model for any fixed integer m ≥ 1. All these results were extended to
MANOVA models by Gupta, Harrar and Fujikoshi (2005, 2006).
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For the balanced univariate one–way fixed effects model, the limiting distribu-
tion results cited in the previous paragraph assert that the distribution of

√
k(F −1)

converges to N (0, 2n/(n −1)) as k → ∞. When the data come from a normal dis-
tribution this result has the implication that F distribution can be approximated by
normal distribution when both the numerator and denominator degrees of freedom
are large. Table 1, however, clearly shows that the discrepancy between the quan-
tiles obtained from F and its normal approximation can be considerably large. The
approximated 5% quantiles are all outside of 5% of the actual values. The situation
is much worse for 1% quantiles. Numerical results also show that (see Sect. 6) k has
to be very large for the limiting distribution to give reasonable approximation under
non-normality. In other words, the rate of convergence to the limiting distribution
is rather slow. In the more practical situation where k is moderate the actual test
size from the limiting distribution will differ significantly from the desired size.
Hence in such situations some finiteness adjustment (correction) must be made to
the limiting distribution to get a reasonable approximation for the distribution of
F-statistic.

It is the aim of this paper to provide such correction by accounting for the
effects of skewness and kurtosis present in the data. This is achieved by including
terms of order up to 1/k in the balanced case and up to 1/

√
k in the unbalanced

case, in the asymptotic expansion of the distribution of F . In Sect. 2 we derive
Edgeworth expansions for some statistics needed in the subsequent sections. We
take up the problem of deriving the asymptotic expansion of the joint distribution
of

√
k(Sh − 1) and

√
k(Se − 1) in Sect. 3. The main result of the paper, namely

the asymptotic expansion of
√

k(F − 1) will be given in Sect. 4 for the balanced
case. Based on the asymptotic expansion, we will devise a transformation on F
which improves the rate of convergence to the limiting normal distribution. Such a
transformation is known as normalization transformation. The more general case,
the unbalanced case, will be treated in Sect. 5. We will assess the gain in improve-
ment from the asymptotic expansion through a simulation study which will be the
subject of Sect. 6. Numerical example will also be given in that section to illustrate
the application of our results. We make some concluding remarks in Sect. 7.

2 Edgeworth expansions

In this section we derive the Edgeworth expansion for the joint distribution of some
useful statistics. For the sake of convenience we assume σ 2 = 1. This does not

Table 1 Comparison of quantiles of F and its normal approximations ( f1 and f2 are numerator
and denominator degrees of freedoms, respectively.)

f1 f2 5% 1%

k − 1 k(n − 1) Fα − Zα
Fα−Zα

Fα
(%) Fα − Zα Fα−Zα

Fα
(%)

9 40 0.30 14 0.72 25
14 60 0.19 10 0.44 19
19 80 0.14 8 0.32 15
24 100 0.11 7 0.25 12
29 120 0.09 6 0.20 11
34 140 0.07 5 0.17 9
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cause loss of generality because F-statistic is invariant to scale transformation.
Instructively, we consider the case n1 = · · · = nk = n first. We take up the more
general case in Sect. 5.

Let us define,

Z = √
k ȳ.., V = √

k(Sh − 1) and W = √
k(Se − 1). (1)

To find the asymptotic expansion of the joint distribution of (Z , V, W ), we would

like, first, to define a new random variable Ṽ = √
k
(
(1/k)

∑k
i=1 n ȳ2

i. − 1
)

such

that (Z , Ṽ , W ) can be expressed as a localized sum of identically and independently
distributed random vectors. It is an easy matter to check that,

V = Ṽ + 1√
k
(1 − nZ2) + 1

k
Ṽ + op

(
1

k

)

. (2)

In what follows we give Edgeworth expansion for the distribution of (Z , Ṽ , W ).
Let us put xi = (

ȳi., n ȳ2
i., Si

)
. It is obvious that E(xi ) = (0, 1, 1)′ and xi ’s are

identically and independently distributed. Moreover, it is noted that the joint char-
acteristic function of (Z , Ṽ , W ) = 1/

√
k
∑k

i=1 (xi − E(xi )) admits asymptotic
expansion in powers of k−1/2 (Bhattacharya and Rao, 1976; Hall, 1992) and the
expansion is given below.

Lemma 2.1 Under the assumption,

A1 : E
(
ε8

11

)
< ∞

the characteristic function of (Z , Ṽ , W ) can be expanded as

C
(Z ,Ṽ ,W )

(t1, t2, t3) = exp

⎧
⎨

⎩

i2

2

3∑

a,b

Kabtatb

⎫
⎬

⎭

⎡

⎣1 + i3

6
√

k

3∑

a,b,c

Kabctatbtc (3)

+ i4

24k

3∑

a,b,c,d

Kabcd tatbtctd (4)

+ i6

72k

3∑

a,b,c,d,e, f

Kabc Kde f tatbtctd tet f + o

(
1

k

)
⎤

⎦ , (5)

where Kab, Kabc and Kabcd are, respectively, the second, third and fourth order
cumulants of xi defined by,

Kab = µab, Kabc = µabc, Kabcd = µabcd − µabµcd − µacµbd − µadµbc

µa = E[xia], µab = E [(xia − µa)(xib − µb)]

µabc = E [(xia − µa)(xib − µb)(xic − µc)] and

µabcd = E[(xia − µa)(xib − µb)(xic − µc)(xid − µd)],
where xia is the ath entry of xi .
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As it happens our approach depends only on some of the Kab, Kabc and Kabcd . In
the following lemma we compute those we need.

Lemma 2.2 Let Kab, Kabc and Kabcd be the second, third and fourth order mixed
cumulants of xi . Then

K11 = 1

n
, K22 = 1

n
κ4 + 2, K33 = 1

n
κ4 + 2

n − 1
,

K12 = K13 = 1

n
κ3, K23 = 1

n
κ4, K111 = 1

n
κ3, K113 = 1

n2 κ4

K112 = 1

n2 κ4 + 2

n
, K122 = 1

n2 κ5 + 8

n
κ3, K133 = 1

n2 κ5 + 4

n(n − 1)
κ3

K123 = 1

n2 κ5 + 2

n
κ3, K222 = 1

n2 κ6 + 12

n
κ4 + 10

n
κ2

3 + 8,

K223 = 1

n2 κ6 + 4

n
κ4 + 4

n
κ2

3 , K233 = 1

n2 κ6 + 4

n(n − 1)
κ4 + 2(n + 1)

n(n − 1)
κ2

3

K333 = 1

n2 κ6 + 12

n(n − 1)
κ4 + 4(n − 2)

n(n − 1)2 κ2
3 + 8

(n − 1)2

K2222 = 1

n3 κ8 + 24

n2 κ6 + 56

n2 κ5κ3 + 32

n2 κ2
4 + 144

n
κ4 + 240

n
κ2

3 + 48

K3333 = 1

n3 κ8 + 24

n2(n − 1)
κ6 + 32(n − 2)

n2(n − 1)2 κ5κ3 + 8(4n2 − 9n + 6)

n2(n − 1)3 κ2
4

+ 144

n(n − 1)2 κ4 + 96(n − 2)

n(n − 1)3 κ2
3 + 48

(n − 1)3

K2333 = 1

n3 κ8 + 12

n2(n − 1)
κ6 + 6n2 + 20n − 34

n2(n − 1)2 κ5κ3 + 20n − 28

n2(n − 1)2 κ2
4

+ 24

n(n − 1)2 κ4 + 24(n + 1)

n(n − 1)2 κ2
3

K2233 = 1

n3 κ8 + 4

n(n − 1)
κ6 + 12n + 4

n2(n − 1)
κ5κ3 + 4n + 8

n2(n − 1)
κ2

4

+ 8n + 24

n(n − 1)
κ2

3 − (n + 1)

