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Abstract Let R be a p× p-correlation matrix with an “m-factorial” inverse R−1 =
D − B B ′ with diagonal D minimizing the rank m of B. A new

(
m+1

2

)
-variate inte-

gral representation is given for p-variate gamma distributions belonging to R,
which is based on the above decomposition of R−1 without the restriction D > 0
required in former formulas. This extends the applicability of formulas with small

m. For example, every p-variate gamma cdf can be computed by an at most
(

p−1
2

)
-

variate integral if p = 3 or p = 4. Since computation is only feasible for small
m, a given R is approximated by an m-factorial R0. The cdf belonging to R is
approximated by the cdf associated with R0 and some additional correction terms
with the deviations between R and R0.

Keywords Multivariate gamma distribution · Multivariate chi-square distribution ·
Multivariate Rayleigh-distribution · Approximation for positive definite matrices ·
m-factorial matrices

1 Introduction and notations

For any p × p-matrix A = (ai j ) the determinant is denoted by |A| and the trace by
tr(A), A > 0 means positive definiteness, and (ai j ) = A−1. Ip or I is a unit matrix
and E denotes the expectation of a random variable (r.v.). A cumulative distribution
function is abbreviated by cdf and a probability density by pdf. Formulas from the
handbook of mathematical functions by Abramowitz and Stegun (1965) are cited
by “A.S” and their number.
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The p-variate chi-square distributon (χ2
p(ν, �)) is defined as the joint

distribution of the diagonal elements of a Wp(ν, �)-Wishart matrix with ν de-
grees of freedom and covariance matrix � > 0. It has the Laplace transform (L.t.)
|Ip + 2�T |−ν/2 with T = diag(t1, . . . , tp). This distribution is of much interest
in some multiple test procedures but it is also encountered in a slightly modified
form as the multivariate Rayleigh-distribution in electrical engineering (Nomoto
Kishi, and Nanba, 2004; Miller, 1975).

The p-variate gamma-distribution of order α(�p(α, �)) in the sense of Krish-
namoorthy and Parthasarathy (1951) differs from the χ2

p(2α,�)-distribution only
by a scale factor 2 and the extension of the parameter values ν = 2α to non-
integer values. In this paper w.l.o.g. � is restricted to irreducible regular correla-
tion matrices R. The �p(α, R)-density f p(x1, . . . , x p;α, R) has the L.t.

f̂ p(t1, . . . , tp;α, R) = |Ip + RT |−α,

T = diag(t1, . . . , tp), t1, . . . , tp ≥ 0, (1)

positive integer 2α or 2α > p − 2 ≥ 0.

Necessary and sufficient conditions for R associated with an infinitely divisible
�p(α, R)-distribution are found in Griffiths (1984) and Bapat (1989). In this case
all α > 0 are admissible. For a given R not allowing infinite divisibility the exact
set of admissible non-integer values 2α is unknown but some general sufficient
conditions for α can be established. If a �p(α, R)-distribution is derived from a
Wp(2α, R)-distribution then 2α > p−1 is admissible. See also corollary 2.2.3.1 in
Siotani, Hayakawa, and Fujikoshi (1985) with m instead of α. However for p ≥ 2
this condition can be improved to 2α > p − 2 according to Royen (1997). This is
also recognized by the remark following Eq. (4) leading to a probability mixture
representation of the �p(α, R)-cdf in Eq. (6) with a (p − 1) × (p − 1)-Wishart
matrix S.

Unfortunately, the cdf and even the pdf of the �p(α, R)-distribution are diffi-
cult to compute at least for p ≥ 4. It is the aim of this paper to provide new
integral representations for the pdf and the cdf Fp(x1, . . . , x p;α, R), which do
not depend on some unnecessary restrictions as some former formulas in Royen
(1991a,1995,1997). By the new general formula (20), e.g. almost every �p(α, R)-
cdf can be computed by an at most

(p−1
2

)
-variate integral if p = 3 or p = 4. For

some special structures of R (e.g. tridiagonal matrices) different integral represen-
tations and series expansions are found in Royen (1994). See also Kotz, Balakrish-
nan, and Johnson (2000) and in particular for tridiagonal R−1 in Blumenson and
Miller (1963). The computation is further simplified for half-integers α, which is
seen from Eqs. (20), (22) and (23). In particular with α = 1/2 formulas for normal
probabilities of symmetrical rectangular regions are obtained in Eq. (26).

