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Abstract The paper concentrates on consistent estimation and testing in functional
polynomial measurement errors models with known heterogeneous variances. We
rest on the corrected score methodology which allows the derivation of consistent
and asymptotically normal estimators for line parameters and also consistent esti-
mators for the asymptotic covariance matrix. Hence, Wald and score type statistics
can be proposed for testing the hypothesis of a reduced linear relationship, for
example, with asymptotic chi-square distribution which guarantees correct asymp-
totic significance levels. Results of small scale simulation studies are reported to
illustrate the agreement between theoretical and empirical distributions of the test
statistics studied. An application to a real data set is also presented.
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1 Introduction

Measurement errors models with homogeneous variances abound in the literature
(see, for example, the books by Fuller, 1987; Carroll et al., 1995; Cheng and
Van Ness, 1999). The simple linear regression model relates the response y and
the covariate x by means of

yi = β0 + β1 xi + ei , (1)

with xi only partially observable through the additive relation

wi = xi + ui , (2)

with wi being a surrogate for xi , i = 1, . . . , n.
The functional normal model follows by supposing(

ei
ui

)
indep.∼ N2

((
0
0

)
,

[
σ 2

e 0
0 σ 2

u

])
, (3)

with xi , i = 1, . . . , n, as fixed parameters. Hence, the model encompasses n + 4
parameters, the likelihood function is unbounded, and no consistent estimator is
available for β. To overcome this problem, additional assumptions are required.
One side condition typically adopted is that the variance σ 2

u is known, leading to
the consistent estimator (maximum likelihood estimator under normality)

β̂c = Swy

S2
w − σ 2

u
, (4)

where Swy = n−1 ∑n
i=1(wi − w̄) (yi − ȳ) and S2

w = n−1 ∑n
i=1(wi − w̄)2, with

w̄ = n−1 ∑n
i=1wi and ȳ = n−1 ∑n

i=1 yi . The asymptotic behavior of this esti-
mator is studied in Cheng and Van Ness (1999). A generalization of model (1)
and (2), which did not deserve too much attention in the literature, arises when the
measurement errors are heteroscedastic, that is, by assuming that(

ei
ui

)
indep.∼ N2

((
0
0

)
,

[
σ 2

ei 0
0 σ 2

ui

])
, (5)

i = 1, . . . , n, which is discussed in Fuller (1987), Ripley and Thompson (1987),
and Galea-Rojas et al. (2003) from a maximum likelihood point of view with the
variances (σ 2

ei , σ
2
ui )

� known and greater than 0, i = 1, . . . , n. A corrected score
estimator (Stefanski, 1989; Nakamura, 1990; Gimenez and Bolfarine, 1997) and
its asymptotic behavior are discussed in de Castro et al. (2006). The lack of interest
in the heterogeneous model may be due to the fact that both σ 2

ei and σ 2
ui need to be

known, i = 1, . . . , n. However, this is a common setup in areas such as Analytical
Chemistry (Ripley and Thompson, 1987; Riu and Rius, 1996; Galea-Rojas et al.,
2003; Nguyet et al., 2004, among others). Walter (1997) develops some examples
in Meta-analysis. In many applications, for each observation, variances are esti-
mated by sub-dividing the original sample into subsamples. Cases where an error
in the equation of unknown variance is present will be not studied in our paper.

In the present paper we extend the corrected score approach to treat the
polynomial heteroscedastic functional measurement errors model, which seems
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to the best of our knowledge, not yet discussed in the literature. Indeed, this
problem seems not even being mentioned, as can be inferred from important ref-
erences on the subject, such as Chan and Mak (1985), Fuller (1987), Moon and
Gunst (1993), Cheng and Schneeweiss (1998), Schneeweiss and Nittner (2001),
Cheng and Schneeweiss (2002), Kuha and Temple (2003), and Kukush et al. (2005).
A goodness-of-fit test is presented in Cheng and Kukush (2004). The cases focused
are the case σ 2

u known (most frequent), the knowledge of the ratio of variances
(σ 2

e /σ
2
u ) (Chan and Mak, 1985), and the situation where the covariance matrix in

(3) is fully or partially known, with σeu = cov(ei , ui ) not necessarily null. One
of the drawbacks in Chan and Mak (1985) is the fact that the determinant of the
asymptotic covariance matrix of the curve parameter estimators in the quadratic
model vanishes under the hypothesis that the quadratic coefficient is null. More-
over, there is no formal proof in the literature implying that estimating equations
yield consistent and asymptotically normal estimators for the functional situation,
that is, when incidental parameters are present. Gimenez and Bolfarine (1997)
however, provide rigorous proofs for consistency and asymptotic normality for
the estimators obtained by solving estimating equations that follows by using the
corrected score approach (Stefanski, 1989; Nakamura, 1990) in functional situ-
ations. In the structural model, Thamerus (1998) concerns with heteroscedastic
measurement errors for all kind of nonlinear models.