(n − 1)
and

K2223 = 1

n3 κ8 + 12

n2 κ6 + 26

n2 κ5κ3 + 12

n2 κ2
4 + 24

n
κ4 + 48

n
κ2

3 ,

where κr is the rth cumulant of y11 (κ1 = 0 and κ2 = 1).

Proof Let k1 = ȳ1. and k2 = S2
1 . These are known as the first two Fisher’s k-sta-

tistics. Write Kabcd in terms of the raw moments nk2
1 and k2. Next express k2a

1 kb
2 ,

in terms of polykays krst... (David, Kendall, and Barton, 1966, Table 2.3, pp. 196–
200). Using the key property of polykays, E(krst...) = κrκsκt ..., the desired results
follow after quite a bit of algebra. ��

The results of the Lemma have also been checked by using the formulae of Tan
and Cheng (1981) for computing mixed cumulants of linear and quadratic forms.



536 S.W. Harrar and A.K. Gupta

To find the asymptotic expansion for the distribution of
√

k(F−1) our approach
proceeds as follows. First we expand the test statistic as a function of (Z , Ṽ , W ).
This is followed by an expansion of the characteristic function and formal inver-
sion of the expanded characteristic function. In this process, the following Lemma
plays a key role.

Lemma 2.3 Under the assumption A1, we have the following expansion results.

1. The characteristic function of Ṽ − W can be expanded as,

CṼ −W (t) = exp

{
i2

2
τ t2
}[

1 + (i t)3

6
√

k
b0 + (i t)4

24k
b1 + (i t)6

72k
b2

0 + o

(
1

k

)]

(6)

where

b0 = 4n

(n − 1)2 κ2
3 +

(

8 − 8

(n − 1)2

)

b1 = 48

n

[

1 + 1

(n − 1)2

]

κ2
4 + 96

n(n − 1)

[

n − 1

n − 1

]

κ2
3

+
[

48 + 48

(n − 1)3 − 6(n + 1)

n − 1

]

τ = 2n

n − 1

2. The joint characteristic function of Z and Ṽ − W can be expanded as,

CZ ,Ṽ −W (t1, t) = exp

{
i2

2

(
1

n
t2
1 + τ t2

)}

×
[

1 + i3

6
√

k

[
κ3

n2 t3
1 + 6

n
t2
1 t + 12

n − 1
κ3t1t2 + b0t3

]

+ o

(
1√
k

)]

.

(7)

3. The joint characteristic function of Ṽ and Ṽ − W can be expanded as,

CṼ ,Ṽ −W (t1, t) = exp

{
i2

2

[(
1

n
κ4 + 2

)

t2
1 + 4t1t + τ t2

]}

+ o(1). (8)

4. The joint characteristic function of V and W can be expanded as,

CV,W (t1, t2) = exp

{
i2

2

[(
1

n
κ4 + 2

)

t2
1 + 2

n
κ4t1t2 +

(
1

n
κ4 + 2

n − 1

)

t2
2

]}

×
[

1 + i3

√
k

[
l1t3

1 + l2t2
1 t2 + l3t1t2

2 + l4t3
2

]+ o

(
1√
k

)]

, (9)
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where

l1 = 1

6

(
1

n2 κ6 + 12

n
κ4 + 4

n
κ2

3 + 8

)

l2 = 1

2

(
1

n2 κ6 + 4

n
κ4

)

l3 = 1

2

(
1

n2 κ6 + 4

n(n − 1)
κ4 + 4

n(n − 1)
κ2

3

)

l4 = 1

6

(
1

n2 κ6 + 12

n(n − 1)
κ4 + 4(n − 2)

n(n − 1)2 κ2
3 + 8

(n − 1)2

)

5. The joint characteristic function of W and V − W can be expanded as,

CW,V −W (t1, t) = exp

{
i2

2

[

τ t2 − 4

n − 1
t1t +

(
1

n
κ4 + 2

n − 1

)

t2
1

]}

×
[

1 + i3

√
k

(
m1t3 + m2t1t2 + m3t2

1 t + m4t3
1

)+ o

(
1√
k

)]

(10)

where

m1 = 4n

6(n − 1)2 κ2
3 + 8

6

(

1 − 1

(n − 1)2

)

m2 = 2

n − 1
κ4 − 2

(n − 1)2 κ2
3 + 4

(n − 1)2

m3 = − 4

n2(n − 1)
κ4 + 2

n2(n − 1)2 κ2
3 − 4

n(n − 1)2

m4 = 1

6n2 κ6 + 2

n(n − 1)
κ4 + 4(n − 2)

6n(n − 1)2 κ2
3 + 8

6(n − 1)2 .

Proof It is clear that CṼ −W (t) = CZ ,Ṽ ,W (0, t, −t). Then (6) follows by apply-
ing Lemmas 2.1 and 2.2, and some algebra. Along similar lines, (7) and (8) fol-
low by noting that CZ ,Ṽ −W (t1, t) = CZ ,Ṽ ,W (t1, t, −t) and CṼ ,Ṽ −W (t1, t) =
CZ ,Ṽ ,W (0, t1 + t, −t). In order to establish (9), observe that

CZ ,V,W (t,t1, t2) =
[

1 + i√
k

t1

(

1 + n
∂2

∂t2

)

+ o

(
1√
k

)]

CZ ,Ṽ ,W (t, t1, t2).

(11)

To see this using (2), first write,

C(Z ,V,W )(t, t1, t2) = E

(

ei t Z+i t1 Ṽ +i t2W e
i t1

1√
k
(1−nZ2)+op( 1√

k
)
)

.

Then expanding the second exponential in power series and taking expectation
yields (11). Hence, (9) follows by setting t = 0. Finally, (10) follows from the fact
that CW,V −W (t1, t) = CV,W (t, t1 − t). ��
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3 Asymptotic expansion of the joint distribution of Sh and Se

In this section we derive asymptotic expansion for the joint distribution of Sh and
Se. Knowledge of this distribution may be useful, for example, in assessing the
performance of estimators of σ 2 which are functions of both Sh and Se.

