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Abstract This paper is devoted to nonparametric estimation, through the L2-risk,
of a regression function based on observations with spherically symmetric errors,
which are dependent random variables (except in the normal case). We apply a
model selection approach using improved estimates. In a nonasymptotic setting,
an upper bound for the risk is obtained (oracle inequality). Moreover asymptotic
properties are given, such as upper and lower bounds for the risk, which provide
optimal rate of convergence for penalized estimators.

Keywords Model selection · Nonparametric estimation · Spherically symmetric
distribution · Spherically symmetric regression model

1 Introduction

The paper deals with nonparametric estimation of a regression function under
observations with dependent errors. More specifically, we consider the model

Y = S + ξ (1)

with

Y = (Y1, . . . , Yn)
′ , S = (S(x1), . . . , S(xn))

′ and ξ = (ξ1, . . . , ξn)
′ ,

where S : [0, 1] → R is some unknown function, {x1, . . . , xn} is the partition of
the interval [0, 1], such that xi = i/n, and ξ is a vector of dependent errors whose
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distribution will be specified below (here the notation ′ holds for transposition).
The aim is to estimate the function S based on the vector of observations Y .

Numerous papers are devoted to this problem with i.i.d. errors ξ1, . . . , ξn . See,
for example, Donoho et al. (1995), Efroimovich (1999) and Nemirovski (2000).In
this context, various properties have been studied such as, asymptotic minimaxity,
adaptive estimation etc. In fact, in practical regression problems, the observations
are more often dependent. A broad statistical review of long-range dependence
has been given by Beran (1992) with discussions and references. In particular,
Dahlhaus (1995) studies this problem for long-range dependent linear models. In
a nonparametric setting, Hall and Hart (1990) and Csörgo and Mielniczuk (1995)
have investigated the asymptotic properties of the kernel estimate.

Fourdrinier and Wells (1994) considered the model (1) for linear function with
dependent observations, more specifically under spherically symmetric distribu-
tions. They address the selection problem of significant predictors of the linear
function through a decision theory approach based on quadratic loss estimation.

In this paper, we consider the spherically symmetric model (1) proposed in
Fourdrinier and Strawderman (1994) and Fourdrinier and Wells (1994) in a para-
metric estimation context. More specifically, we assume that ξ has a density of the
form g(‖ ·‖2) for some nonegative function g. This class of densities gives rise to a
natural extension of normal distributions which lead to dependent components ξi .
Actually the only case where the (ξi ) are independent is when g(t) ∼ e−t/2σ 2

, that
is, when the distribution of ξ is normal N (0, σ 2 I ) where I is the identity matrix.

General distributions of current use belong to this class. This is the case with
the multivariate Student’s distribution with ν degrees of freedom for which g(t) ∼
(1 + t/ν)− ν+n

2 . It is worth noting that this distribution can be viewed as a variance
mixture of normal distributions, that is,

g(t) = E
1

(2π ϑ)
n
2

e−t/2ϑ , (2)

where the mixing random variable ϑ has the inverse gamma distribution IG( ν2 , ν2 )
(see Kariya and Sinha (1993)). Another example (which is not a variance mixture
of normal distributions) is the Kotz distribution with

g(t) = �(n/2)

πn/2(2σ 2)n/2+q�(n/2 + q)
tq e−t/2σ 2

, (3)

for some real number q such as q > −n/2 (see Fang et al. 1989). Introduced by
Kotz (1975), this distribution was found to be useful in constructing models in
which the usual normality assumption is not applicable. Note that the case q = 0
corresponds to the normal case mentioned above.

As a last example, quoted by Berger (1975) (who gives an extensive class of
spherically symmetric distributions), the function

g(t) ∼ e−(αt+β)

(1 + e−(αt+β))2
α > 0 , β ∈ R (4)

leads to a logistic type distribution.
Under this spherical distributional context, our main goal is to tackle the non-

parametric estimation problem of S through the L2-norm in a non-asymptotic
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setting. We make use of the model selection method (see, for example, Gunst and
Mason 1980) developed by Barron et al. (1999) in the non-parametric case. In this
last paper, the authors construct the model selection procedure in the particular case
where the model (1) is gaussian. They give a non-asymptotic upper bound for the
quadratic risk (oracle inequality), i.e. the main term in this bound is the infimum,
under all the models, of the sum of the approximate term and the penalization term.

Note that the model selection procedure proposed by Barron, Birge and Massart
(1999) is based on the least squares estimator. It is well known, since the founding
of Stein (1956), that the least squares estimator is not optimal in the entire class of
the estimators. Indeed, in the gaussian case, James and Stein (1961) constructed
improved estimators with quadratic risk less than the least squares estimator. Four-
drinier and Strawderman (1996) compared these various improved estimators for
the general linear spherically symmetric regression model.