The route we take is based on the corrected score methodology (Stefanski,
1989; Nakamura, 1990; Gimenez and Bolfarine, 1997), that when feasible, yields
consistent estimators for the regression line parameters and also enables consis-
tent estimation of the asymptotic covariance matrix of the estimators. Results are
simple to implement with existing statistical software. The paper is organized as
follows. Section 2 deals with the main methodological aspects, covering model
formulation, parameter estimation and hypothesis testing. Results of simulation
studies and a real data application are reported in Sects. 3 and 4. The Appendix
provides an abridged account of the corrected score technique.

2 The corrected score approach for the heteroscedastic polynomial
functional model

In this section we postulate that the relationship between the response y and the
covariate x , with both variables carrying measurement errors, can be expressed by
using

yi = β0 + β1 xi + · · · + βp x p
i + ei , (6)

with

wi = xi + ui ,

i = 1, . . . , n, p ≥ 1, and n > p + 1. We also assume distribution (5) with σei
and σui known, i = 1, . . . , n. Values for σei and σui can be obtained by using
replications. The unknown xi are taken as fixed so that the model formulated is a
functional polynomial model. The assumptions above imply that the (unobserved)
log-likelihood function can be written as

l(β; x, y) = constant − 1

2

n∑
i=1

(yi − β0 − β1 xi − · · · − βp x p
i )

2

σ 2
ei

, (7)
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where β = (β0, β1, . . . , βp)
�, x = (x1, . . . , xn)

�, and y = (y1, . . . , yn)
�.

Note that the above likelihood is unobserved because it depends on the unknown
(unobserved) xi , i = 1, . . . , n. The unobserved score function of β follows by
differentiating (7) and is given by

Us(β; x, y) = ∂l(β; x, y)
∂βs

=
n∑

i=1

1

σ 2
ei

⎛
⎝yi −

p∑
j=0

β j x j
i

⎞
⎠ xs

i ,

s = 0, 1, . . . , p.
Substituting wi for xi we construct the naive log-likelihood function

l(β; w, y) = constant − 1

2

n∑
i=1

(yi − β0 − β1wi − · · · − βp w
p
i )

2

σ 2
ei

, (8)

where w = (w1, . . . , wn)
�. Differentiating the likelihood (8) with respect to βs ,

the naive score for β is given by

Us(β;w, y) = ∂l(β; w, y)
∂βs

=
n∑

i=1

1

σ 2
ei

⎛
⎝yi −

p∑
j=0

β j w
j
i

⎞
⎠ ws

i ,

s = 0, 1, . . . , p. As is well known, the solution of the equations Us(β; w, y) = 0,
s = 0, 1, . . . , p (weighted least squares estimating equations), leads to an incon-
sistent estimator of β, since

E[U(β; w, y)] �= 0.

To obtain a consistent estimator, we start from a corrected score U∗(β;w, y)
satisfying

E[U∗
s (β;w, y) | x, y] = Us(β; x, y),

so that

E[U∗
s (β;w, y)] = E

[
E[U∗

s (β;w, y) | x, y]] = E[Us(β; x, y)] = 0,

s = 0, 1, . . . , p. Hence, by using the corrected score U∗, solving the equations
U∗(β; w, y) = 0 yields a consistent estimator for β. The unbiased corrected score
is given by

