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Abstract This paper advocates the use of multi-coloured polygonal Markov fields
for model-based image segmentation. The formal construction of consistent multi-
coloured polygonal Markov fields by Arak–Clifford–Surgailis and its dynamic rep-
resentation are specialised and adapted to our context. We then formulate image
segmentation as a statistical estimation problem for a Gibbsian modification of an
underlying polygonal Markov field, and discuss the choice of Hamiltonian. Monte
Carlo techniques, including novel Gibbs updates for the Arak model, to estimate
the model parameters and find an optimal partition of the image are developed.
The approach is applied to image data, the first published application of polygonal
Markov fields to segmentation problems in the mathematical literature.
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R. Kluszczyński · T. Schreiber
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina
12-18, 87-100 Toruń, Poland
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1 Introduction

One of the fundamental image analysis tasks is that of segmentation, i.e. to partition
the image in relatively homogeneous regions (Rosenfeld and Kak 1982). Indeed,
segmenting the data is often the first step in image interpretation problems. The
partition may be achieved at several conceptual levels. At the lowest level, that of
individual pixels, segmentation amounts to classification of pixel values. At the
other extreme, the focus of attention are the objects that form a given image and
the goal is to extract them from the image.

A myriad of segmentation methods has been proposed, from elementary thres-
holding through contour extraction methods to scene modelling. For a comprehen-
sive overview, the reader is referred to Chap. 10 in Rosenfeld and Kak (1982), or
to Chap. 4 in the state of the art report for single modalities published within the
framework of the MUSCLE Network of Excellence. Recent material can also be
found in Vincent (1999) which treats morphological methods, in Chap. 10 in Green,
Richardson, and Hjort (2003) on Bayesian models, or in the volume edited by Osher
and Paragios (2003) which discusses a.o. level set approaches, active contour mod-
els and variational methods. We should also mention the textbooks by Gimmel’farb
(1999) and Winkler (2003), the former of which focuses on random field texture
models, the latter on computational aspects of the segmentation problem.

In this paper, we propose to use polygonal field models. Thus, we place our-
selves at the intermediate conceptual level that regards a segmentation as a coloured
tessellation Hurn, Husby, and Rue (2003). In contrast to pixel based Markov random
field (MRF) priors with small neighbourhoods, our model is able to capture global
aspects of the image. To do so in an MRF, a larger neighbourhood system should
be used, at large computational cost. Moreover, when there are long range inter-
actions, boundary effects tend to become apparent. Since the polygonal fields we
propose exhibit zero-range Markovianity, such long-range artefacts are prevented.
Conceptually too, reality is continuous rather than discrete. At the same time, com-
pared to a high-level scene interpretation approach, there is no need to model all
objects in the image, which is feasible in restricted application domains only.

The idea to use polygonal field models for image segmentation purposes can
be traced back to Clifford and Middleton (1989); from a computational point of
view, a Metropolis–Hastings style sampler was developed by Clifford and Nicholls
(1994) and applied to an image reconstruction problem within a Bayesian frame-
work. To the best of our knowledge, the original implementation has not been put
to the test for real image data, though. This is also noted by Paskin and Thrun
(2005), who propose a modification of the sampler of Clifford and Nicholls (1994)
and illustrate its usefulness in practice for robotic mapping.

Other kinds of tessellations have also been proposed. Heikkinen and Arjas
(1998) combine a Voronoi tessellation with a Markov random field to build a prior
distribution for smoothly varying intensity surfaces; Green (1995) and Møller and
Skare (2001) propose Voronoi based models for image segmentation, Nicholls
(1998) advocates triangulations, and Gimmel’farb (1999), Møller and Waagepet-
ersen (1998), Tjelmeland and Besag (1998) suggest Markov random field models
with longer range, higher order, or region based interaction structures.

It should be emphasised that a major reason for using Voronoi tessellations or
triangulations rather than polygonal Markov random fields is that simulation of
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the latter by a variety of Metropolis–Hastings updates (Borkar and Mitter 1993;
Clifford and Nicholls 1994) is rather cumbersome. The algorithm in Schreiber
(2005) by contrast is both conceptually and computationally easier. The goal of
the present paper is to exploit this fact and describe a flexible, general framework
for segmentation, to present the computational tools needed, and to indicate the
feasibility of the method. In a follow-up paper, we will focus on benchmarking in
much greater detail than space allows here.

The plan of this paper is as follows. In Sect. 2, we recall the family of consis-
tent polygonal random field models introduced by Arak and Surgailis (1989), and
adapt their dynamic representation to our purposes. Section 3 presents a coherent
framework for image interpretation as a statistical inference problem for a Gibb-
sian modification of a suitably chosen Arak process; the Markov chain Monte Carlo
machinery required to select model parameters and find an optimal segmentation is
developed in Sect. 4. The next section describes the implementation, and presents
results on toy examples. The paper is concluded with a critical discussion and plans
for further research.

2 Multi-coloured polygonal Markov fields

In the present section we briefly recall the formal construction of consistent multi-
coloured polygonal Markov fields introduced by Arak and Surgailis (1989). We do
not use the full generality of this construction; rather, we specialise and adapt to suit
our particular purposes. The choices we make are aimed at obtaining an isotropic
polygonal field with uniformly distributed colourings. This leaves us with two prin-
cipal degrees of freedom, one related to the number of admissible colours, the other
to the density of so-called V -shaped nodes. Note that the fields discussed below
will be used in our image segmentation framework only upon further Gibbsian
modification and not in the raw form presented in this section.