For general p the representations for the pdf and the cdf are given by
(m+1

2

)
-

variate integrals in Eqs. (15) and (20), where m is the rank of B in a decomposition
R−1 = D − B B ′ with a diagonal p × p-matrix D. Minimizing the rank m of
R−1 − D by a variable D is important to reduce the computing effort. For this, the
assumption D > 0, used in former formulas, is now removed by the new formulas
in Sect. 4. Further details on “m-factorial decompositions” of R−1 or R with real
or complex D are found in Sect. 3.
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Since the computing effort increases rapidly with m, a given R can frequently
be approximated by a correlation matrix R0 = D−1 + AA′ with a very small
rank m of A. Using R0 instead of R, a first approximation for the �p(α, R)-cdf is
obtained, which can be improved further by the first terms of a series expansion
with the deviations between R and R0. The general expansion with conditions for
convergence is given in Sect. 5.

Finally, Sect. 6 ends the paper with a short speculative view to approxima-
tions for the cdf by the real parts of certain complex measures associated with
symmetrical complex matrices R0.

2 Former integral representations of the � p(α, R)-distribution

The new formulas in Sect. 4 are better understood by comparison with former ones.
Throughout this paper the univariate standard gamma density of order α is denoted
by

gα(x) = (�(α))−1xα−1e−x , x > 0, α > 0, (2)

with the cdf Gα(x),

and the non-central gamma density with non-centrality parameter y ≥ 0 by

gα(x, y) = e−y
∞∑

n=0

gα+n(x)yn/n! = e−y gα(x)0 F1(α; xy) (3)

with the cdf Gα(x, y).

Now let R be a given regular p × p-correlation matrix representable by

R = D−1 + AA′ (4)

with D = diag(d1, . . . , dp) > 0 and a p×m-matrix A of rank m < p with rows a j .
With the lowest eigenvalue λ of R and D−1 = λIp obviously m ≤ p − 1 is always
possible. The components Y j of a Np(0, R) normal r.v. Y can be represented by

Y j = d−1/2
j U j +

m∑
µ=1

a jµZµ, d−1
j = 1 − |a j |2, (5)

with i.i.d. N (0, 1) r.v. U j , Zµ. Because of the “common factors” Zµ, Eq. (4) is
sometimes called an “m-factorial” representation of R. Now let Yκ , κ = 1, . . . , ν,
be i.i.d. Np(0, R) r.v. with components Y jκ . With fixed values in the m × ν-matrix
Z = (Zµκ) the r.v.

X j := 1

2

ν∑
κ=1

Y 2
jκ
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are conditionally distributed as p independent non-central gamma variables with
scale factors d j and non-centrality parameters 1

2 d j a j Z Z ′a′
j . Integrating over the

Wm(ν, Im)-Wishart matrix S = Z Z ′ the joint cdf of the X j is

Fp(x1, . . . , x p; α, R) = E
⎛
⎝

p∏
j=1

Gα

(
d j x j ,

1

2
d j a j Sa′

j

)⎞
⎠ , α = ν/2. (6)

With m = 1 this is simplified to

Fp(x1, . . . , x p; α, R) =
∞∫

0

⎛
⎝

p∏
j=1

Gα(d j x j , d j a
2
j y)

⎞
⎠ gα(y)dy. (7)

Extending the functions Gα(x, y) to y ∈ C and using the L.t. (1) formula (6) was
shown also to hold at least for all α > (p − 2)/2 and for indefinite AA′ in Eq. (4),
Royen (1991a, 1995). With an orthogonal matrix U and the diagonal matrix � of
the eigenvalues of AA′ the version A = U�1/2 may contain some pure imaginary
columns. The term “m-factorial representation of R” was retained for Eq. (4) also
without the underlying model with m-factors.

As an example for this extension the �3(α, (r jk))-distribution with
∏

j<k r jk �=
0 is considered. The three equations r jk = a j ak can always be solved by

a j = √
s sk	|r jkr j	/rk	|1/2, j, k, 	 any permutation of 1, 2, 3,

sk	 = sgn(rk	), s =
∏
k<	

sk	. (8)

This leads to the one-factorial decomposition R = D−1 + aa′ with a pure imagi-
nary column a if s = −1 and Eq. (7) can be applied. However, with real a at most
one |a j | ≥ 1 can occur, corresponding to d−1

j = 1 − a2
j ≤ 0, and Eq. (7) is not

applicable. It was just this gap, which has motivated the search for a more general
integral representation, now based on decompositions

R−1 = D − B B ′ (9)

with any real or complex diagonal D.
The relation between Eq. (4) with any diagonal D, |D| �= 0, and Eq. (9) is

given by:

Lemma 1 If a regular correlation matrix R has an m-factorial representation
D−1 + AA′, then R−1 has also an m-factorial representation D − B B ′ with the
same D.