It is apparent from (9) that the limiting distribution function of (V, W ) is bivar-
iate normal with mean (0, 0) and covariance � given by,

� =
(

K22 K23
K23 K33

)

=
( 1

n κ4 + 2 1
n κ4

1
n κ4

1
n κ4 + 2

n−1

)

. (12)

By inverting (9) term by term, one gets the expansion of joint density of (V, W )
up to the order k−1/2. However, we need the following condition (see Hall, 1992,
p. 78; Bhattacharya and Rao, 1976, p. 199),

A2 : There exists an r ≥ 1 such that
∫

R3

|Cȳ1.,n ȳ2
1.,S1

(t1, t2, t3)|r dt1dt2dt3 < ∞

for uniform validity of the density expansion.
We find the inversion formula,

(2π)−2

∞∫

−∞

∞∫

−∞
e−i t2v−i t3w(−i t2)

α2(−i t3)
α3e

i2
2

3∑

a,b=2
Kabta tb

dt2dt3

=
(

∂

∂v

)α2
(

∂

∂w

)α3

φ(0,�)(v, w), (13)

handy to invert (9), where φ(0,�) is the density of a bivariate normal distribution
with mean 0 and covariance �, and α2 and α3 are nonnegative integers.

Finally we get the expansion of the joint density of (V, W ) as summarized in
the following Theorem.

Theorem 3.1 Under the assumptions A1 and A2, the joint probability density
function of (V,W) can be expanded as,

f (v, w) = φ2(v, w; 0, �)

[

1 + n√
k

g(1)(v, w) + o

(
1√
k

)]

(14)
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where

g(1)(v, w) = 1

6

[
1

n3 κ6 + 12

n2 κ4 + 4

n2 κ2
3 + 8

n

]

g1(v, w)

+ 1

2

[
1

n3 κ6 + 4

n2 κ4

]

g2(v, w)

+ 1

2

[
1

n3 κ6 + 4

n(n − 1)
κ4 + 4

n(n − 1)
κ2

3

]

g3(v, w)

+ 1

6

[
1

n3 κ6 + 12

n2(n − 1)
κ4 + 4(n − 2)

n2(n − 1)2 κ2
3 + 8

n(n − 1)2

]

g4(v, w)

g1(v, w) = ξ−6
[

1

n
(κ4 + 2)t0 + 2

n − 1
u

]3

− 3ξ−4
[

1

n
(κ4 + 2)t0 + 2

n − 1
u

](
1

n
κ4 + 2

n − 1

)

g2(v, w) = ξ−6
[

2u − 1

n
(κ4 + 2)t0

] [
1

n
(κ4 + 2)t0 + 2

n − 1
u

]2

− ξ−4
[

2u − 1

n
(κ4 + 2)t0

](
1

n
κ4 + 2

n − 1

)

+ 2ξ−4
[

1

n
(κ4 + 2)t0 + 2

n − 1
u

](
1

n
κ4

)

g3(v, w) = ξ−6
[

2u − 1

n
(κ4 + 2)t0

]2 [1

n
(κ4 + 2)t0 + 2

n − 1
u

]

− ξ−4
[

1

n
(κ4 + 2)t0 + 2

n − 1
u

](
1

n
κ4 + 2

)

+ 2ξ−4
[

2u − 1

n
(κ4 + 2)t0

](
1

n
κ4

)

g4(v, w) = ξ−6
[

2u − 1

n
(κ4 + 2)t0

]3

− 3ξ−4
[

2u − 1

n
(κ4 + 2)t0

](
1

n
κ4 + 2

)

ξ2 = 2

n − 1
(κ4 + 2), t0 = v − w and u = n − 1

n
w + 1

n
v.

Proof The Theorem follows from (9) and (13), and some algebra. ��
The notations t0 and u are introduced for the important reason that they are trans-
formations which lead to asymptotic independence. This fact will be exploited in
Sect. 4.

It is clear from Theorem 3.1 that Sh and Se are not asymptotically uncorre-
lated unless κ4 = 0. It can also be shown that the correlation between Sh and Se
does not depend on κ3. It is apparent from Fig. 1 that the correlations reach their



540 S.W. Harrar and A.K. Gupta

10 15 20 25 30 35
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5
M1
M2
M3
M4
M5
M6

Fig. 1 Empirical correlations between Sh and Se for models M1–M6 (See Sect. 6 for description
of the models M1–M6 in the figure.)

limiting values pretty quickly and, hence, the influence of k seems to be not con-
siderable. The figure also reveals that the strength of correlation increases with the
the absolute magnitude of κ4.

4 Asymptotic expansion of the distribution of the test statistic

As mentioned earlier, we first expand the test statistic F = Sh/Se in terms of V
and W leaving the error to the order k−3/2. Based on this expansion, we derive
an expansion for the characteristic function of

√
k(F − 1). Then by inverting the

expanded characteristic function term by term our final result follows.

4.1 Expansion of characteristic function of
√

k(F − 1)

The statistic
√

k(F − 1) can be expanded as,

√
k(F − 1) = (V − W ) − 1√

k
W (V − W ) + 1

k
W 2(V − W ) + op

(
1

k

)

. (15)

It is not difficult to see from (15) that the characteristic function of
√

k(F − 1)
can be expanded as,

C√
k(F−1)(t) = C0(t) + 1√

k
C1(t) + 1

k
C2(t) + o

(
1

k

)

,



Asymptotic expansion for the null distribution of the F-statistic 541

where

C0(t) = E[ei t (V −W )]
C1(t) = E[(−i t)W (V − W )ei t (V −W )]
C2(t) = E

[{

(i t)W 2(V − W ) + 1

2
(i t)2W 2(V − W )2

}

ei t (V −W )

]

.

4.1.1 Evaluation of C0(t)

Using (2), the statistic V − W can be expressed as,

V − W = (Ṽ − W ) + 1√
k
(1 − nZ2) + 1

k
Ṽ + op

(
1

k

)

.

As a result, the characteristic function of V − W can be expanded as,

CV −W (t) = B0(t) + 1√
k

B1(t) + 1

k
B2(t) + o

(
1

k

)

, (16)

where

B0(t) = E
[
ei t (Ṽ −W )

]
(17)

B1(t) = E
[
(i t)(1 − nZ2)ei t (Ṽ −W )

]
(18)

B2(t) = E

[{

(i t)Ṽ + 1

2
(i t)2(1 − nZ2)2

}

ei t (Ṽ −W )

]

. (19)

Directly from (6) we get,

B0(t) = exp

{
i2

2
τ t2
}[

1 + (i t)3

6
√

k
b0 + (i t)4

24k
b1 + (i t)6

72k
b2

0 + o

(
1

k

)]

. (20)

Since,

E
[

Z2eit (Ṽ −W )
]

= 1

i2

∂2

∂t2
1

CZ ,Ṽ −W (t1, t)
∣
∣
∣
t1=0

using (7) one obtains,

= 1

n
e

i2
2 τ t2

[

1 + i3

6
√

k

(
b0t3 − 12t

)+ o

(
1√
k

)]

.

Then it follows from (21) that,

B1(t) = e
i2
2 τ t2

[

−2
(i t)2

√
k

+ o

(
1√
k

)]

. (21)
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Also using (8),

E[Ṽ ei t (Ṽ −W )] = 1

i

∂

∂t1
CṼ ,Ṽ −W (t1, t)

∣
∣
∣
t1=0

= (2i t)e
i2
2 τ t2 + o(1).