2.1 Basic Arak–Surgailis construction

Consider a bounded convex and open domain D ⊆ R
2, fix k ≥ 2, and let J :=

{1, . . . , k} be the set of (labels of) admissible colours. We define the family �̂D of
admissible coloured polygonal configurations in D by taking all possible planar
graphs γ in D ∪ ∂ D, with non-intersecting straight line segments as edges and
colouring γ̂ the resulting partition of D by one of the members of J, so that the
following conditions are satisfied:

(CPC1) all the interior vertices of γ (lying in D) are of order 2 (we shall refer to
them as the V -shaped nodes in the sequel), of order 3 with two out of the three
emanating edges co-linear (T -shaped nodes), or of order 4 with two co-linear
pairs of emanating edges (X -shaped nodes);

(CPC2) all the boundary vertices are of degree 1;
(CPC3) for each straight line l ⊆ R

2 the intersection l ∩ γ consists of at most
one interval of non-zero length and possibly of some isolated points;

(CPC4) no two sub-regions of D assigned the same colour by γ̂ are adjacent to
each other (i.e. share a common boundary edge).
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In the sequel we shall use the notation ·̂ for coloured polygonal configurations,
while the lack of ·̂ will indicate the corresponding graph separating regions of
different colours. Write �(γ ) for the total edge length of γ, γ̂ ∈ �̂D, let E(γ ) be
the set of all edges of γ , and let NV (γ ), NT (γ ) and NX (γ ) stand for the respec-
tive numbers of V −, T − and X−shaped nodes. For a family {l} = {li }n

i=1 of
straight lines intersecting D, denote by �̂D(l) the set of those γ̂ ∈ �̂D for which
γ ⊆ ⋃n

i=1 li , and, for each line li , the intersection li ∩ γ consists of exactly one
non-zero length interval, possibly with some isolated points added.

With the admissible number of colours, k, fixed, the family of polygonal fields
discussed below will be parametrised by one further parameter αV ∈ [0, 1] that
controls the density of V -shaped nodes, see the discussion at the end of this section
for further details. Put

αX := 1 − αV , αT := 1

2

(

1 − k − 2

k − 1
αX

)

. (1)

The parameters αX and αT control the density of X - and T -shaped nodes, respec-
tively (in a sense that will become clear in the equivalent dynamic representation
of the polygonal field model discussed in the next subsection), yet in view of (1)
they are uniquely determined by αV . Further, set

ε := αV

k − 1
+ (k − 2)αT

k − 1
.

For each coloured polygonal configuration γ̂ ∈ �̂D , define its energy �(γ̂ ) =
�

αV ;k
D (γ̂ ) by

�(γ̂ ) := −NV (γ ) log αV − NT (γ ) log [(k − 1)αT ] − NX (γ ) log [(k − 1)αX ]

− card[E(γ )] log(k − 1) + 2ε�(γ ). (2)

It should be noted for reference purposes that this energy expression corresponds
to that given in (5.4) in Arak and Surgailis (1989) with the following choice of
constants:

• pi j :=
{

1
k−1 , i �= j
0, i = j;

• b(i, j) := αV , c(i; j, k) := (k − 1)αT , d(i, j, k, m) := (k − 1)αX ;
• e(i, j) := ε, f (i) = παV

k−1 ;
• γ (dv) := dv/(1 + v2)3/2.

To proceed, we let 	D be the restriction to D of a homogeneous Poisson line
process 	 with intensity measure given by the standard isometry-invariant Lebes-
gue measure µ on the space of straight lines in R

2. To construct µ, identify a
straight line l with the pair (φ, ρ) ∈ [0, π) × R, where (ρ sin(φ), ρ cos(φ)) is the
vector orthogonal to l, and join it to the origin; then endow the parameter space
[0, π) × R with the usual Lebesgue measure. With the above notation, define the
polygonal Markov field ÂD := ÂαV

D as the Gibbsian modification of the process
induced on �̂D by 	D with the Hamiltonian (2). In other words, writing �̂D(	D)
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for the random set of coloured polygonal configurations induced by the almost
surely finite Poisson line process 	D hitting D as before,

P

(
ÂD ∈ E

)
= E

∑
γ̂∈�̂D(	D)∩E exp[−�(γ̂ )]

E
∑

γ̂∈�̂D(	D)
exp[−�(γ̂ )] (3)

for each E ⊆ �̂D, Borel measurable with respect to the topology introduced by
Arak and Surgailis (1989, Sect. 2). The expectation is with respect to the distribu-
tion of 	D . We refer the reader to Arak and Surgailis (1989, Sect. 5) for further
details.

The resulting process ÂD has a number of remarkable properties. It is isotropic
(as easily seen from (3)), exactly solvable in the sense that an explicit formula for
the partition function is available, consistent in that ÂD coincides in distribution
with the restriction of ÂD′ to D for D′ ⊇ D, and it enjoys a two-dimensional
Markov property stating that the conditional behaviour of the process in an open
bounded domain depends on the exterior configuration only through arbitrarily
close neighbourhoods of the boundary, see Arak and Surgailis (1989). Moreover,
for a given straight line l, the one-dimensional section of the field with l is a homo-
geneous Poisson point process on l of intensity 2, with the induced colouring of the
segments between its points distributed uniformly under the condition that no two
adjacent segments share the same colour, see Arak and Surgailis (1989, Theorem
5.1, Sect. 5). These nice features are shared by a much broader class of processes,
known as consistent polygonal Markov fields, introduced and investigated in detail
by Arak and Surgailis (1989, 1991). For interesting alternative point-rather than
line-based representations of such models, see Arak, Surgailis and Clifford (1993).

2.2 Dynamic representation

An equivalent description of polygonal Markov fields is available in terms of the
equilibrium evolution of one-dimensional particle systems that trace the polygonal
realisations of the process in two-dimensional space-time. This description, intro-
duced already in the original Arak paper (Arak 1982) and usually referred to as the
dynamic representation, turned out to be very useful in establishing the essential
properties of these models.