Proof With the diagonal matrix � of the eigenvalues of D1/2 AA′D1/2 it follows
|D1/2 RD1/2| = |I + �| �= 0. There exists a not necessarily real matrix U with
U ′U = I and a version A = D−1/2U�1/2. Then R−1 = D − B B ′ is verified with
B = D A(I + �)−1/2.
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3 General m-factorial representations of covariance matrices

Definition 1 A regular p × p-covariance matrix � is called “m-factorial” if m is
the lowest integer allowing a representation

� = D + AA′ (10)

with any real or complex diagonal matrix D and a p × m-matrix A of rank m. �
is called “real-m-factorial”, if m is the lowest rank of A, which can be reached by
a real diagonal D.

Due to Lemma 1 with minimal m an m-factorial � with |D| �= 0 has an
m-factorial inverse �−1 = D−1 − B B ′.

For some examples with randomly generated 6 × 6-correlation matrices
3-factorial representations were computed with a complex diagonal D. With only
real D no 3-factorial representation did exist.

Thus, by the extension of the term “m-factorial” in Definition 1 more matrices
R are representable as m-factorial with a small value of m, which is useful for the(

m+1
2

)
-variate integral representation in Sect. 4

What can be said generally on the minimal value m for a given irreducible reg-
ular �p×p = (σ jk) apart from m ≤ p −1? A tridiagonal � with

∏p−1
j=1 σ j, j+1 �= 0

shows the existence of cases with m = p − 1. On the other hand set, eventually
after a permutation of rows and columns,

� − D =
(

�̃11 �12
�21 �̃22

)

with an m × m-matrix �̃11 and a variable D = diag(d1, . . . , dp). If σ̃11, . . . , σ̃mm-
and therefore d1, . . . , dm-can be chosen in such a way that �̃11 and � − D have
the same rank m, then there exists a matrix X with �̃11 X = �12, �21 X =
�̃22 and consequently �21�̃

−1
11 �12 = �̃22. Thus, dm+1, . . . , dp are functions of

d1, . . . , dm . After multiplication by |�̃11| the
( p−m

2

)
remaining equations with the

off-diagonal elements of the symmetrical �̃22 must be satisfied by d1, . . . , dm . For
this, m ≥ ( p−m

2

)
should be necessary apart from exceptions. The lowest integer m

satisfying this condition is

m p := p −
[

1

2

(√
8p + 1 − 1

)]
. (11)

In particular m p =
(

k
2

)
is obtained from p =

(
k+1

2

)
.

The conjecture “Almost all (w.r.t. Lebesgue measure) irreducible regular covari-
ance matrices �p×p are m-factorial with m ≤ m p” follows from Lemma 2 for
p = 4 and is proved here only for p = 6, m p = 3.

Proof W.l.o.g. let �6×6 be a random correlation matrix R without zeros. Let be

D a variable diagonal matrix, R − D = (R̃11,R12
R21,R̃22

)
with a 3 × 3-matrix R̃11 and

(c jk) := R21(|R̃11|R̃−1
11 )R12.
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Following the procedure before Eq. (11) the equations

c jk = |R̃11|r j+3,k+3, 1 ≤ j < k ≤ 3, (12)

have to be solved with |R̃11| �= 0 to find a 3-factorial representation of R. Addi-
tionally the equations

c jk = 0 (13)

are considered. It can be shown—supported by a computer algebra system—that
Eq. (12) has six general solutions (̃r11, r̃22, r̃33) and Eq. (13) has five ones, four
of them coinciding with solutions of Eq. (12). Within the space of random R
the solutions of Eq. (12) are almost sure different. Therefore, at least one solu-
tion of Eq. (12) is left with |R̃11| �= 0. (Normally, one solution of Eq. (13)
provides a value |R̃11| �= 0 and consequently it is no solution of Eq. (12). Then
two solutions of Eq. (12) are left).

If 3 ≤ p ≤ 5 only one equation has to be solved with real values d1, . . . , dp−2
to obtain an at most (p − 2)-factorial representation of �p×p with real D. For
p = 4 or 5 there are p − 3 free parameters among the d j . Besides, a given R5×5
has frequently a good approximation by a 2-factorial correlation matrix R0, which
leads to the general approximation method in Sect. 5.

An m-factorial representation for a given � can also be found by equations for
the unknown elements of A instead of looking for D. This method, given below, is
applied in the proof of the following lemma providing exact conditions for �4×4
to be at most 2-factorial.