In this paper, we construct a general model selection procedure based on any
general parametric estimator (non necessarily the least square estimator) under
spherically symmetric distributions in the model (1), for which we obtain an oracle
inequality (Theorem 1). Then we adapt the improved estimates from Fourdrinier
and Strawderman (1996) and Fourdrinier and Wells (1994) to this model (Theo-
rems 2, 3) and we construct the model selection procedure applying the improved
estimates. For this procedure, we specify an oracle inequality as well (Theorem 4).

Moreover, we also study asymptotic properties of the model selection proce-
dures. We find asymptotic upper and lower bounds for the minimax usual risk
and the adaptive risk which provide the optimal convergence rate of the proposed
procedures.

The paper is organised as follows. In Sect. 2, we describe the model selection
method for which we obtain a non-asymptotical upper bound for the L2-risk. In
Sect. 3, we illustrate the model in using improved estimation method. Sect. 4 yields
the upper bound for the asymptotical minimax risk of the penalized estimator in
case of known smoothness and Sect. 5 is devoted to a lower bound for the L2-risk.
In Sect. 6, we consider the adaptive estimation problem for the model (1). In Sect. 7,
we give some general conclusions. Finally, Sect. 8 is an appendix which contains
some technical results.

2 Penalization method

We consider the non-parametric regression estimation problem for the model (1).
We suppose that the vector ξ has a spherically symmetric distribution with density
g(‖ · ‖2) in Rn , where ‖ · ‖ is the euclidean norm and g is some positive function.
Futhermore we assume that this distribution satisfies the following condition

H1) there exist two known constants µ0 > 0 and µ1 > 0 and there exists
M∗ > 0 such that

sup
1≤k≤n

⎛
⎝ln P

⎛
⎝

k∑
j=1

ξ2
j > b

⎞
⎠ − µ0 k

⎞
⎠ ≤ ln M∗ − µ1 b (5)

for any b > 0.
In Appendices 8.1, 8.2, we show that, for any variance mixture of normal distri-

butions as (2) such that the mixing random variable ς is bounded from above by a
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known positive constant σ ∗, we haveµ0 = −0.5 ln(1−2µ1σ
∗), 0 < µ1 < 1/2σ ∗

and M∗ = 1. We also show that, for any Kotz’s distribution as (3) with variance
parameterσ 2 bounded by a known constantσ ∗, we haveµ0 = −0.5 ln(1−2µ1σ

∗),
0 < µ1 < 1/2σ ∗ and M∗ = e2q µ0 . Moreover, in Remark 1, we give a method for
choosing µ1 (and hence µ0) in an optimal way.

Let L2[X , 1/n] be the Hilbert space of functions on X = {x1, . . . , xn} with the
scalar product (t, u)n = n−1 ∑n

i=1 ti ui , where t and u are functions on X defined
by ti = t (xi ) and ui = u(xi ) for 1 ≤ i ≤ n. In the following, we fix a system of
orthonormalized functions φ1, . . . , φn in L2[X , 1/n], i.e. (φi , φ j )n = 0, if i �= j
and ‖φi‖2

n = (φi , φi )n = 1.
Given a classMn of subsets of {1, . . . , n}, we consider a family (Dm ,m ∈ Mn)

of linear subspaces of Rn . For any m ∈ Mn , the space Dm can be written as
Dm = {t ∈ Rn : t = ∑

j∈m α jφ j , α j ∈ R} and we denote by dm its dimension
(dm = dim Dm). In this setting, Barron et al. (1999) construct a model selection
procedure based on the least squares estimators, that is, on the estimators Ŝm , which
are minimizers with respect to t ∈ Dm of the distance ‖Y − t‖n or, equivalently,
of the empirical contrast

γn(t) = ‖t‖2
n − 2(Y, t)n . (6)

In contrast to the Barron–Birgé–Massart procedure, we construct a model selection
procedure based on a general family of estimators S̃m of S, i.e. the S̃m’s are any
mesurable functions of the observations Y taking their values in Dm . Through a
family of prior weights {lm ,m ∈ Mn : lm ≥ 1} such that

l∞ = sup
n≥1

∑
m∈Mn

e−lm dm < ∞ , (7)

we choose the penality term Pn(m) of the form

Pn(m) = 4
(µ0 + lm)dm

µ1 n
, (8)

and denote

m̃ = argminm∈Mn
{γn(S̃m)+ Pn(m)} , (9)

where γn(S̃m) + Pn(m) is the penalized empirical contrast. For the least squares
estimators, we use

m̂ = argminm∈Mn
{γn(Ŝm)+ Pn(m)} . (10)

Our aim, in this section, is to prove the following oracle inequality.

Theorem 1 Under the condition H1) the estimator S̃m̃ of S satisfies the inequality

ES ‖S̃m̃ − S‖2
n ≤ infm∈Mn

{
3 ES ‖S̃m − S‖2

n + l∗m Pn(m)
}

+ µ∗
n , (11)

where

l∗m = 2

(
1 + µ0

µ0 + lm

)
and µ∗ = 8 M∗ l∞

1

µ1
. (12)
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As an immediate consequence of Theorem 1, we give in the following corollary
an upper bound for the left hand side of (11).