Below, we specialise the general dynamic representation of Arak and Surgailis
(1989, Sect. 6) for our particular process ÂD. We interpret the open convex domain
D as a set of space-time points (t, y) ∈ D, with t referred to as the time coordinate
and with y standing for the spatial coordinate of a particle at time t. For language
convenience, we orient the planar time-space representation such that the time axis
extends from the left (past) to the right (future) and the spatial coordinate grows
when moving upwards. In these terms, a straight line segment in D stands for a
piece of the time-space trajectory of a freely moving particle, and it separates two
regions of two different colours, in the sequel referred to as the upper (above the
trajectory graph) and lower (below the trajectory) colour of the given particle. For
any straight line l that is not parallel to the spatial axis and that crosses the domain
D, we define in the obvious way its entry point in D, in(l, D) ∈ ∂ D and its exit
point out(l, D) ∈ ∂ D.
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We choose the space-time birth coordinates for new particles according to the
superposition of a homogeneous Poisson point process with rate παV /(k −1) in D
(interior birth sites) and a Poisson point process on the boundary (boundary birth
sites) with intensity measure

κ(B) = E card{l ∈ 	, in(l, D) ∈ B}, B ⊆ ∂ D. (4)

Each interior birth site emits two particles that move with initial velocities
v′ < v′′ chosen according to the joint distribution

θ(dv′, dv′′) := π−1|v′ − v′′|
(

1 + v′2)−3/2 (
1 + v′′2)−3/2

dv′dv′′. (5)

This can be shown to be equivalent to choosing the directions of the straight lines
representing the space-time trajectories of the emitted particles according to the
distribution of the typical angle between two lines of 	, see Sects. 3 and 4 in Arak
and Surgailis (1989) and the references therein. The colour in the interior of the
angle created by the trajectories of the two particles thus born is chosen uniformly
at random from the set of all admissible colours in J except for the one assigned
to the exterior of the angle (in other words, except for the colour extending to the
left of the birth site).

Each boundary birth site x ∈ ∂ D yields one particle with initial speed v chosen
according to the distribution θx (dv) identified by requiring that the direction of
the line entering D at x and representing the space-time trajectory of the emitted
particle be chosen according to the distribution of a straight line l ∈ 	 conditioned
on the event {x = in(l, D)}. As before, the colour for the new region (to the right of
the new particle trajectory as time progresses from left to right) is chosen uniformly
from the set of all admissible colours in J except for the one extending to the left
of this trajectory.

In case the region D has exactly one left-extreme point, the choice of the initial
colour at this point is done uniformly from J. Otherwise, if D admits a non-triv-
ial left-extreme boundary segment I parallel to the spatial axis, we produce the
initial condition for the evolution by constructing the collection of particles born
on the segment I, in the way discussed above, and we choose the colours for the
resulting subsegments of I by conditioning the uniform choice of colour from J
independently for each subsegment on there being no two adjacent subsegments
of the same colour.

All particles evolve independently in time according to the following rules:

(E1) between the critical moments listed below the particles move with constant
velocity v so that dy = vdt ;

(E2) the time evolution vt of the velocity of an individual particle is given by a
pure-jump Markov process so that

P (vt+dt ∈ du | vt = v) = αV

k − 1
q(v, du)dt

for the transition kernel

q(v, du) := |u − v|(1 + u2)−3/2du;
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(E3) an individual particle moving with velocity v splits with probability

(k − 2)αT

k − 1
q(v, du)dt

into two particles, one of which preserves the velocity v while the second moves
with velocity u ∈ du. The colour of the angle between the trajectories of the
two particles is chosen at random uniformly from the set J excluding the upper
and lower colour of the original particle;

(E4) upon a collision of two particles (equal spatial coordinates y at some moment
t with (t, y) ∈ D)
(E4a) if the colours i, j ∈ J , respectively, above and below the angle formed

by the trajectories of the particles before their collision do coincide then
• With probability αV both colliding particles die,
• With probability αX = 1 − αV [see (1)] both particles survive and

their trajectories continue after intersecting at the collision point. The
colour for the interior of the resulting angle to the right of the collision
point is chosen at random uniformly from the set J\{i} = J\{ j};

(E4b) if the colours i, j ∈ J , respectively, above and below the angle formed
by the trajectories of the particles before their collision do not coincide then

• With probability αT the upper particle survives and the lower one dies,
• With probability αT the lower particle survives and the upper one dies,
• With probability ((k − 2)αX )/k − 1 = 1 − 2αT [see (1)] both parti-

cles survive, their trajectories continue past the collision site, and the
resulting new angle to the right of the collision site is assigned a random
colour uniformly from J\{i, j};

(E5) when a particle touches the boundary ∂ D, it dies.

The following result is a corollary of Arak and Surgailis (1989, lemma 6.1).

Proposition 1 The multi-coloured polygonal field ÂD defined by (3) coincides in
distribution with the field resulting from the dynamic construction above.

2.3 Interpretation of parameters

Below, we briefly discuss the meaning of the parameters αV , αT and αX that play a
role in the dynamic construction above. As follows from the dynamic rules (E2-4),

• αV controls the density of V-shaped nodes of the field,
• αT controls the density of T-shaped nodes,
• αX controls the density of X-shaped nodes.

It should be emphasised, however, that these parameters are not independent and,
given the number of colours k, they are uniquely determined from αV by the
relation (1). To illustrate the nature of this dependency, we explore two extreme
possibilities for choosing αV .

• Observe first that setting αV very small results in large survival probabilities
for colliding particles, cf. (E4), and thus strongly favours X -shaped nodes at
the expense of V -shaped ones. To avoid density explosion of such long-living
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particles, the system responds by decreasing the birth rates. For large values
of k the parameter αT also gets small in view of (1). Consequently, in this
case, our process resembles the tessellation of D generated by the Poisson line
process 	.