Lemma 2 If � = (σ jk) is a regular irreducible 4 × 4-covariance matrix, not
equivalent to a tridiagonal matrix (i.e. not tridiagonal after any permutation of
rows and columns), then there exists a representation � = D + AA′ with a real
diagonal D and a 4×m-matrix A with rank m ≤ 2 and real or imaginary columns.

Proof The existence of A = (a jµ) is shown with a zero a	2 in its second col-
umn and a free real or imaginary parameter a	1. The matrix � can be mapped
to a connected graph G(�) with vertices 1, . . . , 4 containing the edge [i, j] iff
σi j �= 0, i �= j . Let Gi1i2i3i4 denote the class of matrices � with the vertex degrees
i1 ≥ · · · ≥ i4 in the corresponding graph. By assumption � ∈ G2211 was excluded.
Let i, j, k, 	 be any permutation of 1,2,3,4. If there is at least one vertex 	 of degree
3 then

∏
i �=	 σi	 �= 0. With a	2 := 0 and a real variable a2

	1 �= 0 set ai1 = σi	/a	1,
i �= 	. Then the three equations

σi j − σi	σ j	/a2
	1 = σi j − ai1a j1 = ai2a j2, i, j �= 	, (14)

can be solved for the ai2, a j2 because the left-hand sides (lhs) are different from
zero if certain values of a2

	1 are excluded. If the three lhs vanish simultaneously
with a suitable a	1 then � is one-factorial. Now only � ∈ G2222 is left. In this
case let be σk	 = σi j = 0 and σik, σ jk, σi	, σ j	 �= 0. With the above defined
a	2, a	1, ai1, i �= 	, it follows ak1 = 0 and ai1, a j1 �= 0. Then the lhs of Eq. (14)
are �= 0 and Eq. (14) can be solved again, which concludes the proof.
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A general way to compute Ap×m = (a jµ) in Eq. (10) is as follows: Set a jµ = 0,
j < µ ≤ m and consider xµ = a−2

µµ as complex variables, µ = 1, . . . , m. Then

σ1 j = a11a j1 implies

a j1 = σ1 j
√

x1 and

a j1ak1 = σ1 jσ1k x1, 2 ≤ j < k ≤ p,

σ2 j = a21a j1 + a22a j2 implies

a j2 = (σ2 j − σ12σ1 j x1)
√

x2 = σ
(1)
2 j

√
x2 and

a j2ak2 = σ
(1)
2 j σ

(1)
2k x2, 3 ≤ j < k ≤ p,

σ3 j = a31a j1 + a32a j2 + a33a j3 implies

a j3 = (σ
(1)
3 j − σ

(1)
23 σ

(1)
2 j x2)

√
x3 = σ

(2)
3 j

√
x3 and

a j3ak3 = σ
(2)
3 j σ

(2)
3k x3, 4 ≤ j < k ≤ p.

The last
(p−m

2

)
equations with the “residuals of order m” are

σ
(m)
jk = σ

(m−1)
jk − σ

(m−1)
mj σ

(m−1)
mk xm = 0, m + 1 ≤ j < k ≤ p.

To solve them for x1, . . . , xm ,
(p−m

2

) ≤ m is supposed, satisfied by m = m p from
Eq. (11).

With 6 ≤ p ≤ 9 only
(p−m

2

) = 3 occurs. The solution of these three equations
is very simple by elimination of xm and xm−1. With the three indices i, j, k involved
and σ ′

i j , σ
′′
i j instead of σ

(m−1)
i j , σ

(m−2)
i j , we obtain after having eliminated xm :

σ ′
i jσ

′
mk = σ ′

ikσ
′
mj

σ ′
jkσ

′
mi = σ ′

ikσ
′
mj .

Inserting σ ′
i j = σ ′′

i j − σ ′′
m−1,iσ

′′
m−1, j xm−1 and likewise for the remaining terms,

both the equations become linear in xm−1. Thus, after elimination of xm−1, only
one algebraic equation p(x1, . . . , xm−2) = 0 remains to be solved for xm−2 with
any free parameter values x1, . . . , xm−3 if m > 3.

In addition to an m-factorial representation of an m-factorial � some further
solutions of the final equations of the above computing procedures might be found
because of non-equivalent manipulations, as multiplication by terms, nullified later
by some solutions. Therefore, a careful check of the solutions is indispensable.