Corollary 1 Under the conditions of Theorem 1, we have

ES ‖S̃m̃ − S‖2
n ≤ inf

m∈Mn

{
3 ES ‖S̃m − S‖2

n + 8κ
lm dm

n

}
+ µ∗

n
(13)

with κ = (2µ0 + 1)/µ1.

Remark 1 Notice that, for the Kotz distribution (given in (3)) with variance param-
eter σ 2 ≤ σ ∗ and for variance mixtures of normal distributions (given in (2)) with
mixing random variableϑ bounded byσ ∗, κ = κ(µ1) = (1 − ln(1 − 2µ1σ

∗)) /µ1
with 0 < µ1 < 1/2σ ∗. By choosing µ1 to minimize κ(µ1), we obtain that

µ0 = x∗ − 2

2
, µ1 = x∗ − 1

2σ ∗ x∗
, κ = 2σ ∗ x∗ , (14)

where x∗ is the maximal root of the equation ln x = x − 2.

Proof of Theorem 1 From (1) and (6) we have, for any t ∈ R
n ,

‖t − S‖2
n = γn(t)+ 2(ξ, t)n + ‖S‖2

n .

As by definition of m̃ we have, for any m ∈ Mn ,

γn(S̃m̃)+ Pn(m̃) ≤ γn(S̃m)+ Pn(m)

this identity leads to

‖S̃m̃ − S‖2
n = γn(S̃m̃) + 2(ξ, S̃m̃)n + ‖S‖2

n

≤ γn(S̃m) + Pn(m) − Pn(m̃) + 2(ξ, S̃m̃)n + ‖S‖2
n

= ‖S̃m − S‖2
n + Pn(m)− Pn(m̃)+ 2(ξ, t̃)n (15)

with t̃ = S̃m̃ − S̃m .
Let m be fixed. For any ι ∈ Mn , we introduce the random variable

Zι(t) = 2(ξ, t)n
‖t‖2

n + �2
n(ι)

, t ∈ Dι + Dm ,

where �n(ι) will be choosen later. Let the functions φi1
, . . . , φiN

be a basis in
Dι + Dm where N = dim(Dι + Dm) (note that N ≤ dι + dm). Thus one can
write any normalized vector t = t/‖t‖n ∈ Dι + Dm as t = ∑N

j=1 a jφi j
with∑N

j=1 a2
j = 1. This leads to the representation of Zι(t) as

Zι(t) = 2 n−1/2 ‖t‖n

‖t‖2
n + �2

n(ι)
ηn(ι), ηn(ι) =

N∑
j=1

a j ζi j
,
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where ζi = (ξ, φi )n
√

n. Moreover

sup
t∈Dι+Dm

|Zι(t)| ≤ n−1/2

�n(ι)
ζ ∗ ,

where ζ ∗ =
(∑N

j=1 ζ
2
i j

)1/2
.

Notice now that the vector ζ = (ζ1, . . . , ζn)
′ is an orthonormal transforma-

tion of the vector ξ = (ξ1, . . . , ξn)
′ (i.e. ζ = Qξ where Q is a matrix such that

Q Q′ = I ). By making use of the fact that a spherically symmetric distribution is
invariant with respect to any orthonormal transformation, we see that the vector ζ
has the same distribution that the vector ξ . Thus the condition H1) implies that,
for any b > 0,

PS(ζ
∗ > b) = PS

(
N∑

j=1
ζ 2

i j
> b2

)
= PS

(
N∑

j=1
ξ2

i j
> b2

)

= PS

(
N∑

k=1
ξ2

k > b2
)

≤ M∗ exp{µ0 N − µ1 b2} .

Choosing b = b∗(ι, x) = √
(µ0 N + dιlι + x)/µ1 with x > 0 yields

PS(ζ
∗ > b∗(ι, x)) ≤ M∗ e−x−dιlι .

Therefore, setting �n(x) = {supι∈Mn
ζ ∗/b∗(ι, x) ≤ 1}, we get, for x > 0,

PS(�
c
n(x)) ≤ ∑

ι∈Mn

PS(ζ
∗ > b∗(ι, x)) ≤ M∗ l∞e−x (16)

according to (7).
We now set �n(ι) = n−1/2 b∗(ι, x)/τ where τ is some positive constant which

will be choosen below. On the set �n(x) we have

sup
ι∈Mn

sup
t∈Dι+Dm

|Zι(t)| ≤ τ .

Thus, on �n(x),

2(ξ, t̃)n = Zm̃(t̃)(‖t̃‖2
n + �2

n(m̃))

≤ τ ‖t̃‖2
n + b2∗(m̃, x)/nτ ≤ 2τ‖S̃m̃ − S‖2 + 2τ‖S̃m − S‖2

+ 1

nµ1τ
(µ0 dm + µ0 dm̃ + dm̃lm̃)+ 1

τ

x

nµ1
.