• Setting αV close to 1 results in small survival probabilities upon particle col-
lisions so that the density of X -shaped nodes decreases. The value of αT gets
close to 1/2. The behaviour of the system strongly depends on the number of
admissible colours k. If k = 2, we obtain a field with predominantly V -shaped
nodes, close in behaviour to the original Arak process [for which k = 2 and
αV = 0, see Arak and Surgailis (1989, Sect. 4)]. As k grows, the relative
density of T -shaped nodes grows as well.

3 Image segmentation as a statistical inference problem

Here we present a framework for the interpretation of images in terms of multi-
coloured polygonal Markov fields.

3.1 The model

The data consist of a discretised image. Write S for the set of sites (pixels in 2D),
and L for the set of labels at each site. Thus, the data can be formalised as a vector
	y = (ys)s∈S with ys ∈ L . The pixel values ys may be binary, real or R

d valued,
i.e. L = {0, 1}, R or R

d . The goal is to interpret 	y in terms of a coloured polygonal
configuration γ̂ ∈ �̂D . As before, assume that D is a bounded, convex and open
subset of R

2. We will impose the further constraint that D contains S.
The model to be used for inference will be a Gibbsian modification of the

polygonal random field AD by means of a Hamiltonian (sometimes referred to as
energy function)

H(γ̂ ) + H(	y; γ̂ )

that is the sum of two terms. The first one, H(γ̂ ), is a prior or regularisation energy
that constrains the geometry so as to favour large polygons with smooth boundaries.
In the examples discussed in Sect. 6 below, we took

H(γ̂ ) = β�(γ )

proportional to the total edge length. A realisation is shown in Fig. 1. The second
term H(	y; γ̂ ) describes the goodness-of-fit between the coloured configuration γ̂
and the data 	y. In our examples, we considered Hamiltonians of the form

H(	y; γ̂ ) = βp

∑

p̂∈γ̂

Hp(	y; p̂)

for βp > 0. The sum is over the coloured polygons p̂ induced by γ̂ . For compu-
tational reasons, Hp(	y; p̂) depends only on those ys for which s ∈ p. The idea is
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Fig. 1 Sample of Arak process

to penalise inhomogeneous polygons of the wrong colour. For instance, if ϑ( p̂) is
the colour of polygon p, Hp(	y; p̂) could be defined as

∑

s∈ p̂

|ys − ϑ( p̂)|q

(q = 1, 2), the choice we make in the example section.

3.2 Probabilistic interpretation

Suppose the observed data 	y can be seen as a realisation of an independent noise
model (Baddeley and Van Lieshout 1992). More precisely, the log likelihood
−H(	y; γ̂ ) of 	y given a coloured polygonal configuration γ̂ is a sum of pixel error
terms

−H(	y; γ̂ ) =
∑

s∈S

log h(ys |ϑs(γ̂ )) (6)

where {h(·|ϑ) : ϑ ∈ �} is a family of probability densities indexed by a parameter
space �, and ϑ(γ̂ ) = (ϑ(γ̂ )s)s∈S is a �-valued image determined by γ̂ which we
call the signal. Typical examples include the following.

Gauss pixel values are normally distributed with fixed variance σ 2 and mean
ϑ(γ̂ ) ∈ � = R, so h(y|ϑ) = (

2πσ 2
)−1/2

exp
[−(y − ϑ)2/(2σ 2)

]
, hence

H(	y; γ̂ ) = 1

2
|S| log(2πσ 2) + 1

2σ 2

∑

s∈S

(
ys − ϑs(γ̂ )

)2
.
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Laplace pixel values are double exponentially distributed with fixed dispersion
parameter λ and mean ϑ(γ̂ ) ∈ � = R, so h(y|ϑ) = λ

2 exp [−λ|y − ϑ |] , hence

H(	y; γ̂ ) = −|S| log(λ/2) + λ
∑

s∈S

|ys − ϑs(γ̂ )|

Binary pixel values fall into {0, 1} and are Bernoulli distributed with P(y =
ϑ |ϑ) = p and P(y = 1 − ϑ |ϑ) = 1 − p, so that

H(	y; γ̂ ) = −|S| log(1 − p) − |	y�γ̂ | log

(
p

1 − p

)

,

where 	y�γ̂ = {s ∈ S : ys �= ϑs(γ̂ )} is the set of sites at which the observed colour
does not match that of the polygon which contains the site.

We conclude that for binary images an L1 or misclassification criterion is a
natural choice that corresponds to a Bernoulli distribution for each pixel. For real
valued observations, a white noise model gives rise to an L2 choice for the Hamilto-
nian; for other noise distributions using the L1 distance may be preferred (Baddeley
and Van Lieshout 1992).

For the models discussed above, the maximum likelihood solution γ̂ ∗ minimis-
ing H(	y; γ̂ ) with respect to γ̂ ∈ �̂D is readily described. Indeed, for Gauss, it is the
solution of a least squares regression of 	y on the class of functions {s �→ ϑs(γ̂ ) :
γ̂ ∈ �̂D}, for Laplace of a least absolute deviation regression, and for the binary
model, provided p < 1/2, γ̂ ∗ minimises the misclassification rate |	y�γ̂ |/|S|. In
general, the maximum likelihood estimator is not unique. Moreover, it tends to
result in an over-segmentation, in the sense that a polygon of the closest colour
around each cluster of like coloured pixels would be a solution to the maximum
likelihood equation.