U∗
s (β;w, y) =

n∑
i=1

1

σ 2
ei

⎛
⎝yi ti,s −

p∑
j=0

β j ti, j+s

⎞
⎠ , (9)

s = 0, 1, . . . , p, where ti, j is defined such that E[ti, j ] = x j
i and can be computed

recursively from

ti,0 = 1, ti,1 = wi , and ti, j+1 = wi ti, j − j σ 2
ui ti, j−1,
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j = 1, . . . , 2p − 1, i = 1, . . . , n. Stefanski (1989) derived a recursion formula
for the homoscedastic case, but his arguments go through also in the heteros-
cedastic case. Further, since in this case integration and differentiation opera-
tions are exchangeable, it can be shown that the corrected log-likelihood function
is given by

l∗(β;w, y) = constant − 1

2

n∑
i=1

log σ 2
ui − 1

2

n∑
i=1

log σ 2
ei

−1

2

n∑
i=1

1

σ 2
ei

⎧⎨
⎩y2

i − 2 yi

p∑
j=0

β j ti, j +
p∑

j=0

p∑
s=0

β j βs ti, j+s

⎫⎬
⎭ .

(10)

Equating U∗
s (β;w, y) in (9) to 0, s = 0, 1, . . . , p, the corrected score estimator

of β(β̂) is the solution of the linear system

T β = yt , (11)

where

T =
n∑

i=1

1

σ 2
ei

⎡
⎢⎢⎢⎢⎣

1 ti,1 ti,2 · · · ti,p
ti,2 ti,3 · · · ti,p+1

ti,4 · · · ti,p+2
. . .

...
ti,2p

⎤
⎥⎥⎥⎥⎦ (12)

and

yt =
n∑

i=1

1

σ 2
ei

(
yi , yi ti,1, yi ti,2, . . . , yi ti,p

)�
.

The system of equations (11) can be seen as a generalization of the adjusted least
squares (ALS) estimating equations in Cheng and Schneeweiss (1998). In fact, to
construct the estimators, we need the knowledge of σ 2

ui , i = 1, . . . , n. With regard
to var(ei ), we can be more flexible, by taking var(ei ) = κ σ 2

ei , with κ unknown
and σ 2

ei known, i = 1, . . . , n, as before. This formulation changes (10) and solving
∂l∗
∂κ

= 0 furnishes

κ̂ = n−1
n∑

i=1

1

σ 2
ei

⎧⎨
⎩y2

i − 2 yi

p∑
j=0

β̂ j ti, j +
p∑

j=0

p∑
s=0

β̂ j β̂s ti, j+s

⎫⎬
⎭ .

Large sample properties of the estimators derived above are considered next.

Theorem 1 Under the polynomial functional model defined in (6), (2), and (5), the
corrected score estimator β̂ = T−1 yt in (11) converges in probability to the true
β and is asymptotically normally distributed, as n → ∞, provided the conditions
C1–C5 in Gimenez and Bolfarine (1997) are satisfied.
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Proof The result follows directly from Theorems 4.1 and 4.2 in Gimenez and
Bolfarine (1997) which are general enough to accommodate situations where the
distribution of the outcomes change with the sample units as is the case with the
heteroscedastic model considered in this paper. �	
Remark 1 Conditions C1–C5 aforementioned involve the incidental parameters
xi , i = 1, . . . , n. In our model, if

0 < lim inf
n→∞ n−1

n∑
i=1

(xi − x̄)2(2p−1) ≤ lim sup
n→∞

n−1
n∑

i=1

(xi − x̄)2(2p−1) < ∞

and if there is a γ > 0 such that

lim
n→∞ n−(1+γ /2)

n∑
i=1

|x p
i |2+γ = 0,

then C1–C5 are satisfied. The first condition requires that the true unobservable (x)
should be neither too much spread out nor too much concentrated when n → ∞.
The second assumption allows an application of Liapounov’s central limit theorem
in order to obtain the asymptotic distribution of β̂.

Remark 2 By definition of ti, j , j = 0, 1, . . . , 2p, i = 1, . . . , n, we have that

E[T] =
n∑

i=1

1

σ 2
ei

⎛
⎜⎜⎝

1
xi
...

x p
i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
xi
...

x p
i

⎞
⎟⎟⎠

�

and E[ yt ] =
n∑

i=1

1

σ 2
ei

⎛
⎜⎜⎝

1
xi
...

x p
i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
xi
...

x p
i

⎞
⎟⎟⎠

�

β.

(13)
Let Tk,l and yt,k be generic elements of T and yt , respectively. Writing

β̂ = (n−1 T)−1 (n−1 yt ),

if n−1 (Tk,l − E[Tk,l ]) a.s.−→ 0 and n−1 (yt,k − E[yt,k]) a.s.−→ 0, then β̂
a.s.−→ β. By

the Kolmogorov’s strong law of large numbers, this is achieved if

∞∑
i=1

var(ti, j )

i2 < ∞, j = 1, . . . , 2p, and
∞∑

i=1

var(yi ti, j )

i2 < ∞, j = 1, . . . , p.