Applying this inequality to (15), we get on the set �n(x)

‖S̃m̃ − S‖2
n ≤ (1 + 2τ)

1 − 2τ
‖S̃m − S‖2

n + Pn(m)− Pn(m̃)

1 − 2τ

+ 1

nµ1τ(1 − 2τ)

(
µ0 dm + (

µ0 + lm̃
)

dm̃

) + 1

τ(1 − 2τ)

x

nµ1
.
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In choosing τ to maximize the function (1 − 2τ)τ (i.e. τ = 1/4) we minimize the
upper bound of the estimation accuracy and we obtain on �n(x)

‖S̃m̃ − S‖2
n ≤ 3 ‖S̃m − S‖2

n + l∗m Pn(m) + 8
nµ1

x , (17)

where l∗m is defined in (12). Furthermore, setting

η = ‖S̃m̃ − S‖2
n − 3 ‖S̃m − S‖2

n − l∗m Pn(m) ,

we have

‖S̃m̃ − S‖2
n ≤ 3 ‖S̃m − S‖2

n + l∗m Pn(m)+ η+ ,

where η+ = max(η, 0). Inequality (17) implies that η ≤ 8 x/(µ1n) on the set
�n(x). Therefore, by definition of η and by (16), we obtain that for x > 0,

PS (η+ > 8 x/(µ1n)) = PS(η > 8 x/(µ1n), �c
n(x)) ≤ M∗ l∞e−x .

Then it follows that

ESη+ =
∞∫

0

PS(η+ > z)dz = 8

µ1n

∞∫

0

PS(η+ > 8 x/(µ1n))dx ≤ µ∗ n−1 ,

which implies, by definition of η, that

ES ‖S̃m̃ − S‖2
n ≤ 3 ES ‖S̃m − S‖2

n + l∗m Pn(m) + µ∗/n .

As m is arbitary choosen in Mn , we obtain Inequality (11) and, finally, Theorem 1
is proved. �
Remark 2 We can calculate the right hand side of the oracle inequality (13) for
the least squares model selection procedure Ŝm̂ defined by (10). Indeed, denoting
by Sm the orthogonal projection of S on Dm , it is easy to show that, for the least
squares estimate, ES ‖Ŝm − Sm‖2

n = dm ςn
n , where ςn = E ξ2

1 . Therefore, since

‖Ŝm − S‖2
n = ‖Sm − S‖2

n + ‖Ŝm − Sm‖2
n , we can rewrite Inequality (13) as

ES ‖Ŝm̂ − S‖2
n ≤ inf

m∈Mn

âm(S)+ µ∗

n
= â(S) , (18)

where

âm(S)= 3 ES ‖Ŝm − S‖2
n + 8κ

lm dm

n

≤ 3 ‖Sm − S‖2
n +

(
3ςn + 8

2µ0 + 1

µ1

)
dm lm

n
. (19)

Then it is particularly interesting to consider the Kotz distribution (3) with known
scale parameter (i.e. σ ∗ = σ 2). In that case, ςn = σ 2(1 + 2q/n) so that, for the
model selection procedure Ŝm̂ with parameters µ0 and µ1 defined by (14), we
obtain that

âm(S) ≤ 3 ‖Sm − S‖2
n + σ 2 (3(1 + 2q/n)+ 16 x∗) lm dm

n
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and hence

â(S) ≤ inf
m∈Mn

âm(S)+ 16 l∞ e2qµ0 x∗σ 2

(x∗−1)n .

Note that, for the gaussian model (i.e. the Kotz distribution with parameter q = 0)
with σ 2 = 1, we have

â(S) ≤ inf
m∈Mn

{
3 ‖Sm − S‖2

n + (3 + 16 x∗)
lm dm

n

}
+ 16 x∗
(x∗ − 1)

l∞
1

n
.

Taking into account that x∗ ≈ 3.1462, we obtain that 3 + 16 x∗ ≈ 53.34 and
16 x∗/(x∗ − 1) ≈ 23.46. This bound is sharper than the corresponding one in
Barron et al. formula (2.3), for which the upper bound in (18) is equal to

inf
m∈Mn

{
3 ‖Sm − S‖2

n + 72
lm dm

n

}
+ 32 l∞

1

n
.

3 Improved estimators under projections

In this section, we consider competitive estimators

S∗
m : Y ∈ Rn �−→ S∗

m(Y ) ∈ Dm

of S which improve on Ŝm in the sense that, for any S ∈ Rn ,

ES ‖S∗
m − S‖2

n ≤ ES ‖Ŝm − S‖2
n (20)

with strict inequality for some S.
Note that Ŝm is also the orthogonal projector from Rn onto Dm with respect to

the usual inner product (., .) given by (t, u) = ∑n
i=1 ti ui and that the inequality

in (20) is equivalent to

ES ‖S∗
m − S‖2 ≤ ES ‖Ŝm − S‖2 (21)

where ‖ · ‖ is usual norm (‖u‖2 = ∑n
i=1 u2

i ). Note also that, if Sm denotes the
orthogonal projection of S on Dm , then the inequality in (21) reduces to

ES ‖S∗
m − Sm‖2 ≤ ES ‖Ŝm − Sm‖2 (22)

since, for any t ∈ Dm , ‖t − S‖2 = ‖t − Sm‖2 + ‖Sm − S‖2 . The expectations in
(22) represent the quadratic risks of the considered estimators. It is clear that the
risk of Ŝm is finite as soon as the distribution of Y has a finite second moment.