Clearly, more complicated probability densities f (	y|γ̂ ) can be devised to deal
with textures, or unequal variance and dispersion parameters; in this case the Ham-
iltonian reads H(	y; γ̂ ) = − log f (	y|γ̂ ). One could additionally include a term
βe

∑
e∈E(γ ) He(	y; e) in H(	y; γ̂ ) to favour clear edges. For instance −He(	y; e)

may be the (squared) difference in average label in two regions on either side of
the edge (since this term is bounded, by adjusting the prior edge term, finiteness of
the corresponding partition functions may be ensured), or be based on the gradient
along profiles perpendicular to the edge (Ortner 2004).

3.3 Model parameters

In general, the Hamiltonian will depend on parameters, i.e. H(γ̂ ) = H(γ̂ ;ω) and
H(	y; γ̂ ) = H(	y; γ̂ ; ω̃). Thus, statistical inference must be based on the Gibbsian
modification with Hamiltonian

H(γ̂ ;ω) + H(	y; γ̂ ; ω̃). (7)

Formula (6) is constructed out of four basic ingredients. The coloured configu-
ration γ̂ provides a concise description of the image, the parameter ω̃ is crucial
in linking the description to the observed image, while the vector ω regulates the
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strength and type of geometric constraints, or ‘smoothness’ of the description.
Finally, the parameters αV and k of the dominating random field ÂD govern the
relative frequency of V-shaped joins and the number of colour labels into which to
segment.

More specifically, write

�(	y|γ̂ ; ω̃) = exp
[−H(	y; γ̂ ; ω̃)

]

Z(γ̂ ; ω̃)
(8)

for the normalised likelihood with respect to the product of counting or Lebesgue
measure on L S , depending on whether L is finite or Euclidean. Since the parti-
tion function Z(γ̂ ; ω̃) := ∑

	z exp
[−H(	z; γ̂ ; ω̃)

]
for discrete L (or Z(γ̂ ; ω̃) :=∫

exp
[−H(	z; γ̂ ; ω̃)

]
d	z for continuous L , in the sequel we shall always use

∑
in

this context to avoid doubling equations) is explicitly known (see the discussion in
Subsect. 3.2), we can incorporate it in the Hamiltonian and assume without loss of
generality that

Z(γ̂ ; ω̃) ≡ 1. (9)

We assume in addition that the regularisation parameter vector ω is fixed and
not subject to statistical inference, and that a reference measure dπ(ω̃) (possi-
bly improper) is given on the space of admissible values of the goodness-of-fit
parameter vector ω̃. Write L(ÂD) for the probability distribution of the coloured
polygonal random field ÂD , and define a joint Radon–Nikodym derivative

f (	y; γ̂ ; ω̃) = exp
[−H(	y; γ̂ ; ω̃) − H(γ̂ ;ω)

]

Z(ω)
,

where

Z(ω) :=
∑

	z

∫ ∫

exp
[−H(	z; γ̂ ; ω̃) − H(γ̂ ; ω)

]
d

[
L(ÂD)

]
(γ̂ )dπ(ω̃),

with respect to the product measure of dL(ÂD), dπ(ω̃), and the reference distri-
bution for 	y, provided Z(ω) < ∞. This is of course in agreement with (8) and can
be interpreted probabilistically by imposing the joint density

f (γ̂ ; ω̃) := exp
[−H(γ̂ ; ω)

]∑
	y exp

[−H(	y; γ̂ ; ω̃)
]

Z(ω)
= exp

[−H(γ̂ ;ω)
]

Z(ω)

with respect to dL(ÂD) × dπ(ω̃) on (γ̂ , ω̃), cf. (9). For a given data image 	y, we
thus arrive at the Gibbsian modification corresponding to the Hamiltonian in (7),
with normalising constant

Z(ω; 	y) =
∫ ∫

exp
[−H(	y; γ̂ ; ω̃) − H(γ̂ ;ω)

]
d[L(ÂD)](γ̂ )dπ(ω̃).

Since π(·) may be improper, we must impose the condition that the integral is
finite.
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Our goal is to find a vector (γ̂ ∗, ω̃∗) for which the value of the Hamiltonian
in (7) is a sufficiently good approximation of the infimum. To this end, we use a
simulated annealing algorithm that will be discussed in detail in the next section.

Estimation of αV and k is complicated by the fact that the algorithms developed
in this paper can only simulate the polygonal fields for fixed values of αV and k; in
particular, the state space �̂D = �̂k

D depends on the choice of k. Furthermore, we
were unable to construct random dynamics for updating k and αV that do not lead
to a considerable deterioration of the quality of the configuration currently reached
by the algorithm. For instance the transition k �→ k − 1 would require removing
one colour in the present configuration. If k ≤ 4, this may well be impossible with-
out completely rebuilding the current configuration (recall that colours assigned to
adjacent regions have to differ in our model), thus leading to a waste of compu-
tational effort. For k > 4 recolouring the current configuration in k − 1 colours,
though theoretically possible, is a computationally demanding (NP-hard) task.

To overcome such problems, we propose to restrict the admissible values of αV
and k to some finite subsets of [0, 1] and N, respectively, to perform the optimisa-
tion of other parameters separately for each (αV , k) within this restricted domain,
and then to compare the resulting solutions outputting the optimal one. In spite of
its obvious general disadvantages, such an exhaustive search technique over the
parameter space seems nevertheless preferable if the range of admissible values
for αV and k is relatively small. Recast as a model selection problem, we choose
that admissible value for which the Bayesian information criterion

BIC(αV , k) = −2H(	y; γ̂ ∗
αV ,k; ω̃∗

αV ,k) − dim(ω̃∗
αV ,k) log(|S|) (10)

achieves its maximal value. Recall that (γ̂ ∗
αV ,k, ω̃

∗
αV ,k) is the (approximate) mode

of the model (7) with parameters αV and k for the reference distribution. For
Hamiltonians of the form (6), (10) reduces to

BIC(αV , k) = 2
∑

s∈S

log h
(
ys |γ̂ ∗

αV ,k, ω̃
∗
αV ,k

) − dim(ω̃∗
αV ,k) log(|S|).