Along similar lines using (6) and (7),

E
[
(1 − nZ2)2ei t (Ṽ −W )

]
= 2e

i2
2 τ t2 + o(1).

Thus,

B2(t) = 3(i t)2e
i2
2 τ t2 + o(1). (22)

Finally, combining (20), (21) and (22) according to (16) we get,

C0(t) = e
i2
2 τ t2

[

1 + 1√
k

b0
(i t)3

6
+ 1

k

[
b2

0

72
(i t)6 + b1

24
(i t)4 + (i t)2

]

+ o

(
1

k

)]

.

(23)

4.1.2 Evaluation of C1(t)

Here also using (9) observe that,

E[W (V − W )ei t (V −W )] = 1

i2

∂2

∂t1∂t
CW,V −W (t1, t)

∣
∣
∣
t1=0

.

Hence,

C1(t)=e
i2
2 τ t2

[
τ

n
(i t)+ τ 2

n
(i t)3+ 1√

k

[
a0(i t)6 − a1(i t)4 − a2(i t)2]+o

(
1√
k

)]

,

(24)

where

a0 = τ 2
[

4

6(n − 1)2 κ2
3 + 8

6n

(

1 − 1

(n − 1)2

)]

a1 = τ

[
2

n − 1
κ4 − 16

6(n − 1)2 κ2
3 − 32n − 88

6(n − 1)2

]

a2 = 4

(n − 1)
κ4 − 4

(n − 1)2 κ2
3 + 8

(n − 1)2 .
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4.1.3 Evaluation of C2(t)

It is not hard to see that,

E[W 2(V − W )ei t (V −W )] = ET0,U

[(

U − 1

n
T0

)2

T0ei tT0

]

+ o(1),

where U = ((n−1)/n)W +(1/n)V and T0 = V −W are independently distributed
as N

(
0, 1

n (κ4 + 2)
)

and N (0, τ ), respectively. This was noted in section 3. Hence,
after some simplification, we get,

E
[
(i t)W 2(V − W )ei t (V −W )

]
= e

i2
2 τ t2

[
1

n2 τ 3(i t)4

+
[

1

n
(κ4 + 2) + 1

n2

]

(i t)2
]

+ o(1).

Similarly,

E

[
(i t)2

2
W 2(V −W )2ei t (V −W )

]

= e
i2
2 τ t2

[
τ 4

2n2 (i t)6+
[

1

2n
(κ4+2)τ 2+ 3τ 3

n2

]

(i t)4

+
[

1

2n
(κ4 + 2)τ + 3τ 2

2n2

]

(i t)2
]

+ o(1).

Therefore,

C2(t) = e
i2
2 τ t2 [

c0(i t)6 + c1(i t)4 + c2(i t)2]+ o(1), (25)

where

c0 = τ 4

2n2 , c1 = τ 2

2n
κ4 + nτ 2 + 4τ 3

n2 and c2 = 3τ

2n
κ4 + 9τ 2

2n2 + 3τ

n
.

4.2 Main results

From (23), (35) and (25), and substituting t√
τ

for t we get the following Lemma.

Lemma 4.1 Under the assumptions A1 and A2, the characteristic function of√
k
τ
(F − 1) can be expanded as,

C√ k
τ
(F−1)

(t) = exp

{
i2

2
t2
}
⎡

⎣1 − 1√
k

2∑

j=1

d(0)
j (−i t)2 j−1 + 1

k

3∑

j=1

d(1)
j (−i t)2 j

⎤

⎦

+ o

(
1

k

)

, (26)
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where

d(0)
1 = τ 1/2

n

d(0)
2 = 1

6

(
4n

(n − 1)2 κ2
3 + 8 − 8

(n − 1)2 + 6τ 2

n

)

τ−3/2

d(1)
1 = − 1

2n
κ4 + 2

n(n − 1)
κ2

3 + n2 + 4n + 5

2n(n − 1)

d(1)
2 = (n2 − 2n + 2)

2n3 κ2
4 + 1

2n
κ4+ 3n3 − 2n2 + 3

3n3(n − 1)
κ2

3 + 21n3 + 107n2 + 59n − 3

48n2(n − 1)

d(1)
3 = (12τ 2 + n)

18τ 3(n − 1)2 κ2
3 + τ

18n2 + (n − 2)

18τ 2(n − 1)
+ 4(n − 2)

3τ(n − 1)2 .

Inverting (26) formally, we get our main result which is summarized below in
Theorem 4.1. For the uniform validity of the inversion we need a condition known
as Cramer’s condition (e.g. Hall, 1992, p. 45).

Theorem 4.1 Under the assumption A1 and Cramer’s condition,

A3 : lim sup
‖(t1,t2,t3)‖→∞

∣
∣
∣E
[
eit1 ȳ1.+i t2 ȳ2

1.+i t3 S1
]∣
∣
∣ < 1

the distribution function of
√

k(F − 1) can be expanded as,

P

(√
k

τ
(F − 1) ≤ x

)

= �(x) − 1√
k

2∑

j=1

d(0)
j �(2 j−1)(x)

+1

k

3∑

j=1

d(1)
j �(2 j)(x) + o

(
1

k

)

, (27)

where d(0)
j and d(1)

j are as defined in Lemma 4.1 and �( j)(x) is the j th derivative
of the CDF �(x) of N (0, 1).

Remark 4.1 The result given in Theorem 4.1 depends only on cumulants of y11 up
to fourth order. Hence, it is conjectured that A1 in this Theorem can be weakened
as,

A1∗ : E(Y 4
11) < ∞.

It may be noted that �( j)(x) = (−1) j+1 Hj−1(x)φ(x) where Hj (x) is the j th
Hermite polynomial and φ(x) is the density of N (0, 1). The first seven
Hermite polynomials are, H0(x) = 1, H1(x) = x, H2(x) = x2 −1, H3(x) =
x3 − 3x, H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x and H6(x) =
x6 − 15x4 + 45x2 − 15. Consequently, (27) can, alternatively, be expressed as,

P

(√
k

τ
(F − 1) ≤ x

)

= �(x) + 1√
k

p1(x)φ(x) + 1

k
p2(x)φ(x) + o

(
1

k

)

,

(28)
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where

p1(x) = −
[
d(0)

1 H0(x) + d(0)
2 H2(x)

]
and

p2(x) = −
[
d(1)

1 H1(x) + d(1)
2 H3(x) + d(1)

3 H5(x)
]
,

Suppose f is a function such that,

P

(√
k

τ
(F − 1) ≤ f (z)

)

= P(Z ≤ z)

where Z ∼ N (0, 1). Then, the Cornish-Fisher expansion can be obtained.

Corollary 4.1 Under the assumptions of Theorem 4.1, f (z) can be expanded as,

f (z) = fE (z) + o

(
1

k

)

,

where

fE (z) = z − 1√
k

p1(z) + 1

k

[

p1(z)p′
1(z) − 1

2
zp1(z)

2 − p2(z)

]

.