Computation of these variances can be performed using the results in Moon and
Gunst (1993). We conclude that

∞∑
i=1

x2(2p−1)
i

i2 < ∞

is a sufficient condition for strong consistency of β̂.
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Remark 3 Adopting as working assumption the boundedness of the sequence
{xi , i = 1, . . . , n}, conditions C1–C5 in Gimenez and Bolfarine (1997) and strong
consistency of β̂ are directly stated. This condition, albeit stringent, is tenable in
many situations.

The estimator in (11) is numerically unstable for small samples. Following
Cheng et al. (2000), we propose an estimator with better behavior for small and
moderate samples. Let t i = (ti,0, ti,1, . . . , ti,p)�, Mt = ∑n

i=1 t i t�i /σ 2
ei , and

V = Mt − T. Let ρ be the smallest positive root of

det

[∑n
i=1 y2

i /σ
2
ei y�

t
Mt − ρ V

]
= 0.

The modified estimator (β̂M) is obtained by solving

(Mt − aV)β = yt , (14)

where

a =
{
(n − α)/n, if ρ > 1 + 1/n,
ρ (n − α)/(n + 1), if ρ ≤ 1 + 1/n,

,

with α = p + 2, as suggested in Cheng et al. (2000). In Sects. 3 and 4 we adopt
the modified estimator.

Theorem 2 Let
[∑n

i=1 y2
i /σ

2
ei y�

t
Mt

]
and lim

n→∞ n−1 E[T]

be positive definite matrices, with E[T] as in (13). Under the polynomial func-
tional model defined in (6), (2), and (5), the corrected score estimator β̂ = T−1 yt
and the modified estimator (β̂M) in (14) are asymptotically equivalent, that is,
n−1/2(β̂M − β̂) converges in probability to 0, as n → ∞.

Proof The proof parallels the proofs of the Theorems 1 and 2 in Cheng et al. (2000).
In the simplest instance (p = 1), the heterogeneous model reduces to (1),

(2), and (5). From (11), the corrected score estimators come as solutions to the
equations

⎡
⎣
∑n

i=1
1
σ 2

ei

∑n
i=1

ti,1
σ 2

ei∑n
i=1

ti,2
σ 2

ei

⎤
⎦
(
β0
β1

)
=
⎛
⎝
∑n

i=1
yi

σ 2
ei∑n

i=1
yi ti,1
σ 2

ei

⎞
⎠ .

Solving the above equations lead to the corrected score estimators

β̂0 =
∑n

i=1(yi − β̂1wi )/σ
2
ei∑n

i=1 1/σ 2
ei
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and

β̂1 =
∑n

i=1
wi yi

σ 2
ei

−∑n
i=1

yi

σ 2
ei

∑n
i=1

wi
σ 2

ei

(∑n
i=1

1
σ 2

ei

)−1

∑n
i=1

w2
i

σ 2
ei

−
(∑n

i=1
wi
σ 2

ei

)2 (∑n
i=1

1
σ 2

ei

)−1

−∑n
i=1

σ 2
ui
σ 2

ei

.

Thus, the corrected score approach affords closed form expressions for the
estimators of β0 and β1 and to the best of our knowledge are not in the litera-
ture. On the contrary, maximum likelihood estimators for the linear situation have
been considered in Fuller (1987) and Galea-Rojas et al. (2003) and require iterative
procedures for its derivation. In the latter paper, simplified expressions are obtained
for the asymptotic covariance matrix of the maximum likelihood estimators. Fuller
(1987, Sect. 3.1.1) also presents consistent estimators of β0 and β1. These esti-
mators are motivated by the maximum likelihood estimators in the homoscedastic
functional model and require the solution of an eigenvalue problem. We emphasize
that the likelihood approach seems not feasibly extendable for the functional poly-
nomial situation considered in this paper. Notice that if σ 2

ui ≡ σ 2
u and σ 2

ei ≡ σ 2
e ,

i = 1, . . . , n, then β̂1 reduces to β̂c in (4), which can be seen as a corrected least
squares estimator (Fuller, 1987).