Then, as any estimator S∗
m can be written as S∗

m = Ŝm + ψm (with ψm =
Ŝm − S∗

m), S∗
m has a finite risk if and only if ES ‖ψm‖2 < ∞ (which is assumed

in the following). This can be seen through the risk difference between S∗
m and Ŝm

expressed, for any S, as

�m(S) := ES ‖S∗
m − Sm‖2 − ES ‖Ŝm − Sm‖2 (23)

= 2 ES (ψm, Ŝm − Sm)+ ES ‖ψm‖2

and through Schwarz’s inequality.
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In the following, we yield another expression of �m(S). To this end, we need
to specify, for m = { j1, . . . , jdm

} ⊆ {1, . . . , n} fixed, the expressions of Ŝm and

S∗
m . First note that Dm = {t ∈ Rn : t = ∑dm

k=1 αk ϕ jk , αk ∈ R} , where ϕ j =
φ j/

√
n. Therefore the least squares estimator is equal to Ŝm = ∑dm

k=1 ŝ jk ϕ jk
with ŝ j = (Y, ϕ j ). Moreover, if we denote by i : Dm → Rdm the natural iso-

morphism (i.e. i(t) = (α1, . . . , αdm
)′ for t = ∑dm

k=1 αk ϕ jk ), the random vector

Ĵm = i(Ŝm) = (ŝ j1, . . . , ŝ jdm
)′ has a spherically symmetric distribution in Rdm

with density gm(‖u − Jm‖2), where Jm = i(Sm) and where gm(w) = gdm
(w) =∫

Rn−dm g(w + ‖z‖2) dz .
Now, the alternative estimators S∗

m that we consider take their values in Dm

and, more specifically, are functions of Ŝm , that is

S∗
m = Ŝm + ψm(Ŝm) with ψm(Ŝm) = �m( Ĵm) , (24)

where �m(·) is a function from Rdm into Dm .
Finally, for u = (u1, . . . , udm

), we define the divergence of vm(·) = i(�m(·))
as div vm(u) = ∑dm

i=1 ∂ < vm(u) >i /∂ui , where < vm(u) >i is the i th compo-
nent of the vector vm(·).
Theorem 2 Let S∗

m be an estimator as in (24) such that ES ‖ψm‖2 < ∞. Then the
risk difference between S∗

m and Ŝm equals, for any S,

�m(S) = ES

(
2 Gm(‖Ŝm − Sm‖2) div vm( Ĵm)+ ‖ψm‖2

)
,

where Gm(w) =
∞∫
w

gm(a)da/2gm(w) .

Remark 3 The statement of Theorem 2 assumes that divψm exists. In order to
include basic examples of functions ψm proportional to the function u −→ u

‖u‖2

which blows up at zero, it is assumed that ψm is a weakly differentiable function.
This assumption is well adapted to the Stokes theorem which is the basis of the
proof of Theorem 2 (see, for example, Ziemer 1989).

Proof of Theorem 2 According to (23) the proof reduces to show that

ES (ψm, Ŝm − Sm) = ES Gm(‖Ŝm − Sm‖2) div vm( Ĵm) .

Now, taking into account that

(ψm, Ŝm − Sm) = (i(ψm), i(Ŝm)− i(Sm)) = (vm( Ĵm), Ĵm − Jm) ,

we obtain

ES (ψm, Ŝm − Sm) =
∫

Rdm

(vm(u), u − Jm) gm
(‖u − Jm‖2) du

=
∞∫

0

⎛
⎜⎝

∫

Sr,m

(vm(u), u − Jm) �r,m(du)

⎞
⎟⎠ gm(r

2) dr
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where�r,m is the superficial measure on the sphere Sr,m = {u ∈ Rdm : ‖u− Jm‖ =
r} of radius r and centered at Jm . Introducing the unit outward normal vector
n(u) = (u − Jm)/‖u − Jm‖ at u ∈ Sr,m , it follows that

ES (ψm, Ŝm − Sm) =
∞∫

0

⎛
⎜⎝

∫

Sr,m

(vm(u), n(u)) �r,m(du)

⎞
⎟⎠ r gm(r

2)dr

=
∞∫

0

⎛
⎜⎝

∫

Br,m

div vm(u)du

⎞
⎟⎠ r gm(r

2) dr

by applying the Stokes theorem where Br,m = {u ∈ Rdm : ‖u − Jm‖ ≤ r} . Now,
through Fubini’s theorem, we have