Based on the asymptotic expansion (28), it can be shown (Xu and Gupta, 2005)
that the following transformation speeds up convergence to the limiting distribu-
tion.

Corollary 4.2 Under the assumptions of Theorem 4.1, we have,

F∗ + 1√
k

p1(F∗) + 1

k

[

p2(F∗) + F∗

2
p1(F∗)2

]
d= Z ,

where F∗ = √
k/τ(F −1), Z ∼ N (0, 1) and U

d= V means |P(U ≤ x)− P(V ≤
x)| = o(1/k).

5 Unbalanced model

In the unbalanced version of one-way ANOVA model the sample sizes in the k
treatment groups are not necessarily equal. We need the following assumption to
develop our results.

B1 : n̄ = 1

k

k∑

i=1

ni = O(1), n = 1

k

k∑

i=1

1

n2
i

= O(1) and n = 1

k

k∑

i=1

1

ni
= O(1).

As in the balanced case define,

Z = √
k ȳ.., V = √

k(Sh − 1) and W = √
k(Se − 1).
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Here also it can be checked that,

V = Ṽ + 1√
k

(
1 − n̄Z2)+ op

(
1√
k

)

where Ṽ = √
k
(
(1/k)

∑k
i=1 ni ȳ2

i. − 1
)

. Note also that we can write W =√
k((1/k)

∑k
i=1 S̃2

i − 1) where S̃2
i = 1/(n̄ − 1)

∑ni
j=1(yi j − ȳi.)

2.

Let xi =
(
(ni/n̄)ȳi., ni ȳi .

2 − 1, S̃i − 1
)

. Then, (Z , Ṽ , W ) = √
kx̄k . Note that

xi ’s are not identically distibuted and hence we need more assumptions
for the asymptotic expansions (see Bhattacharya and Rao, 1976). Further let

ρk = k−1∑k
i=1 E‖xi‖5 and gm(t) =

m+p∏

j=m+1
|E(it′x j )|where m = 0, 1, 2, 3, · · ·

and t = (t1, t2, t3). We need the following assumptions for later use.

B2 : E‖xi‖5 < ∞, B3 : sup
k≥1

ρk < ∞

B4 : There exists some integer psuch that sup
m>0

∫

gm(t)dt < ∞ and

sup{gm(t) : ‖t‖ > b, m ≥ 0} < 1 for all b > 0.

The Edgeworth expansion of the joint characteristic function of (Z , Ṽ , W ) is
given in the following result.

Lemma 5.1 Under the assumptions B1 and B2, the joint characteristic function
of (Z , Ṽ , W ) can be expanded as,

CZ ,Ṽ ,W (t1, t2, t3)=exp

⎧
⎨

⎩

i2

2

3∑

a,b

K̄abtatb

⎫
⎬

⎭

⎡

⎣1+ i3

6
√

k

3∑

a,b,c

K̄abctatbtc+o

(
1√
k

)
⎤

⎦ ,

where

K̄11 = 1

n̄
, K̄12 = K̄13 = 1

n̄
κ3, K̄22 = nκ4 + 2, K̄23 = 1 − n

n̄ − 1
κ4,

K̄33 = n̄ − 2 + n

(n̄ − 1)2 κ4 + 2

n̄ − 1
, K̄222 = nκ6 + 12nκ4 + 10nκ2

3 + 8

K̄333 = n̄ − 3 + 3n − n

(n̄ − 1)3 κ6 + 12(n̄ − 2 + n)

(n̄ − 1)3 κ4 + 4(n̄ − 3 + 2n)

(n̄ − 1)3 κ2
3 + 8

(n̄ − 1)2 ,

K̄223 = n − n

n̄ − 1
κ6 + 4(1 − n)

n̄ − 1
κ4 + 4(1 − n)

n̄ − 1
κ2

3

K̄233 = 1 − 2n + n

(n̄ − 1)2 κ6 + 4(1 − n)

(n̄ − 1)2 κ4 + 2(n̄ − n)

(n̄ − 1)2 κ2
3

As for the balanced case, by using the above Lemma we can establish the
following Lemma.

Lemma 5.2 Under the assumptions B1 and B2,
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1. The joint characteristic function of V and W can be expanded as,

CV,W (t2, t3) = exp

⎧
⎨

⎩

i2

2

3∑

a,b=2

K̄abtatb

⎫
⎬

⎭

[
1 + (29)

i3

√
k

[
m1t3

2 + m2t2
2 t3 + m3t2t2

3 + m4t3
3

]+ o

(
1√
k

)]

,

(30)

where

m1 = n

6
κ6 + 2nκ4 + (10n̄n − 6)

6n̄
κ2

3 + 4

3
,

m2 = (n − n)

2(n̄ − 1)
κ6 + 2(1 − n)

(n̄ − 1)
κ4 + 2(1 − n̄n)

n̄(n̄ − 1)
κ2

3 ,

m3 = (1 − 2n + n)

2(n̄ − 1)2 κ6 + 2(1 − n)

(n̄ − 1)2 κ4 + (2n̄ − n̄n − 1)

n̄(n̄ − 1)
κ2

3 ,

m4 = n̄ − 3 + 3n − n

6(n̄ − 1)3 κ6 + 2(n̄ − 2 + n)

(n̄ − 1)3 κ4 + 2(n̄ − 3 + 2n)

3(n̄ − 1)3 κ2
3 + 4

3(n̄ − 1)2 .

2. The characteristic function of V − W can be expanded as,

CV −W (t) = exp

{
i2

2
τ ∗t2

}[

1+ 1√
k
(m1 − m2 + m3 − m4)(i t)3 + o

(
1√
k

)]

(31)

where τ ∗ = n̄(n̄n−1)

(n̄−1)2 κ4 + 2n̄
n̄−1 .

3. The joint characteristic function of T0 = V − W and U = 1
n̄ V + n̄−1

n̄ W can
be expanded as,

CT0,U (t, t1) = exp

{
i2

2

[

τ ∗t2 + 1

n̄
(κ4 + 2)t2

1

]}

+ o(1). (32)

It can clearly be seen from (29) that the asymptotic distribution of Sh and Se is
normal in the unbalanced case also. It may be noted that the 1/

√
k term depends

on the sixth order cumulant κ6. This indicates that the joint distribution of Sh and
Se is very sensitive to the distribution of the data unless k is very large.

The characteristic function of
√

k(F − 1) can be expanded as,

C√
k(F−1)(t) = C0(t) + 1√

k
C1(t) + o

(
1√
k

)

, (33)

where

C0(t) = E
[
ei t (V −W )

]

C1(t) = E
[
−i tW (V − W )ei t (V −W )

]
.
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We obtain, directly from (31), that

C0(t) = exp

{
i2

2
τ ∗t2

}[

1 − 1√
k

m0(−i t)3 + o

(
1√
k

)]

, (34)

where m0 = m1 − m2 + m3 − m4.
Also by using (32), one has,

C1(t) = i t

n
ET0

[
T 2

0 ei tT0
]

+ o(1)

= −
[
τ ∗2

n
(−i t)3 + τ ∗

n
(−i t)

]

e
i2
2 τ∗t2 + o(1). (35)

Then, combining (34) and (35) according to (33) and replacing t with t/
√

τ
∗, we

get the the expanded characteristic function of
√

k
τ∗ (F − 1) as summarized in the

following Lemma.