4 Monte Carlo inference

The purpose of the current section is to develop a simulated annealing algorithm
for image segmentation by multi-colour polygonal Markov fields. To that end, we
begin by developing, much along the lines of Schreiber (2005, sect. 2.1), random
dynamics on the space �̂D of admissible coloured polygonal configurations which
are reversible and leave the law of ÂD invariant. This will allow us further to pro-
vide modifications suitable for Metropolis–Hastings simulation of general Gibb-
sian modifications of ÂD, which in turn will be incorporated in a Gibbs sampler
for (7).

4.1 Basic dynamics

In the sequel, particular care is needed to distinguish between the notion of time
considered in the dynamic representation of the polygonal field ÂD given in Sect. 2,
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and the notion of time to be introduced for the continuous time random dynamics on
�̂D constructed below. To make this distinction clear, we shall refer to the former
as the representation time (r-time for short) and shall keep for it the notation t,
while the latter will be called the simulation time (s-time for short) and denoted by
s in the sequel.

For the exposition below, it is convenient to imagine that each individual interior
or boundary particle birth site in the dynamic representation comes with an asso-
ciated infinite sequence of i.i.d. standard exponential random variables, a Poisson
clock, to determine the subsequent moments of critical events (E2), (E3) (velocity
updates and splits) as well as with an associated independent infinite sequence
of i.i.d. uniform random variables on [0, 1] used to determine the new velocities
upon critical events, to produce the death/survival events of (E4) with the required
probabilities, and to choose with the specified probabilities the colours for new
regions arising in the course of the evolution. In other words, each birth site is
assumed to carry a package enclosing all randomness the resulting particles may
encounter during their evolution, and the above is just one technical possibility of
how this can be achieved. Note that such a package can easily be implemented in a
computer simulation by storing random number generator seeds. We shall use the
name birth package for a birth site carrying such randomness-determining informa-
tion. In these terms, it is now easily seen that the coloured polygonal configuration
obtained in the course of the dynamic construction depends deterministically on
the underlying collection of birth packages.

Consider a coloured polygonal configuration γ̂ and a new birth site x0 ∈ D
not yet present in γ̂ , extended to a birth package in the standard way discussed
above. Adding this birth package to the collection of birth packages that determine
γ̂ and keeping the evolution rules (E1–5) of the dynamic representation results in
a new configuration to be denoted by γ̂ ⊕ x0. Likewise, removing a birth site x1
from a coloured configuration γ̂ in which it was present yields a new configuration
γ̂ � x1.

Recall that the collection of birth sites for ÂD is chosen according to a Poisson
point process with intensity measure παV (k − 1)−1dx + κ(dx) specified in (4).
Hence, the law of ÂD is invariant with respect to the following pure-jump Mar-
kovian birth site birth and death dynamics on �̂D, denoted by (BS) in the sequel,
with γ̂s standing for the state at time s:

(BS:birth) with intensity [παV (k − 1)−1dx + κ(dx)]ds set γ̂s+ds := γ̂s ⊕ x ;
(BS:death) for each birth site in γ̂s with intensity 1 · ds set γ̂s+ds := γ̂s � x ;
(BS:recolour) with intensity τ, where τ > 0 is a fixed parameter of the dynam-

ics, recolour the configuration γ̂s by keeping the configuration γs and assigning
new colours to the corresponding polygonal regions uniformly at random on
the event that no two adjacent regions share the same colour.

In fact, more can be stated, see also Schreiber (2005, Prop. 1).

Theorem 1 The distribution of the polygonal field ÂD is the unique invariant law
of the dynamics given by (BS:birth), (BS:death) and (BS:recolour). The result-
ing stationary process is reversible. Moreover, for any initial distribution of γ̂0, the
laws of the random polygonal fields γ̂s converge in total variation to the law of ÂD
as s → ∞.
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Indeed, with the set of moves restricted to (BS:birth) and (BS:death) the
detailed balance, implying the invariance and reversibility, follows just by basic
properties of the Poisson point process determining the birth sites in the dynamic
construction as discussed in subsection 2.2 (recall that the ‘contents’ of the birth
packages are independent). Now, it is easily seen that the (BS:recolour) step is
self-reversible which yields the required reversibility for the complete (BS:birth,
death, recolour) dynamics. A short justification is still required for the unique-
ness and convergence statements in the above theorem. They both follow from the
observation that, regardless of the initial state, the process γ̂s spends a non-null
fraction of time in the state with no polygonal contours and the whole domain D
coloured in one fixed colour, say 1 ∈ J. Indeed, this observation allows us to con-
clude the required uniqueness and convergence by a standard coupling argument
as in Theorem 1.2 in Liggett (1985).

4.2 Dynamics for Gibbsian modifications

Assume that a Hamiltonian H is defined on the space �̂D of admissible coloured
polygonal configurations. In our applications H will be of the form

H(γ̂ ) := H(	y; γ̂ , ω̃) + H(γ̂ ;ω),

see the framework of Sect. 3, yet the setting below is more general and we only
require Ruelle stability, i.e. that

H(γ̂ ) ≥ −B

for some positive constant B, which clearly guarantees that the partition function

Z D[H] := E exp
[
−H(ÂD)

]

is finite. Consequently, the corresponding Gibbsian modification ÂH
D can be defined

by

dL(ÂH
D )

dL(ÂD)
[γ̂ ] = exp

[−H(γ̂ )
]

Z D[H] . (11)

Consider the following modification of the basic (BS) dynamics:

(BS[H]:birth) with intensity [παV (k −1)−1dx +κ(dx)]ds set δ̂ := γ̂s ⊕x . Then,

with probability min
(

1, exp
[
H(γ̂s) − H(δ̂)