ES (ψm, Ŝm − Sm) =
∫

Rdm

⎛
⎜⎝

∞∫

‖u−Sm‖
r gm(r

2)dr

⎞
⎟⎠ div vm(u)du

=
∫

Rdm

⎛
⎜⎝1

2

∞∫

‖u−Sm‖2

gm(a) da

⎞
⎟⎠ div vm(u)du

with the change of variable a = r2. Finally, dividing and multiplying trough by
gm(‖u − Jm‖2), we obtain

ES (ψm, Ŝm − Sm) =
∫

Rdm

Gm
(‖u − Jm‖2) gm

(‖u − Jm‖2) div vm(u)du

= ES Gm(‖ Ĵm − Jm‖2) div vm( Ĵm)

= ES Gm(‖Ŝm − Sm‖2) div vm( Ĵm) ,

which is the desired result. �
Remark 4 It is easy to check that, when the sampling distribution is normalN (0, σ 2),
then the function Gm is constant and equal to σ 2. In that case, the risk difference
is

�m(S) = 2 σ 2 ES div vm( Ĵm)+ ES ‖ψm‖2 ,

which is the expression given by Stein (1981).

We now give a sufficient condition, denoted by H2), for which S∗
m improves

on Ŝm , that is, for which �m(S) ≤ 0. It is well known that such an improvement
can only happen if the dimension dm is greater than or equal to 3 (see Stein (1956)
in the normal case and Brown (1966) in the general case). This fact means that the
least squares estimator Ŝm is admissible when dm ≤ 2.

H2) There exists a constant c > 0 such that, for any w ≥ 0, Gm(w) ≥ c.
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Theorem 3 Assume that the condition H2) holds. Assume also that dm ≥ 3 and
let S∗

m an estimator as in (24) such that ES ‖ψm‖2 < ∞.
Then a sufficient condition for which S∗

m improves on Ŝm is that, for any u ∈
Rdm ,

Lm(u) = 2 c div vm(u)+ ‖ vm(u)‖2 ≤ 0 (25)

(with strict inequality on a set of positive Lebesgue measure). Moreover,

�m(S) ≤ ES Lm( Ĵm) . (26)

Proof The result follows immediately from Theorem 2 since condition (25) implies
that divψm(u) ≤ 0. Note that, the fact that dm ≥ 3 is implicit in (25). Indeed, Blan-
chard and Fourdrinier (1999) showed that Inequation (25) has non trivial solutions
only in the case where dm ≥ 3. �
Remark 5 While condition (25) is a condition on the estimator S∗

m , the assumption
Gm(w) ≥ c is a condition on the sampling distribution.

Example 1 Consider the Kotz distribution in Rn with density (48), where we as-
sume q ≥ 0. Thus the generating function g(w) is proportional to wqe−w/2σ 2

and
we have

G(w) = 1

2

∞∫
w

g(a) da

g(w)
= σ 2 + σ 2 q

∞∫
w

aq−1 e−a/2σ 2
da

wqe−w/2σ 2 ≥ σ 2 .

Then, according to Lemma 4 in the Sect 8.3, the generating function gdm
satisfies

Gdm
(w) = 1

2

∞∫
w

gdm
(a) da

gdm
(w)

≥ σ 2 .

Thus the distributional assumption H2) is satisfied with the constant c = σ 2. Now
Inequation (25) has the classical James–Stein type solutions

vm(u) = −α u

‖u‖2 (27)

with 0 < α < 2(dm − 2)σ 2. It is shown in the Appendix (see Sect. 8.4) that

ES ‖ψm(Ŝm)‖2 = ES ‖vm(Ŝm)‖2 < ∞ (28)

for dm ≥ 3. Moreover, with α = (dm − 2)σ 2, it is easy to check that

Lm(u) = − (dm − 2)2σ 4

‖u‖2 . (29)
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Now we can apply the improved estimator to the selection model procedure.
We pose

m∗ = argminm∈Mn
{γn(S

∗
m)+ Pn(m)} , (30)

where γn(·) and Pn(m) are defined by (6) and (8), respectively.

Theorem 4 Under the conditions H1)–H2) the improved model selection proce-
dure S∗

m∗ of S satisfies the inequality

ES ‖S∗
m∗ − S‖2

n ≤ infm∈Mn

{
3 ES ‖S∗

m − S‖2
n + l∗m Pn(m)

} + µ∗
n , (31)

where l∗m and µ∗ are defined in (12). Moreover, for any m ∈ Mn,

ES ‖S∗
m − S‖2

n ≤ ES ‖Ŝm − S‖2
n .

Proof This theorem follows immediately from Theorems 1 and 3. �
Corollary 2 Under the conditions H1)–H2) the improved selection model estima-
tor S∗

m∗ of S satisfies the inequality

ES ‖S∗
m∗ − S‖2

n ≤ inf
m∈Mn

a∗
m(S)+ µ∗

n
, (32)

with a∗
m(S) = âm(S) + 3�m(S)/n, where âm(S) is defined in (19) and where

�m(S) ≤ 0, for any m ∈ Mn.