Lemma 5.3 Under the assumptions B1 and B2, the characteristic function of√
k
τ∗ (F − 1) can be expanded as,

C√ k
τ∗ (F−1)

(t) = exp

{
i2

2
t2
}
⎡

⎣1− 1√
k

2∑

j=1

d(0)
j (−i t)2 j−1

⎤

⎦+ o

(
1√
k

)

, (36)

where

d(0)
1 = τ ∗ 1

2

n̄

d(0)
2 = τ ∗−3/2

[(
τ ∗2

n̄
+ 4

3
− 4

3(n̄ − 1)2

)

+
(

5

3
n − 2(1 − n)

n̄ − 1
+ (n̄ − n)

(n̄ − 1)2 − 2(n̄ − 3 + 2n)

3(n̄ − 1)3

)

k2
3

+
(

2n − 2(1 − n)

(n̄ − 1)
+ 2(1 − n)

(n̄ − 1)2 − 2(n̄ − 2 + n)

(n̄ − 1)3

)

k4

+
(

1

6
n − (n − n)

2(n̄ − 1)
+ (1 − 2n + n)

2(n̄ − 1)2 − (n̄ − 3 + 3n − n)

6(n̄ − 1)3

)

k6

]

.

Inverting (36) we get the following result.

Theorem 5.1 Under the assumptions B1-B4, the CDF of
√

k/τ ∗(F − 1) can be
expanded as,

P

(√
k

τ ∗ (F − 1) ≤ x

)

= �(x) + 1√
k

p1(x)φ(x) + o
(

1√
k

)
,

where

p1(x) = −
[
d(0)

1 H0(x) + d(0)
2 H2(x)

]
.
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It may be noted that by using similar approach terms of order 1/k can be
included in the asymptotic expansion. However, the calculation is tedious and the
results get too messy. Moreover, the final results will depend on cumulants up to
eighth order (κ8).

Suppose f is a function such that,

P

(√
k

τ ∗ (F − 1) ≤ f (z)

)

= P(Z ≤ z),

where Z ∼ N (0, 1). Similar to the balanced case, the asymptotic expansion for
percentiles may be obtained.

Corollary 5.1 Under the assumptions of Theorem 5.1, f (z) can be expanded as,

f (z) = fE (z) + o

(
1√
k

)

,

where

fE (z) = z − 1√
k

p1(z).

Along the similar lines as in the balanced case the following transformation
can improve the approximation by the limiting distribution.

Corollary 5.2 Under the assumptions of Theorem 5.1, we have,

F∗ + 1√
k

p1(F∗) d= Z ,

where F∗ =
√

k
τ∗ (F − 1) and U

d= V means |P(U ≤ x)− P(V ≤ x)| = o
(

1√
k

)
.

In practice the population values of κ3, κ4 and κ6 may not be known. One can
use consistent estimates of these quantities given by,

κ̂3 = 1

N σ̂ 3

k∑

i=1

ni∑

j=1

(yi j − ȳ..)
3

κ̂4 = (N + 1)

N (N − 1)σ̂ 4

k∑

i=1

ni∑

j=1

(yi j − ȳ..)
4 − 3 and

κ̂6 = 1

N σ̂ 6

k∑

i=1

ni∑

j=1

(yi j − ȳ..)
6 − 10κ̂2

3 − 15κ̂4 − 15,

where N = ∑k
i=1 ni and σ̂ 2 = 1/N

∑k
i=1

∑ni
j=1(yi j − ȳ..)

2.
It is known (see, for example, Mardia, 1970) that κ̂3 is an unbiased estimator of

κ3 under normality. The estimator κ̂4 has been indicated by Browne (1984) to be
an unbiased estimator of κ4 under normality. This estimator also arises as a special
case of the family of estimators devised by Yanagihara (2005). We have not seen
any similar result for κ̂6. In fact, κ̂6 is obtained by using the plug-in approach as in
Mardia (1970).
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6 Numerical results

In this section we compare our asymptotic expansion results with the limiting dis-
tribution and other results in the literature. We will also apply our results to two
real data sets.

6.1 Simulation design

In the simulation experiment, we compare the upper 5% percentiles and 5% achieved
test sizes when the null distribution is approximated by the following methods.

SIM: Numerically using simulation.
LMT: The limiting distribution, i.e. the first term in the asymptotic expansion of

this paper.
HG: The asymptotic expansion of this paper.
EHG: The asymptotic expansion of this paper when the cumulants of the popula-

tion are estimated from the sample.
FOY: The asymptotic expansion of Fujikoshi, Ohmae and Yanagihara (1999).
FH: The bootstrap method of Fisher and Hall (1990).
F: The F(k − 1,

∑k
i=1 ni − k) distribution.

To that effect, we generate our data from the following six populations which have
also been used in Fujikoshi, Ohmae and Yanagihara (1999) and Yanagihara(2003).

M1: X + Y Z where X ,Y ,Z are independent N (0, 1); κ3 = 0; κ4 = 1.5; κ5 = 0;
κ6 = 15; κ8 = 315.

M2: Symmetric uniform U [−5, 5]; κ3 = 0; κ4 = −1.2; κ5 = 0; κ6 = 6.86;
κ8 = −86.4.

M3: χ2 with 3 degrees of freedom; κ3 = 1.63; κ4 = 4; κ5 = 13.06; κ6 = 53.33;
κ8 = 1, 493.3.

M4: χ2 with 8 degrees of freedom; κ3 = 1; κ4 = 1.5; κ5 = 3; κ6 = 7.5;
κ8 = 78.75.

M5: Normal N (0, 1); κ3 = 0; κ4 = 0; κ5 = 0; κ6 = 0; κ8 = 0
M6: Double Exponential DE(0, 1); κ3 = 0; κ4 = 3; κ5 = 0; κ6 = 30; κ8 = 630.

The models M1 and M6 are symmetric heavy tailed where as M2 is symmetric
light tailed distribution. Models M3 and M4 are skewed where as M4 has longer
tail.

We conduct our simulation study in the balanced as well as in the unbalanced
cases. In the balanced case we taken1 = n2 = · · · = nk = 5 and we consider five
values of k; i.e. 10, 15, 20, 25, 30. In the unbalanced case, we consider six values
of k; i.e 15, 20, 25, 30, 40, 45 and we choose the replication sizes depending on
the value of k as described in the Table 2.