For the quadratic model (that is, p = 2), we have the system⎡
⎢⎢⎢⎢⎣

∑n
i=1

1
σ 2

ei

∑n
i=1

ti,1
σ 2

ei

∑n
i=1

ti,2
σ 2

ei∑n
i=1

ti,2
σ 2

ei

∑n
i=1

ti,3
σ 2

ei∑n
i=1

ti,4
σ 2

ei

⎤
⎥⎥⎥⎥⎦

⎛
⎝β0
β1
β2

⎞
⎠ =

⎛
⎜⎜⎜⎝

∑n
i=1

yi

σ 2
ei∑n

i=1
yi ti,1
σ 2

ei∑n
i=1

yi ti,2
σ 2

ei

⎞
⎟⎟⎟⎠ .

If σ 2
ui ≡ σ 2

u and σ 2
ei ≡ σ 2

e , i = 1, . . . , n, this system reduces to the estimating
equations found in Kuha and Temple (2003, Sect. 4.2). �	

2.1 Asymptotic covariance matrix

By using the sandwich method presented in the Appendix (see also Gimenez and
Bolfarine, 1997), a consistent estimator of the asymptotic covariance matrix of the
corrected score estimators (V̂) is available. According to (22), V̂ = n−1 �̂, where

�̂ = Ī∗−1
S̄∗ Ī∗−1

,

with

Ī∗ = −n−1
n∑

i=1

∂

∂β
U∗

i (β;wi , yi )∣∣β=β

and

S̄∗ = n−1
n∑

i=1

U∗
i (β̂;wi , yi )U∗

i (β̂;wi , yi )
�.
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From (9) we arrive at

U∗
i (β;wi , yi ) = 1

σ 2
ei

⎛
⎜⎜⎜⎝

yi ti,0 −∑p
j=0 β j ti, j

yi ti,1 −∑p
j=0 β j ti, j+1
...

yi ti,p −∑p
j=0 β j ti, j+p

⎞
⎟⎟⎟⎠ ,

i = 1, . . . , n. In this way, we have that Ī∗ = n−1 T, which does not depend on β,
so that

�̂ = n2 T−1 S̄∗ T−1. (15)

Hence we have that

Theorem 3 Under the conditions C1–C5 stated in Gimenez and Bolfarine (1997),
as n → ∞, the estimator V̂ = n−1 �̂ converges in probability to the true asymp-
totic covariance matrix of the corrected score estimator in Theorem 1.

Proof The proof follows directly by using results in Theorem 4.2 in Gimenez and
Bolfarine (1997). �	

2.2 Hypothesis testing

We tackle now the problem of testing

H0 : β = β0, (16)

where β0 is a vector of known constants. Gimenez et al. (2000) propose score and
Wald type test statistics based on the corrected score methodology. In order to test
(16), two statistics are available, namely,

W = n (β̂ − β0)
� �̂

−1
(β0) (β̂ − β0)

= n−1 (β̂ − β0)
� T S̄∗(β0)

−1 T (β̂ − β0),

in view of (15), and the score statistic

Q = n−1 U∗(β0;w, y)� S̄∗(β0)
−1 U∗(β0;w, y). (17)

Taking (9) and (11) into account, it follows that

T (β̂ − β0) = yt − T β0 = U∗(β0;w, y);
so, W = Q. Hence, we have the following main result of the section.

Theorem 4 Consider the functional polynomial model defined in (6), (2), and (5).
Under H0 in (16), W = Q is asymptotically distributed according to a chi-square
distribution with p + 1 degrees of freedom. Moreover, W is asymptotically equiv-
alent to the Wald statistic

W2 = n−1 (β̂ − β0)
� T S̄∗(β̂)−1 T (β̂ − β0). (18)
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Proof The proof follows directly from Theorem 3.1 in Gimenez et al. (2000).
As also shown in Gimenez et al. (2000), a likelihood ratio type statistic based on

the corrected log-likelihood (10) is distributed as a mixture of chi-square distribu-
tions, so that its use is more complicated than the statistic considered in Theorem 4.

Let β be partitioned as (β�
ψ,β

�
λ )

�, where ψ and λ are proper disjoint subsets
of {0, 1, . . . , p} with q and p + 1 − q elements, respectively. The corrected score
estimator β̂ is partitioned accordingly. We examine in the sequel the hypothesis
concerning the subset βψ , formulated as

H0 : βψ = βψ0. (19)

Specifically, we could be interested in testing

H0 : (β1, β2, . . . , βp)
� = (0, 0, . . . , 0)�.