Proof The corollary follows immediately from Inequality (18) and Theorem 3. �
Now we compare the improved estimator S∗

m in (24), corresponding to the
function (27) for α = (dm − 2)σ 2, with the least squares estimator Ŝm in terms of
relative efficiency (of S∗

m with respect to Ŝm) defined by

εm(S) = ES ‖S∗
m − S‖2

n

ES ‖Ŝm − S‖2
n

.

An upper asymptotic bound for εm(S) is given in the following theorem.

Theorem 5 For the Kotz distribution given by (3), the improved estimator S∗
m of

S satisfies

lim sup
dm→∞

εm(S) ≤ ε∗(S) = γ (S)+ d∗
1 (S)

σ 2 + d∗
1 (S)

(33)

where

γ (S) = σ 2d∗
0 (S)

σ 2+d∗
0 (S)

, d∗
0 (S) = lim sup

dm→∞
‖Sm‖2

dm

and d∗
1 (S) = lim sup

dm→∞
‖Sm−S‖2

dm
.
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Proof By (26) and (29) we have, for dm ≥ 3,

ES ‖S∗
m − Sm‖2 ≤ ES ‖Ŝm − Sm‖2 + ES Lm(Ŝm)

= ES ‖Ŝm − Sm‖2 − (dm − 2)2 σ 4ES
1

‖Ŝm‖2

≤ ES ‖Ŝm − Sm‖2 − (dm − 2)2 σ 4 1

ES ‖Ŝm‖2
.

Thus

ES ‖S∗
m − Sm‖2

n

ES ‖Ŝm − Sm‖2
n

≤ 1 − (dm − 2)2σ 4

dm ςn

1

ES ‖Ŝm‖2

≤ d2
m ((ςn)

2 − σ 4)+ 4(dm − 1)σ 4 + ςn ‖Sm‖2 dm

dmςn(‖Sm‖2 + dm ςn)
.

As, for (3), ςn = σ 2(1 + 2q/n) we have the desired result. �
Remark 6 Note that, for S = 0, ε∗(S) = 0. Now, for a continuous function S, if
the dimension dm goes to infinity with n (more specifically, if dm/n → δ > 0) and
if ‖Sm − S‖2 = o(n) (i.e. d∗

1 (S) = 0) then

ε∗(S) =

1∫
0

S2(x) dx

σ 2δ +
1∫

0
S2(x) dx

.

4 Estimation with known smoothness properties

Using the following system of trigonometric functions in L2[0, 1]
e1(x) = 1, e2(x) = √

2 cos(2π x), e3(x) = √
2 sin(2π x), . . . ,

e2i (x) = √
2 cos(2iπ x), e2i+1(x) = √

2 sin(2iπ x), . . . .

we assume that the function S to estimate belongs to

�β,r = {S : S(x) =
∞∑
j=1

s j e j (x) , max
l≥1

l2β Ql(S) ≤ r2} , (34)

where Ql(S) = ∑+∞
j=l s2

j and β > 1 is a known constant, and is 1-periodic (i.e.

S(0) = S(1)). Any estimator S̃n (i.e. a measurable function of the observations
(y1, . . . , yn) in (5)) is evaluated by the risk defined by

Rn(S̃n) = sup
S∈�β,r

ES‖ϕn(S̃n − S)‖2
n , (35)
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where ϕn = nβ/2β+1. For this problem, we apply the ordered variables
selection (see Barron et al. (1999) p. 315), where the set Mn is defined as Mn =
{m1 , . . . ,mn} ,with mi = {1, . . . , i} (therefore dmi = i). Notice that, in this case,

Dmi = {t = (t1, . . . , tn) : tl =
i∑

j=1

α jφ j (xl) , α j ∈ R , xl = l/n}

where φ j (x) = ν j e j (x), ν j = 1 for 1 ≤ j ≤ n − 1, νn = 1/
√

2 if n is even
and νn = 1 if n is odd. Note also that the system (φ j ) is an orthonormal basis in
L2[X , 1/n], i.e. (φ j , φl)n = 0 for j �= l and 1 ≤ j, l ≤ n and ‖φ j‖2

n = 1 for
1 ≤ j ≤ n. In this context, one takes lm = 1 for any m ≥ 1, so that, according to
(7), l∞ = ∑∞

i=1 exp(−dmi) = 1/(e − 1).