])
put γ̂s+ds := δ̂, otherwise keep

γ̂s+ds := γ̂s ;
(BS[H]:death) for each birth site x in γ̂s , with intensity 1·ds set δ̂ := γ̂s �x . Then,

with probability min
(

1, exp
[
H(γ̂s) − H(δ̂)

])
put γ̂s+ds := δ̂, otherwise keep

γ̂s+ds := γ̂s ;
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(BS[H]:recolour) with intensity τ, where τ > 0 is a fixed parameter of the
dynamics, produce a recoloured version δ̂ of γ̂s by keeping the configuration
γs and assigning new colours to the corresponding polygonal regions uniformly
at random on the event that no two adjacent regions share the same colour. Then,

with probability min
(

1, exp
[
H(γ̂s) − H(δ̂)

])
put γ̂s+ds := δ̂, otherwise keep

γ̂s+ds := γ̂s .

In other words, the original dynamics (BS) are used to propose a new configu-

ration δ̂, which is then accepted with probability min
(

1, exp
[
H(γ̂s) − H(δ̂)

])

and rejected otherwise. By a straightforward verification of the detailed balance
conditions and an appeal to theorem 1, we obtain the following result.

Theorem 2 The distribution of the polygonal field ÂH
D given by (11) is the unique

invariant law of the dynamics described by (BS[H]:birth), (BS[H]:death), and
(BS[H]: recolour). The resulting stationary process is reversible. Moreover, for
any initial distribution of γ̂0, the laws of the random polygonal fields γ̂s converge
in total variation to the law of ÂH

D as s → ∞.

4.3 Gibbs sampler

To simulate from (7), we use Gibbs sampling, i.e. we sample iteratively from the
conditional distribution of each component in turn given that the values of all oth-
ers are fixed. Thus, if ω̃n is the current value of the likelihood parameters (at the
first step assigned perhaps by some crude histogram based method), the iterative
procedure is as follows:

(G:configuration) draw a realisation γ̂n of �̂ from the set �̂D of coloured polyg-
onal configurations distributed (approximately) as

exp
[−H(	y; γ̂n; ω̃n) − H(γ̂n; ω)

]
d[L(ÂD)](γ̂n)

∫
exp

[−H(	y; γ̂ ; ω̃n) − H(γ̂ ;ω)
]

d[L(ÂD)](γ̂ )

by the method described in the previous section;
(G:parameters) sample a new parameter value ω̃n+1 from the distribution

exp
[−H(	y; γ̂n; ω̃n+1)

]
dπ(ω̃n+1)

∫
exp

[−H(	y; γ̂n; ω̃)
]

dπ(ω̃).
.

Clearly, each step preserves the Gibbs measure given by (7).

4.3.1 Simulated annealing

Let β > 0, and define β-modified probability measures by their Radon–Nikodym
derivatives

dµβ(γ̂ ; ω̃)

d[[L(AD)](γ̂ ) × π(ω̃)] = exp
[−β(H(γ̂ ;ω) + H(	y; γ̂ ; ω̃))

]

Zβ(ω, 	y)
, (12)
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where Zβ(ω, 	y) = Z
[
β(H(·;ω)) + H(	y; ·; ·))]. Note that multiplication by a

constant does not affect Ruelle stability, hence µβ is well-defined. Intuitively, for
small β, the dominating measure is approximated, while for large values (12) tends
to put its mass on the set M of modes. Since M might well have mass 0 in our
context, the series of measures µβ will not converge in total variation (Haario and
Saksman 1991, Thm. 3.3) as β → ∞, although weak convergence to a measure
concentrated on M could be proven rigorously.

5 The implementation

The purpose of the present section is to briefly discuss our implementation of
the simulation algorithm as introduced in Sect. 4. Note that in its current ver-
sion our implementation has been developed only for the bi-coloured case (k=2)
which excludes T- and X-shaped nodes and leaves us with V-shaped nodes only,
whence the simulated polygonal field becomes a collection of non-intersecting
contours, possibly chopped off by the boundary, as indeed it was in the original
Arak (1982) construction. Consequently, in the discussion below, we specialise to
the bi-coloured case; the implementation of the simulation algorithm for the gen-
eral multi-coloured setting is the subject of our current work in progress, beyond
the scope of the present paper.

5.1 Representing polygonal configurations

A configuration of a bi-coloured polygonal Markov field is represented as a list of
labelled vertices. The full description of a vertex is provided by

• The Cartesian coordinates of the vertex;
• A pointer to the parent vertex, i.e. the vertex initiating the segment which

terminates at the current vertex; this field is set to NULL for vertices at birth
sites;

• The angle the segment terminating at the current vertex forms with the hori-
zontal axis;

• The virtual length of the segment initiated by the parent of the current vertex;
this is the length this segment would have if the corresponding particle were
the only one present in the system and evolved in an empty environment. The
actual length of this segment is usually smaller due to collisions.

The list of vertices is sorted by increasing x-coordinate (r-time coordinate).

5.2 Generating the initial configuration

The initial configuration for our simulation procedure is generated according to
the basic non-interacting Arak process, see Arak (1982) or Arak and Surgailis
(1989, Sect. 4). This is in fact an arbitrary choice in view of the mixing property
of our birth site birth and death dynamics stated in Theorems 1 and 2, yet we find
it convenient to describe briefly our implementation of the original Arak dynamic
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construction first, and then to use it as a basis for the discussion of the proposal
steps in (BS[H]).