Adopting a usual notation for partitioned vectors and matrices, we write

U∗(β; w, y) =
(

U∗
ψ(β;w, y)

U∗
λ(β;w, y)

)
,T =

[
Tψψ Tψλ
Tλψ Tλλ

]
, and �̂ =

[
�̂ψψ �̂ψλ

�̂λψ �̂λλ

]
.

Like in Theorem 4, the statistics proposed by Gimenez et al. (2000) serve to our

purposes. First, let β̂0 = (β�
ψ0, β̂

�
λ0)

�, where β̂λ0 is the corrected score estimator
of βλ restricted to (19). From (9), the corrected score of βs under H0, s ∈ λ, can
be written as

U∗
s (β;w, y) =

n∑
i=1

1

σ 2
ei

⎧⎨
⎩
(

yi ti,s −
∑
j∈ψ

β j0 ti, j+s

)
−
∑
j∈λ
β j ti, j+s

⎫⎬
⎭ .

The system of linear equations U∗
s (β; w, y) = 0, s ∈ λ, takes the form

n∑
i=1

1

σ 2
ei

∑
j∈λ
β j ti, j+s =

n∑
i=1

1

σ 2
ei

(
yi ti,s −

∑
j∈ψ

β j0 ti, j+s

)
. (20)

Remembering (9) and (11), we conclude that β̂λ0 is the solution of

Tλλ βλ = ytλ,

where ytλ is the vector with the elements on the right-hand side of (20). In other
words, corrected score estimation in a restricted model is straightforward. Finally,
the test of the hypothesis (19) is possible with the aid of the next theorem. �	
Theorem 5 Consider the functional polynomial model formulated in (6), (2), and
(5). Define Tψψ�λ = Tψψ − Tψλ T−1

λλ Tλψ . Under H0 in (19), the statistics

Wψ = n (β̂ψ − βψ0)
� �̂ψψ(β̂0)

−1 (β̂ψ − βψ0)

and

Qψ = n U∗
ψ(β̂0; w, y)� T−1

ψψ�λ �̂ψψ(β̂0)
−1 T−1

ψψ�λ U∗
ψ(β̂0;w, y)

are asymptotically distributed according to a chi-square distribution with q degrees
of freedom, when n → ∞.
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Proof This assertion is a consequence of Theorem 3.1 in Gimenez et al. (2000).
Individual hypothesis regarding one parameter at time, expressed by

H0 : βs = βs0, s ∈ {0, 1, . . . , p},
can be tested similarly. For these hypothesis we can use

Zs = β̂s − βs0

v̂1/2
ss

,

which for large samples is distributed according to the standard normal
distribution, where v̂ss denotes the s-th entry in the main diagonal of V̂. �	

3 Simulations

In order to state inferential results in Sect. 2 we resort to asymptotic theory. In view
of this, we planned Monte Carlo simulations to evaluate the empirical level and
the power of the proposed test statistics at a nominal level of 5%. We chose the
quadratic model and the null hypothesis to be tested in (16) is H0 : β = (0, 1, 0)�.
In the simulations we take β0 = 0 and (β1, β2)

� vary as in Table 1, creating differ-
ent scenarios around H0. Sample sizes are n = 30, 50, 100, and 500. Standard
deviations in (5) increase with the true measurements according to

σei = 0.075 E[yi ]0.505 and σui = 0.16 x0.503
i ,

where E[yi ] = β0 + β1 xi + β2 x2
i = β1 xi + β2 x2

i , i = 1, . . . , n. For each sample
size, true unobservable xi in (6) are sampled from a gamma distribution (shape
and scale parameters taken as 0.45 and 0.65, respectively) and σui is computed,
i = 1, . . . , n. Next, for each pair β1, β2, E[yi ] and σei are computed, i = 1, . . . , n.
Then, keeping these values fixed, rejection rates of the hypothesis in (16) from score
(17) and Wald statistics (18) are obtained from 10, 000 replications obeying (2) and
(6), contaminated with measurement errors having distribution (5), i = 1, . . . , n.
Simulated samples resemble data from Example 4 in Galea-Rojas et al. (2003).
Computations were performed by using homemade programs written in Ox lan-
guage (Doornik, 2002). Graphics were drawn in the R system (R Development
Core Team, 2004).