For larger values of p and m the finding of m-factorial decompositions of an
m-factorial � seems to be more difficult, but at present the resulting

(m+1
2

)
-variate

integrals for the �p(α, R)-cdf in Eq. (20) would hardly be computable if m > 3.
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4 A new integral representation of the � p(α, R)-distribution

The announced integral representation is provided by the following theorem:

Theorem 1 Let R be any regular p × p-correlation matrix with an m-factorial
representation D − B B ′ of R−1 with a not necessarily real D = diag(d1, . . . , dp)
and a p × m-matrix B with rank m < p and rows b j . Then at least for positive
integers 2α and for all α > (p − 2)/2 the �p(α, R)- pdf is given by

f p(x1, . . . , x p;α, R)

= |R|−α

p∏
j=1

(
exp(−d j x j )xα−1

j

/
�(α)

) · E
⎛
⎝

p∏
j=1

0 F1

(
α; 1

2 x j b j Sb′
j

)⎞⎠ , (15)

where the expectation refers to a Wm(2α, Im)-Wishart matrix S.

Some remarks are inserted before the proof:
If D > 0 then R − D−1 ≥ 0 and D − R−1 ≥ 0 are equivalent conditions for

B to be real. In this case at least all α > (m − 1)/2 are admissible.
The rank m of R−1 − D should be minimized by D to reduce the computing

effort. With a complex D frequently a lower m-value can be reached than by a real
one if p ≥ 5.

To integrate over S, the representation 1
2 S = Y 1/2CY 1/2 can be used with

Y = diag(Y1, . . . , Ym), i.i.d.r.v. Y j with pdf gα and a random correlation matrix
C , independent of Y , with density

(�(α))m

�m(α)
|C |α− m+1

2 , �m(α) = πm(m−1)/4
m∏

j=1

�
(
α − j−1

2

)
,

if α > (m−1)/2. For example, with m = 3 integration over C is easily transformed
to integration over a rectangular region of angles.

Formula (6) can be derived from Eq. (15) with D > 0. A series expan-
sion of the �p(α, R)-pdf with univariate gamma densities is contained in Royen
(1991b). With R−1 = (r i j ) and Q = (qi j ), qi j = r i j/(r ii r j j )1/2 this expan-
sion is given—with the notations of the underlying paper—by the leading term
|Q|α ∏p

j=1 r j j gα(r j j x j ), multiplied by a power series P(x1, . . . , x p) with rather
intricate coefficients. The rhs in Eq. (15) can also be written as

|Q|α
p∏

j=1

r j j gα(r j j x j ) · E
⎛
⎝

p∏
j=1

exp(−x j b j b
′
j ) 0 F1

(
α; 1

2 x j b j Sb′
j

)⎞⎠ . (16)

Thus, by comparison, the power series coincides with the above expectation. Be-
sides E(exp(−bb′) 0 F1

(
α; 1

2 bSb′)) = 1 can be shown for any row b ∈ C
m .

Proof of Theorem 1 With a suitable c>0 all values Re(d j +c)=Re(r j j +b j b′
j +c)

are positive. The L.t. with the variables t1, . . . , tp ≥ 0 of
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exp
(
−c

∑p
j=1 x j

)
f p(x1, . . . , x p;α, R) is obtained by changing the order of inte-

gration and using the L.t. t−α exp(y/t) of xα−1
0 F1(α; xy)/�(α).

With Dct := Diag(. . . , d j + c + t j , . . .) = D + cIp + T this L.t. is

|R|−α|Dct |−α E
⎛
⎝

p∏
j=1

exp
(

1
2 (d j + c + t j )

−1b j Sb′
j

)⎞
⎠

= |R|−α|Dct |−α E (
etr

(
1
2 SB ′D−1

ct B
))

.

With C := D−1/2
ct B, the substitution S̃ := S(Im − C ′C) and |Im − C ′C | =

|Ip − CC ′| the above expectation is |Ip − CC ′|−α , which yields the L.t.

|R|−α|D+cIp+T −B B ′|−α =|R|−α|R−1+cIp+T |−α =|Ip+R(cIp + T )|−α.

The substitution is justified by Re(Im − C ′C) > 0 with a sufficiently large c. Now
it follows f̂ p(t1, . . . , tp; α, R) = |Ip + RT |−α , concluding the proof.

The �p(α, R)-cdf follows from Eq. (15) by changing the order of integration
over S and x1, . . . , x p. For this, the following functions are defined with the nota-
tions (2) and (3):

hα(z, y) := ey gα(z, y) = e−z(z/y)(α−1)/2 Iα−1(2
√

yz), (y, z ∈ C) (17)

with the modified Bessel function Iα−1.