6.2 Simulation results and discussion

In Table 3 we display the 5% percentiles and 5% achieved test sizes for the bal-
anced case. It is clear from this table that our asymptotic expansion results (HG
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Table 2 Replication sizes in the simulation study for the unbalanced case

k Replication sizes

15 n1 = · · · = n10 = 2, n11 = · · · = n15 = 6
20 n1 = · · · = n15 = 2, n16 = · · · = n20 = 6
25 n1 = · · · = n15 = 2, n16 = · · · = n25 = 6
30 n1 = · · · = n15 = 2, n16 = · · · = n30 = 6
35 n1 = · · · = n20 = 2, n21 = · · · = n35 = 6
40 n1 = · · · = n25 = 2, n26 = · · · = n40 = 6
45 n1 = · · · = n30 = 2, n31 = · · · = n45 = 6

Table 3 Upper 5% percentiles and actual 5% test sizes in the balanced case

Model k Upper 5% percentile Actual 5% sizes (×100)

SIM HG EHG FOY F LMT HG EHG FOY FH F
M1 10 2.197 2.185 2.213 2.102 2.248 9.1 5.1 5.0 5.5 4.9 4.7

15 2.062 2.071 2.090 1.997 2.107 8.5 4.9 4.9 5.4 4.8 4.7
20 2.024 2.006 2.023 1.939 2.031 7.9 5.1 5.1 5.6 5.1 4.9
25 1.944 1.963 1.961 1.901 1.982 7.4 4.9 4.9 5.3 4.9 4.7
30 1.971 1.932 1.937 1.874 1.947 7.9 5.3 5.3 5.7 5.4 5.2

M2 10 2.342 2.219 2.219 2.157 2.248 9.6 5.5 5.5 6.0 5.6 5.5
15 2.107 2.094 2.094 2.033 2.107 8.6 5.1 5.1 5.4 5.0 5.0
20 2.049 2.023 2.023 1.965 2.031 8.3 5.2 5.2 5.5 5.2 5.1
25 2.047 1.977 1.977 1.922 1.982 8.5 5.5 5.5 6.0 5.7 5.5
30 1.961 1.944 1.944 1.891 1.947 7.8 5.1 5.1 5.6 5.4 5.1

M3 10 2.222 2.191 2.228 2.032 2.248 8.9 5.2 5.1 6.0 4.9 4.9
15 2.102 2.086 2.105 1.960 2.107 8.3 5.1 5.1 5.8 5.2 5.0
20 1.961 2.025 2.038 1.918 2.031 7.4 4.6 4.6 5.3 4.8 4.6
25 1.982 1.983 1.990 1.890 1.982 7.5 5.0 5.0 5.5 5.2 5.0
30 1.943 1.953 1.957 1.868 1.947 7.6 5.0 5.0 5.5 5.2 5.0

M4 10 2.230 2.215 2.217 2.095 2.248 9.0 5.1 5.0 5.7 4.9 4.9
15 2.030 2.095 1.985 1.996 2.107 8.2 4.9 4.8 5.2 4.7 4.5
20 2.023 2.027 2.025 1.941 2.031 8.1 5.0 5.0 5.5 5.1 4.9
25 1.967 1.982 1.980 1.904 1.982 7.8 4.9 4.9 5.4 4.8 4.9
30 1.905 1.950 1.945 1.877 1.947 7.4 4.7 4.7 5.3 5.0 4.7

M5 10 2.259 2.210 2.216 2.133 2.248 9.4 5.3 5.3 5.7 5.1 5.1
15 2.067 2.087 2.092 2.017 2.107 8.2 4.9 4.9 5.3 4.9 4.8
20 2.056 2.019 2.019 1.954 2.031 8.0 5.2 5.2 5.6 5.3 5.1
25 1.938 1.973 1.975 1.912 1.982 7.5 4.7 4.7 5.2 5.0 4.7
30 1.932 1.941 1.938 1.883 1.947 7.5 4.9 4.9 5.4 5.2 4.9

M6 10 2.108 2.145 2.081 2.072 2.248 8.5 4.8 4.7 5.2 4.4 4.4
15 2.040 2.044 2.077 1.977 2.107 8.3 5.0 4.9 5.3 4.7 4.5
20 1.999 1.986 1.988 1.924 2.031 7.9 5.1 5.0 5.5 4.9 4.8
25 1.935 1.947 1.971 1.889 1.982 7.7 4.9 4.9 5.4 4.9 4.7
30 1.911 1.919 1.936 1.864 1.947 7.2 4.9 4.9 5.3 4.9 4.8

Note that z0.05 = 1.645. Number of simulations is 20,000 (standard error 0.154). The percentiles
displayed for EHG are the averages over the 20,000 simulations.

and EHG) perform quite well for all the models and the value of k as small as 10
or 15.

In particular, for the model M6 (Double Exponential) which is heavy tailed our
expansion reaches the desired size quickly compared to the other methods. The
approximation based on the bootstrap of Fisher and Hall (1990) and the F distri-
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bution tend to be conservative for smaller values of k. The conservative nature of
the F approximation for heavy tailed populations was also noted by Donaldson
(1968).

For the lighter tailed distributions M1 and M2, all the methods, except the one
based on the limiting distribution, do almost equally well. Indeed, our asymptotic
expansion hits close to the desired size a little more frequently than the others. In
the case of M5 where the F distribution is appropriate, we see that our expansion
performs comparably well.

In general, we do not recommend using just the limiting distribution at least
when the total sample size is less than 150. The approximation based on the expan-
sion of Fujikoshi, Ohmae and Yanagihara (1999) turns out to be liberal in most
cases. This should not be surprising because this expansion is not designed to work
in the large k and small ni ’s situation. In fact, we learn from this simulation that
Huber’s condition (Huber, 1973) is important for the validity of the expansion
results of Fujikoshi, Ohmae and Yanagihara (1999).

An interesting observation is that the upper percentiles and actual test sizes
of our asymptotic expansion with true population cumulant values (HG) and with
the estimated cumulants (EHG) do strikingly agree. This assures that in the most
practical situation where κ3 and κ4 are not known, the practitioner can use the
sample estimates to apply the results of this paper.

Figure 2 contains charts to illustrates the effect of the transformation given in
Corollary 4.2. We see that the convergence to the limiting distribution has been
greatly speeded up by using the transformation.

In the unbalanced case (Table 4), the numerical results are in strong support of
our asymptotic expansion for all values of k considered. The approximation based
on the limiting distribution (LMT) tends to be too liberal for all the models and
hence needs to be avoided unless k is very large (at least bigger than 45). In the
case when there is a skewness in the population as in M3 and M4 or when the pop-
ulation has a symmetric heavy tailed distribution as M6, the approximation based
on our asymptotic expansion is the best compared to all the other approximations.
It is also clear that the results of our asymptotic expansions based on the estimated
cumulants strikingly agree with those based on the true cumulants.

In general, we do not recommend to use the approximations based on the asymp-
totic expansion of Fujikoshi, Ohmae and Yanagihara (1999), the bootstrap method
of Fisher and Hall (1990) and the F approximation when the normality assumption
is suspected. It may be noted that the behavior of these approximations is unclear
as k gets larger. In a more extensive simulation study, which is not reported here,
we noticed that the particular values chosen for the ni ’s do not matter as long as
the values are small.