Table 1 summarizes the results. The rejections rates from Wald statistics are
high, whichever the sample size and the (β1, β2) values. For samples generated
under H0, notwithstanding the increasing sample sizes, rejection rates from Wald
statistic are far from the nominal level, rather distinct from the behavior of the score
statistic, whose empirical levels, albeit not so close to 5% when n = 30 and 50,
seems to suggest a good agreement between empirical and theoretical distributions.
A sample size of 500 is compatible with the real data set in the example of Sect. 4.

Figure 1 displays samples generated under the conditions of Table 1 and the line
corresponding to the null hypothesis tested. Figure 1a and d represent the clearest
departures from H0, so that, as expected, for each sample size the largest rejection
rates typically are at upper left and lower right corners in Table 1.

Moreover, simulations also indicate that the weighted least squares (WLS)
estimators are markedly biased. For sake of space, results from these simulations
are omitted.
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Table 1 Rejection rates of the null hypothesis H0: β1 = 1.00 and β2 = 0.00: (a) Wald statistic
and (b) score statistic

β2 β1 (a) β1 (b)

0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10

n = 30
−0.15 0.999 0.995 0.975 0.931 0.860 0.268 0.108 0.034 0.017 0.046
−0.05 0.954 0.874 0.786 0.721 0.719 0.107 0.031 0.018 0.049 0.134

0.00 0.872 0.773 0.711 0.722 0.787 0.054 0.021 0.025 0.085 0.208
0.05 0.785 0.730 0.743 0.800 0.870 0.037 0.023 0.047 0.132 0.302
0.15 0.834 0.859 0.899 0.941 0.968 0.025 0.046 0.126 0.267 0.464

n = 50
−0.15 1.000 1.000 1.000 1.000 1.000 0.300 0.144 0.046 0.014 0.033
−0.05 0.992 0.950 0.837 0.679 0.550 0.170 0.051 0.025 0.056 0.176

0.00 0.784 0.562 0.439 0.503 0.695 0.093 0.030 0.035 0.010 0.268
0.05 0.648 0.677 0.794 0.885 0.954 0.049 0.024 0.062 0.180 0.373
0.15 0.977 0.980 0.985 0.990 0.995 0.023 0.053 0.141 0.310 0.525

n = 100
−0.15 1.000 1.000 1.000 0.994 0.977 0.993 0.857 0.392 0.056 0.076
−0.05 0.998 0.973 0.883 0.824 0.857 0.815 0.312 0.040 0.067 0.378

0.00 0.972 0.869 0.800 0.839 0.939 0.521 0.095 0.033 0.221 0.672
0.05 0.905 0.836 0.859 0.935 0.988 0.242 0.045 0.118 0.494 0.881
0.15 0.945 0.957 0.985 0.998 1.000 0.070 0.117 0.487 0.874 0.989

n = 500
−0.15 1.000 1.000 1.000 1.000 1.0000 1.0000 1.0000 1.000 1.000 0.974
−0.05 1.000 1.000 0.999 0.867 0.941 1.000 1.000 0.928 0.436 0.925

0.00 1.000 0.897 0.229 0.846 1.000 1.000 0.762 0.043 0.832 1.000
0.05 0.961 0.749 0.983 1.000 1.000 0.923 0.620 0.976 1.000 1.000
0.15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 Application

We illustrate with data from Example 4 in Galea-Rojas et al. (2003), where a
detailed description can be found. Gold contents (in grams/ton) in 501 samples
was analyzed using two methods: a classical method and a screen fire assay. The
chief aim is to test the bias of one method relative to the other one. Synek (2001)
points out that wide concentration ranges are prone to curvature at higher levels.
Figure 2 brings to light this issue and induces us to adopt a quadratic model as a first
step beyond the simplest model. Corrected score estimates (and standard errors)
are β̂0 = 0.00746 (0.00868), β̂1 = 0.976 (0.0952), and β̂2 = −0.125 (0.0330).
Hypothesis H0 : β0 = 0, β1 = 1 e β2 = 0, which means bias absence between
the methods, is rejected at a 5% level (Q = 9.01 with three degrees of freedom,
p-value = 0.0291). Individual tests show the significance of linear and quadratic
coefficients (p-values = 0.390, < 0.0001, and 0.000159, respectively).