Hα(z, y) :=
z∫

0

hα(ζ, y)dζ = eyGα(z, y)

= e−z
∞∑

k=0

(z/y)(α+k)/2 Iα+k(2
√

yz ), (y, z ∈ C), (18)

(Royen, 1991a)

Kα(d, x, y) := 1

�(α)

x∫

0

exp(−dξ)ξα−1
0 F1(α; ξ y)dξ

=
{

d−α Hα(dx, y/d), d �= 0
(x/y)α/2 Iα(2

√
xy), d = 0

}
, (x ≥ 0, d, y ∈ C). (19)

Now the �p(α, R)-cdf is given by

Fp(x1, . . . , x p; α, R) = |R|−αE
⎛
⎝

p∏
j=1

Kα(d j , x j ,
1
2 b j Sb′

j )

⎞
⎠ (20)
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with the expectation referring to a Wm(2α, Im)-matrix S. With m = 1 and |D| �= 0
the rhs is reduced to

|DR|−α

∞∫

0

p∏
j=1

Hα(d j x j , b2
j y/d j )gα(y)dy. (21)

For actual computation the function Hα(z, y) should be available also for y, z ∈ C.
Some remarks on representations of the Hα may be helpful. It is easy to verify that

Hα+n(z, y) = Hα(z, y) −
n∑

k=1

hα+k(z, y), α > 0, n ∈ N0 (22)

and in particular with the error function

H1/2(z, y) = 1

2
ey (erf(

√
z + √

y) + erf(
√

z − √
y)
)
. (23)

Since the Ik−1/2 are elementary functions (A.S.10.2.9) this holds also for the
h1/2+k , which simplifies the computation for half-integers α.

For integer α the function H1 is needed. From h1(z, y) = e−z I0(2
√

yz) and

I0(2
√

yz) = 1

2π

π∫

−π

exp(xeiϕ + ye−iϕ)dϕ

it follows

H1(z, y) = ey − e−z
∞∑

n=0

⎛
⎝

n∑
j=0

z j/j !
⎞
⎠ yn/n!

= 1

2π

π∫

−π

w−1(exp(wz) − 1) exp(ye−iϕ)dϕ, w := eiϕ − 1. (24)

Besides

e−y Hα(z, y) = Gα(z, y) =
√

z

π

1∫

−1

Gα−1/2
(
(1 − c2)z)

)

× exp
(−(c

√
z − √

y)2) dc, α ≥ 1/2, G0 := 1, (25)

can be derived from A.S.6.5.29 and A.S.9.6.18.
Every �3(α, R)-cdf with

∏
j<k r jk �= 0 is computable by a univariate integral,

since the equations r jk = −b j bk can always be solved. For example, with correla-
tions r12 = 1/

√
2, r13 = 1/

√
2, r23 = 1/4 a negative d1 = −1 is obtained in D =

R−1 + bb′. With (21), (22), (23), e.g. F3(2.8, 6.4, 4.7; 3/2, R) = 0.857013 . . .
can be computed.
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As a by-product formulas for normal probabilities of p-variate symmetrical
rectangular regions arise with α = 1/2. With m-factorial R, a Np(0, R)-r.v.
(Y1, . . . , Yp) with R−1 = D − B B ′, |D| �= 0, and a Nm(0, Im)-distributed column
Z , it follows with S = Z Z ′ from Eqs. (20) and (23):

P

⎛
⎝

p⋂
j=1

{|Y j | ≤ √
2x j }

⎞
⎠ = Fp(x1, . . . , x p; 1

2
, R) = 2−p|DR|−1/2

× E
⎛
⎝exp( 1

2 Z ′ B ′ D−1 B Z)

p∏
j=1

(
erf(

√
d j x j + b j Z/

√
2d j ) + erf(

√
d j x j − b j Z/

√
2d j )

)
⎞
⎠

(26)

with expectation referring to Z .

5 Approximation to R by m-factorial R0 and Taylor approximations
for the � p(α, R)-distribution

At present, actual computation of the �p(α, R)-cdf by Eq. (20) is only accom-
plished with very small values of m. By a good approximation to a given correlation
matrix R by an m-factorial correlation matrix R0 with small m, a first approximation
to the �p(α, R)-cdf is obtained with R0 instead of R. For example, a given R5×5
has frequently a good 2-factorial approximation R0. The following considerations
aim at this case, but general formulas will be derived. The �p(α, R)-probability
measure P of any fixed area—and in particular the corresponding cdf-can be con-
sidered as a function of R = R0 + H , and subsequent approximations to P(R)
can be computed by Taylor polynomials P(R0) + P1(H ; R0) + P2(H ; R0) + · · · ,
where the Pj are homogeneous polynomials of degree j with the deviations hi j
in H . Such a Taylor expansion was derived for multivariate normal probabilities
of rectangular regions in Royen (1987). With a small value of tr(H2) a reasonable
approximation to the �p(α, R)-cdf should be obtained by sums of

(m+1
2

)
-variate

integrals with a much lower number of terms than needed by the known series
expansions, e.g. in Royen (1991b).