The initial Arak-distributed configuration is generated in a single left-to-right
sweep through the image domain, according to the dynamic construction of Sect. 2.2.
This is done by successively updating in r-time two priority queues that store,
respectively,

• The birth sites with r -time coordinate exceeding the current r -time, and vir-
tual end points of segments generated so far, for which the r -time coordinate
exceeds the current r -time. Note that by a virtual end point of a segment we
understand the point where it would end should the corresponding particle
move in empty environment not subject to collisions with other particles; by
definition the distance between the initial point of a segment and its virtual
endpoint coincides with its virtual length,

• Virtual collision points which are all possible pairwise intersection points of
currently existing virtual segments (i.e. segments joining an initial point to its
corresponding virtual end point) lying forward in r-time.

At each step of the algorithm, the next vertex to arise in course of the r -time evo-
lution is determined by choosing that vertex that minimises the r -time coordinate
in both queues. Consequently, the contents of these queues can be regarded as a
current collection of ‘candidates’ for the next vertex.

5.3 Modifying polygonal configurations

As discussed in Sects. 4.1 and 4.2, the crucial update operations of our Monte
Carlo algorithm are those of adding (BS[·] : birth) and removing (BS[·] : death)
a birth site in a polygonal configuration, the third step (BS[·] : recolour) is greatly
simplified by restricting the number of colours to two.

To add a new birth site, we first choose its position uniformly at random within
the image domain, and then we let the new-born particles evolve and interact with
the existing ones according to the rules (E1–5). Note that it often results in updating
a large portion of the original configuration. Likewise, removing a given birth site
while obeying the evolution rules (E1–5) for all remaining particles may also lead
to a non-local configuration update. Both these updates are implemented using the
same data structures as discussed in Sect. 5.2.

5.4 Evaluating the Hamiltonian

Due to the bi-coloured nature of our current implementation, we have tested our
algorithm mainly for the L1-type Hamiltonians discussed in subsect. 3.2. This
required the evaluation of the number of misclassified pixels upon each update
proposal. In the current version of our software this is done by using a line sweep-
and-scan technique.

Various modifications can be used to improve the efficiency of the basic algo-
rithm described above. For example, due to isotropy, one could choose a random
direction for time before each birth or death step; the line-scanning computation
of the areas can be avoided by an application of the divergence theorem.
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6 Examples

In this section we present sample segmentation results produced by our algorithm.
The current version of our implementation is designed predominantly to segment
binary images. However, we provide as well an example showing that our soft-
ware is also able to capture main objects from grayscale images with high contrast
between the object and the background regions. Below, Figs. 2 and 3 present seg-
mentation results of binary images (flower, stickman) in the presence of heavy
correlated noise, with their boundaries strongly blurred and spread. Further, Fig. 4
presents a segmentation of a grayscale scene (mushroom). In all cases we used a
linear cooling schedule, which turned out to be very effective. The results for the
flower, the stickman and the mushroom were achieved after, respectively, 2.1, 2.6
and 3.5 million steps, with the average execution time being close to 0.015 s per
iteration for 2 CPUs architecture with Intel Xeon 2.4 GHz processors and 2 GB
RAM memory. It should be emphasised that updating the polygonal configura-
tions contributes just a minor fraction of the computation time, its major part being
spent on evaluating the amount of misclassified pixels as required for determining
the Hamiltonian – further optimisation is envisioned here, which is a subject of our
current research in progress.

The images in Figs. 2a and 4a are accompanied by the corresponding graphs
(Figs. 2b and 4b, respectively) visualising the decay of the pixel misclassification
rate during the execution of our algorithm. We see that rates close to 10% are usu-
ally achieved after about 100, 000 iterations, thanks to the global character of initial
configuration updates. After that, the PMR exhibits much slower decay, eventually
achieving in all examples 3%. Note that the fact that the misclassification rates do
not fall below that value is a natural consequence of the noisy character (Figs. 2,
3) and 256 gray-levels of pixel values (Fig. 4) of the images processed. In Fig. 3b,
a graph of the acceptance rate is shown as a function of the number of iterations.
It can be seen that initially, almost all moves are accepted; when a reasonable fit is
achieved, the rate drops to below 10%.

It is seen from the sample segmentations above that our technique easily deals
with the noise and extracts the major objects present in the scenery. The price for
this noise immunity and robustness of our approach is that its performance at the
level of fine details is much worse. These features stand in strong opposition to
the usual lattice-based Markov field methods, where fine details are usually well
processed but essential problems arise at the level of the global structure of the
image. We aim at solving this problem in our future work, by using multi-resolu-
tion techniques and various kinds of post-processing and smoothing.

7 Conclusion

We envision to continue and extend the work reported in the present paper in a
number of natural directions. One clear major task is to push our implementa-
tion into the general multi-coloured setting of the paper, getting rid of the bi-col-
oured restriction. Further, as discussed above, the Hamiltonians imposed in our
model were mainly of integral nature, based on global information, the prominent
example being the number of misclassified pixels. This is reflected by the behav-
iour of our algorithm which, as remarked in Sect. 6, well recognises large- and
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medium-sized components of the image but is much less accurate at the level of fine
details. Consequently, stable with respect to local image perturbations as the global
Hamiltonian terms are, they may nevertheless require complementary terms, based
on local information such as gradient-based terms that penalise discrepancy
between segmenting polygonal edges and natural edges present in the image. Opti-
mising the choice of a particular form of such local contributions and incorporating
them into our implementation is a subject of our current work in progress. Another

Fig. 2 Segmented flower
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Fig. 3 Segmented stickman

important aspect of our further research is to enable our algorithm to deal with tex-
tured regions. It should be noted that this is covered by our theoretical discussion in
Sects. 3.3 and 4.3, since the texture information can be interpreted as a component
of the likelihood parameter vector ω̃. A further possible method of improving the
behaviour of our algorithm on local details is to introduce some local moves to our
(BS[·]) dynamics, close in spirit to those proposed by Clifford and Nicholls (1989).
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Fig. 4 Segmentation of a grayscale image
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