5 Conclusions

The paper presents inferential methods for functional polynomial measurement
error models with known heterogeneous variances. Contrary to many articles in
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the literature, special attention was dedicated to hypothesis testing, either on the
whole parameter vector or on a subset of it. As pointed out by a referee, with data
like those presented on Fig. 2, goodness-of-fit should be checked. In future work
we will address this point, elaborating a test similar to one constructed by Cheng
and Kukush (2004). The power of the tests in Sect. 2.2 under local alternatives
could also be investigated.

Throughout the paper only the functional model was mentioned. The corrected
score estimator is also applicable to the structural counterpart, although distri-
butional information about the covariate could be incorporated in the analysis,
resulting in better inferential procedures. We concentrate on the functional model,
for our work was fostered by datasets having asymmetric measurements.
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Fig. 1 True 50 unknown x and E[y] values with the standard deviations of the measurement
errors: a β1 = 0.90, β2 = −0.15, b β1 = 1.10, β2 = −0.15, c β1 = 0.90, β2 = 0.15, and
d β1 = 1.10, β2 = 0.15. Solid line represents the null hypothesis to be tested (β1 = 1.00,
β2 = 0.00)
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Fig. 2 Gold concentrations, standard deviations of the measurement errors, and adjusted models
(“CS” stands for corrected score)

Appendix: the corrected score methodology

Consider a response vector y of dimension r , x a covariate vector of dimension k
and θ a parameter vector of dimension p. Denoting by xi and yi the covariate and
response vectors for unit i in a sample of n independent observations, let

l(θ; X,Y) =
n∑

i=1

li (θ; xi , yi ),

the log-likelihood function of θ given X = (x�
1 , . . . , x�

n ) and Y = ( y�
1 , . . . , y�

n ),
the observed data. Therefore, the score function and the observed information
matrix are given by

U(θ; X,Y) = ∂

∂θ
l(θ; X,Y) (21)

and

I(θ; X,Y) = − ∂

∂θ
U (θ; X,Y),

supposing that the required derivatives are well defined. Under appropriate
regularity conditions (Lehmann, 1998) the maximum likelihood estimator θ̂ X of θ
comes from solving the estimating equations U(θ; X,Y) = 0. It is well known that
under suitable regularity conditions, θ̂ X is consistent and asymptotically normal,
with asymptotic covariance matrix given by {E[I(θ; X,Y)]}−1. Now, given that X



Consistent estimation and testing in heteroscedastic polynomial errors-in-variables models 529

cannot be observed, as happens when it is measured with error, the above scheme is
not useful. In the additive model with r = k = 1, wherewi = xi +ui and E[ui ] = 0,
for example, we can substitutewi for xi (which is not observed) in (21), that is, we
can construct the naive score function U(θ; W,Y), where W = (w1, . . . , wn)

�,
leading to the naive estimating equations U(θ; W,Y) = 0, which do not yield in
general a consistent estimator of θ (Carroll et al., 1995).

To overcome these difficulties, Stefanski (1989) and Nakamura (1990) pro-
posed to work with a corrected likelihood function, that is, to find a likelihood
function l∗(θ; W,Y) such that E[l∗(θ; W,Y) | X,Y] = l(θ; X,Y), which, under
suitable regularity conditions, will lead to consistent estimators achieved by using
the corrected score function

U∗
i (θ;wi , yi ) = ∂

∂θ
l∗i (θ;wi , yi ),

i = 1, . . . , n. Thus, the corrected score estimator of θ follows by solving the system∑n
i=1 U∗

i (θ;wi , yi ) = 0.
The corrected observed information matrix is given by

Ī∗(θ; W,Y) = −n−1
n∑

i=1

∂

∂θ
U∗

i (θ;wi , yi ).

As shown in Gimenez and Bolfarine (1997), θ̂ is asymptotically normally
distributed with mean vector θ and

n−1 Ī∗−1
(̂θ; W,Y) S̄∗(̂θ; W,Y) {Ī∗−1

(̂θ; W,Y)}� (22)

is a consistent estimator of the asymptotic covariance matrix, where

S̄∗(̂θ; W,Y) = n−1
n∑

i=1

U∗
i (̂θ;wi , yi )U∗

i (̂θ;wi , yi )
�.
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