To compute an m-factorial least square approximation R0 = D−1 + AA′ with
real D for a given Rp×p = (ri j ) by minimization of

Q(A) :=
∑

1≤i< j≤p

(ri j − ai a
′
j )

2 = 1

2
tr(H2)

with the rows a j of Ap×m is difficult by a lot of stationary points. Besides, the num-
ber of possibly pure imaginary columns of an optimal A is not known before. Here
an algorithm is proposed which has provided frequently at least good approxima-
tions R0 to R5×5. In a first step

(p
2

)−(p−m
2

)
deviations hi j are forced to vanish by the

procedure described after Lemma 2 using m variables xµ = a−2
µµ. The remaining

sum of squares Q(A) = q(x1, . . . , xm) = ∑
m<i< j≤p h2

i j -now containing more
than m squares—is minimized with respect to real variables xµ. With m = 2 the
equation ∂q/∂x2 = 0 is linear in x2. Thus, only ∂q/∂x1(x1, x2(x1)) = 0 has to be
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solved for x1. This step is repeated for all possible choices of J = {i1, . . . , im} ⊆
{1, . . . , p} with q = ∑

i< j h2
i j , i, j /∈ J . If Q = q = 0 is not reached—i.e. R

is not real-m-factorial—then the matrices A(J ), obtained in this way, provide the
starting points for further numerical minimization, e.g. by the steepest descent.
Finally, a matrix A with the lowest reached value Q(A) is selected. However,
R0 = D−1 + AA′ > 0 has to be checked separately, but this is frequently satisfied
for good approximations R0. Sometimes it is more economical to abandon the last
numerical minimization step and only to compute an A with as much zeros as
possible in H . Then with p = 5 only one hi j �= 0 would be left. Then the first
terms Pn in Eq. (29) are essentially simplified and lead to useful approximations
to the �5(α, R)-cdf by 3-variate integrals if hi j is small.

With all ri j > 0 and m = 1
∑

1≤i< j≤p

(
ln(ai a j/ri j )

)2
is minimized by

ak =
⎛
⎜⎝

p∏
i=1
i �=k

rik

/⎛
⎝ ∏

1≤i< j≤p

ri j

⎞
⎠

1/(p−1)
⎞
⎟⎠

1/(p−2)

, k = 1, . . . p, (27)

but again, R0 = Diag(. . . , 1 − a2
k , . . .) + aa′ > 0 should be satisfied.

Now let R0 be an m-factorial approximation to R = R0 + H . Then, with
δ0 := |Ip + R0T | and

τn(T ; R0, H) := δn
0 trace

((−H T (Ip + R0T )−1)n
)

(28)

the L.t. |Ip + RT |−α = δ−α
0

∣∣Ip + H T (Ip + R0T )−1
∣∣−α

has the formal series
expansion

δ−α
0 exp

(
α

∞∑
n=1

δ−n
0 τn/n

)
=

∞∑
n=0

Pn(t1, . . . , tp;α, R0, H)δ
−(α+n)
0

= δ−α
0

(
1 + ατ1δ

−1
0 + α

2

(
τ2 + ατ 2

1

)
δ−2

0

+α

6

(
2τ3 + 3ατ2τ1 + α2τ 3

1

)
δ−3

0 + · · ·
)

(29)

which is uniformly convergent for all T ≥ 0 if the spectral norm
∥∥H R−1

0

∥∥ < 1,
being equivalent to R0 ± H > 0. Using a computer algebra system the reader can
e.g. look at the polynomials P1, P2 with p = 5 and in particular with only one
hi j �= 0.

The integration of the inverted n-th term of Eq. (29) yields

Pn

(
∂

∂x1
, . . . ,

∂

∂x p
; α, R0, H

)
F(x1, . . . , x p; α + n, R0) (30)

with the �p(α + n, R0)-cdf F . With R−1
0 = diag(. . . , d j , . . .) − B B ′ obtained

from R0 = D−1 + AA′ and the rows b j of B Eq. (30) is a linear combination of
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terms

|R0|−(α+n) E
⎛
⎝

p∏
j=1

(
∂

∂x j

)k j
x j∫

0

e−d j ξ ξα−1+n(�(α + n))−1

× 0 F1

(
α + n; 1

2
ξb j S2(α+n)b

′
j

)
dξ

⎞
⎠ (31)

with 0 ≤ k1, . . . , kp ≤ n and the expectation referring to a Wm(2(α + n), Im)-
Wishart matrix S2(α+n).