6.3 Real-data examples

Our first example deals with the comparison of eighteen clones of potato for their
resistance to bacterial wilt caused by Pseudomonas Solanacearum. Data on yield
were collected for all the clones from four locations with known prevalence of the
bacteria population. That is, in this study n = 4 and k = 18. Inspection of the
data revealed the presence of extreme observations which justify the violation of
the normality assumption. Moreover, κ̂3 = 0.4077 and κ̂4 = −1.2045 indicate
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the model M3

non–normality . The calculated value of the test statistics is F∗ = −1.7203. The
upper 5% percentile based on our asymptotic expansion is 2.1116, hence we fail
to reject the null hypothesis and conclude that the 18 clones are similar in their
resistance.

The second example is based on a publicly available data from a spike-in micro-
array experiment. Sixteen probe sets were selected (from about 12,000 probe sets)
and spiked-in with different concentrations of synthesized RNA on three Affyme-
trix chips. In this example we would like to test if the expression values of the
probe sets are the same after spiked-in with the same concentration of RNA. We
calculated RMA expression values (Irizarry et al. 2003) of the sixteen probes in
each of the three Affymetrix chips used in the experiment. Notice that n = 3
and k = 16. The readers are referred to Cope, Irizarry, Jaffee, Wu and Speed
(2004) for more details about this data set. The calculated value of the test sta-
tistic is F∗ = 180.9294 and the estimates of the third and fourth cumulants are
κ̂3 = 0.4524 and κ̂4 = −0.4438. The upper 5% percentile based on our asymptotic
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Table 4 Upper 5% percentiles and actual 5% test sizes in the unbalanced case

Model k Upper 5% percentile Actual 5% sizes (×100)
SIM HG EHG FOY F LMT HG EHG FOY FH F

M1 15 2.274 2.130 2.127 1.984 2.158 9.5 5.9 5.9 6.7 6.3 5.7
20 2.209 2.092 2.093 1.912 2.106 9.2 5.6 5.6 6.8 6.3 5.5
25 2.005 2.005 2.001 1.883 1.972 8.0 5.0 5.0 5.9 6.0 5.2
30 2.007 1.954 1.950 1.859 1.913 7.8 5.4 5.4 6.1 6.3 5.7
40 1.964 1.934 1.932 1.809 1.879 7.7 5.2 5.2 6.2 6.3 5.6
45 1.952 1.925 1.924 1.789 1.867 7.7 5.2 5.2 6.3 6.5 5.6

M2 15 2.291 2.074 2.077 2.088 2.350 9.7 6.3 6.3 6.2 5.3 4.7
20 2.140 2.045 2.048 2.011 2.290 9.0 5.6 5.6 5.9 5.0 4.3
25 2.012 1.962 1.963 1.954 2.142 8.1 5.4 5.4 5.4 5.0 4.2
30 1.968 1.918 1.919 1.914 2.060 7.9 5.4 5.4 5.4 5.0 4.4
40 1.940 1.899 1.900 1.872 2.043 7.6 5.3 5.3 5.5 5.1 4.3
45 1.981 1.892 1.893 1.855 2.033 7.9 5.3 5.2 5.9 5.5 4.6

M3 15 2.281 2.281 2.219 1.902 20.17 9.1 5.0 5.3 7.1 6.8 6.4
20 2.229 2.223 2.185 1.851 1.970 8.9 5.0 5.2 7.3 7.1 6.4
25 2.011 2.120 2.082 1.852 1.846 7.8 4.5 4.6 6.2 6.8 6.2
30 2.014 2.055 2.022 1.844 1.801 7.8 4.7 5.0 6.2 7.1 6.5
40 2.015 2.025 2.003 1.796 1.757 7.7 4.9 5.0 6.6 7.4 6.8
45 2.042 2.012 1.994 1.777 1.745 8.1 5.1 5.2 6.9 7.8 7.1

M4 15 2.269 2.177 2.153 1.980 2.158 9.5 5.5 5.7 6.8 6.4 5.7
20 2.182 2.136 2.121 1.915 2.106 9.3 5.3 5.4 6.7 6.3 5.5
25 2.053 2.038 2.025 1.890 1.972 8.1 5.1 5.2 6.0 6.2 5.5
30 2.040 1.982 1.972 1.868 1.913 8.2 5.4 5.5 6.2 6.6 5.9
40 1.983 1.961 1.954 1.820 1.879 7.8 5.1 5.2 6.2 6.5 5.7
45 2.010 1.952 1.946 1.801 1.867 8.1 5.1 5.1 6.6 6.8 6.0

M5 15 2.233 2.098 2.101 2.038 2.259 9.4 5.7 5.7 6.1 5.6 4.9
20 2.180 2.068 2.070 1.963 2.202 9.4 5.7 5.7 6.5 5.8 4.9
25 2.056 1.979 1.980 1.919 2.061 8.4 5.6 5.5 5.9 5.8 5.0
30 1.962 1.931 1.932 1.887 1.991 7.8 5.2 5.2 5.5 5.5 4.8
40 1.950 1.914 1.914 1.841 1.965 7.5 5.3 5.3 5.9 5.7 4.9
45 1.953 1.907 1.907 1.823 1.954 7.9 5.3 5.3 6.1 5.8 5.0

M6 15 2.189 2.157 2.152 1.939 2.070 9.2 5.2 5.2 6.7 6.6 5.8
20 2.163 2.114 2.116 1.868 2.021 9.1 5.3 5.3 7.2 6.7 6.0
25 2.082 2.026 2.021 1.852 1.894 8.3 5.4 5.4 6.6 7.0 6.3
30 1.974 1.973 1.967 1.836 1.843 7.9 5.0 5.1 6.1 6.8 6.1
40 1.960 1.951 1.948 1.783 1.803 7.7 5.1 5.1 6.4 6.9 6.2
45 1.971 1.941 1.939 1.762 1.791 7.6 5.3 5.3 6.7 7.1 6.4

Note that z0.05 = 1.645. Number of simulations is 20,000 (standard error 0.154). The percentiles
displayed for EHG are the averages over the 20,000 simulations

expansion is 2.2685. Hence, even though the probe sets were spiked-in with the
same concentration of RNA, they have significantly different expression levels.

7 Concluding remarks

Asymptotic expansion for the distribution of F-statistic in one-way ANOVA was
derived to the order 1/k in the balanced case and to the order 1/

√
k in the unbal-

anced case under general conditions. Even if our results assume existence of eighth
moment, the results involve only cumulants up to forth order in the balanced case.
It may be possible that similar results could be derived under minimal moment
requirement as in Hall (1987). We have also derived asymptotic expansion for
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the joint distribution of the treatment mean square and errors mean square up to
order 1/

√
k. The numerical results do clearly show the excellent performance of

the approximation from our asymptotic expansion, in particular, when the parent
population is heavy tailed.

In the unbalanced case, however, the numerical results are in favor of our
asymptotic expansion in most of the populations sampled. Hence, one needs to
be cautious in using previous results when the normality assumption is suspected
unless the replication sizes are large. If possible one is advised to maintain equal
replication sizes for all the treatments to reduce the effect of non–normality on
previous approximation results.
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