For the intended numerical application with Taylor polynomials of a very low
degree the convergence of Eq. (29) is not needed. Nevertheless, the convergence to
the cdf is established by the following theorem. Let sn denote the inverted partial
sums of the expansion (29) and Sn(x1, . . . , xn) their integrals over ×p

j=1(0, x j ].
Theorem 2 If

∥∥H R−1
0

∥∥ < 1 then the sequence (Sn) converges to the �p(α, R)-cdf
F(x1, . . . , x p) for all values 0 < x j < ∞.

Proof Let f̂ denote here the Fourier transform (F.t.) of f . For the eigenvalues λ(T )
of −i H T (Ip − i R0T )−1 it is shown |λ(T )| ≤ 1 − ε with an ε > 0 independent of
T . Since the λ depend continuously on t1, . . . , tp, |T | �= 0 is assumed. Then

∣∣λIp + i H T (I − i R0T )−1
∣∣ = 0

⇐⇒ |λ(I − i R0T ) + i H T | = 0 ⇐⇒ ∣∣R0 − λ−1 H + iT −1
∣∣ = 0,

if λ �= 0. With λ−1 = ρeiϕ the equation
∣∣R0 − ρ cos ϕH + i(T −1 − ρ sin ϕH)

∣∣ = 0 (32)

can only be solved with ρ ≥ (1 − ε)−1, because R0 − H > 0, i.e. |λ| ≤ 1 − ε.
With z j := (1 − i t j )

−1, ω j := z j (1 + i t j ) = exp(2i arctan t j ), j = 1, . . . , p,
the corresponding diagonal matrices Z ,�, A := 2(I + R0)

−1 and C := I − A the
F.t. f̂0 = |I − i R0T |−α can be written as f̂0 = |A|α|Z |α|Ip − C�|−α , (Royen,
1991b). Thus, |Ip −C�|−α is uniformly bounded on R

p, since ‖C�‖ = ‖C‖ < 1.
By the Fourier inversion formula we obtain

p∏
j=1

(
∂

∂x j

)k j

F(x1, . . . , x p;α + n, R0)

= (2π)−p
∫

Rp

|I − i R0T |−(α+n)

p∏
j=1

(−i t j )
k j −1( exp(−i t j x j ) − 1

)
dt j ,

where the rhs is absolutely bounded by

K
∫

Rp

p∏
j=1

(
1 + t2

j

)−α/2
min

(
x j , 2|t j |−1) dt j < ∞
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with a constant K only depending on α, p and R0, since all k j ≤ n. Now

|F(x1, . . . , xn;α, R) − Sn(x1, . . . , xn)|

<

∫

Rp

∣∣ f̂ − ŝn
∣∣

p∏
j=1

∣∣(exp(−i t j x j ) − 1
) /

(−i t j )
∣∣dt j

≤
∫

Rp

εn(t1, . . . , tn)|I − i R0T |−α

p∏
j=1

min
(
x j , 2|t j |−1) dt j ,

which tends to zero, since εn(t1, . . . , tn) → 0 uniformly on R
p due to Eq. (32).

The proof is more simple if α > 1/2, because then f̂ − ŝn ∈ L2(Rp).
Thus,

∫
A | f −sn|dx1, . . . , dx p −→ 0 for any bounded region A ⊆ R

p
+ is obtained

by Cauchy’s inequality and Plancherels identity.

6 Approximation to � p(α, R)-distributions by complex measures

In Sect. 5 an m-factorial correlation matrix R0 with small m was used as an approxi-
mation to a given R to obain approximations for the �p(α, R)-cdf by

(m+1
2

)
-variate

integrals.
If in the F.t. f̂ (t1, . . . , tp;α, R0) the off-diagonal elements r0i j of R0 are re-

placed symmetrically by complex variables, then f̂ becomes the F.t. of a variable
complex measure µ0. If, with very small imaginary parts in R0, smaller values∑

i< j |ri j −roi j |2 can be reached than only by correlation matrices R0, then Re(µ0)

might provide also a first approximation to the �p(α, R)-probability measure P .
Even with p = 5 and m = 2 optimal approximations to R by symmetrical (not her-
mitian) complex 2-factorial R0 are difficult to compute. Nevertheless, this method
should be investigated further because it should be useful for other applications
too.
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