Theorem 6 Under condition H1) the upper bound of the risk Rn(Ŝm̂) for the least
squares model selection procedure Ŝm̂ in (10) is finite, i.e.

lim sup
n→∞

Rn(Ŝm̂) < ∞ . (36)

Proof First of all, we show that condition H1) implies that

lim sup
n→∞

ςn ≤ µ0/µ1 (37)

where µ0 and µ1 are the two known constants involved in H1). Notice that

ςn = E ξ2
1 = 1

n
E

n∑
j=1

ξ2
j = 1

n

∞∫

0

P

⎛
⎝

n∑
j=1

ξ2
j ≥ x

⎞
⎠ dx

and hence, for any x0 > 0,

ςn ≤ x0

n
+ 1

n

∞∫

x0

P

⎛
⎝

n∑
j=1

ξ2
j ≥ x

⎞
⎠ dx

which implies, by (5), that ςn ≤ n−1 + (µ1 n)−1 M∗ eµ0n−µ1x0 . Thus, setting
x0 = µ0n/µ1, we obtain (37). Now, (18) and (19) imply that

ES‖Ŝm̂ − S‖2
n ≤ inf

m∈Mn

{
3‖S − Sm‖2

n +
(

3ςn + 8(2µ0 + 1)

µ1

)
dm

n

}
+ µ∗ 1

n

≤ c∗
n inf

1≤k≤n

{
‖S − Smk ‖2

n + k

n

}
+ µ∗ 1

n
,

where c∗
n = 3 + 3ςn + 8(2µ0 + 1)/µ1 and Sm(x) = ∑

j∈m α∗
jφ j (x) with α∗

j =
(S, φ j )n . Taking into account that ‖Sm − S‖2

n = infα j ‖S − ∑
j∈m α jφ j‖2

n , it is
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easy to derive that ‖Smk − S‖2
n ≤ ‖�k‖2

n where�k = ∑+∞
j=k+1 s j e j . Notice now

that Inequality (34) allows

1∫

0

�̇2
k(x) dx ≤ π2

∑
l≥1

s2
l l2 = Q1(S)+ 2

∑
l≥1

l Ql+1(S)+
∑
l≥1

Ql+1(S)

≤ r2(1 + 2
∑
l≥1

l−2β+1 +
∑
l≥1

l−2β) = r∗ < ∞

for any S ∈ �β,r with β > 1. In order to estimate ‖�k‖2
n , we can write

‖�k‖2
n = 1

n

n∑
l=1

�2
k(xl)

=
n∑

l=1

xl∫

xl−1

[�k(x)+ (�k(xl)−�k(x))]
2 dx

≤ 2

1∫

0

�2
k(x)dx + 2

n∑
l=1

xl∫

xl−1

(�k(xl)−�k(x))
2 dx .

Now, by Bunyakovski–Cauchy–Schwarz inequality, we have

n∑
l=1

xl∫

xl−1

(�k(xl)−�k(x))
2 dx =

n∑
l=1

xl∫

xl−1

⎛
⎝

xl∫

x

�̇k(t) dt

⎞
⎠

2

dx

≤
n∑

l=1

xl∫

xl−1

xl∫

x

(�̇k(t))
2 dt (xl − x) dx

≤ n−2
n∑

l=1

xl∫

xl−1

(�̇k(t))
2 dt

= n−2

1∫

0

(�̇k(x))
2 dx

and hence ‖�k‖2
n ≤ 2Qk+1(S)+ 2 r∗ n−2 . Therefore, by Inequality (34),

ES‖Ŝm̂ − S‖2
n ≤ c∗ inf

1≤k≤n

{
2Qk+1(S)+ k

n

}
+ µ∗ 1

n
+ 2 r∗ 1

n2

≤ c∗ (2 r2 (k + 1)−2β + k/n)+ µ∗ 1

n
+ 2 r∗ 1

n2
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for any 1 ≤ k ≤ n. Choosing k = kn = [n 1
2β+1 ] yields

ES‖Ŝm̂ − S‖2
n ≤ c∗

n (2 r2 + 1) n−2β/(2β+1) + µ∗ 1

n
+ 2 r∗ 1

n2 . (38)

Finally Condition (36) follows from (38) and (37). �
Theorem 6 and Corollary 2 immediately imply the next result.

Theorem 7 Under conditions H1)–H2) the upper bound of the risk Rn for the
improved model selection estimator S∗

m∗ defined by (24) and (30) is finite, i.e.

lim sup
n→∞

Rn(S
∗
m∗) < ∞ . (39)

Remark 7 Notice that Theorems 6 and 7 give the classical nonparametric conver-
gence rate for the problem with known regularity, i.e. as for the case of independent
observations.

5 Lower bound

In this section, we give a simple condition for the lower bound of the risk (35) to
be positive. More precisely, we suppose that the density g in model (5) satisfies the
following finitness condition:

Fg = lim sup
n→∞

Fn(g) < ∞ , (40)

where Fn(g) = 4
∫

Rn u2
1

ġ2(‖u‖2)

g(‖u‖2)
du . Notice that, for the Kotz distribution (48),

we have

Fn(g) = 2�(n/2 + q + 1)− 4q�(n/2 + q)+ 2q2�(n/2 + q − 1)

σ 2 n �(n/2 + q)

and, therefore, (40) is satisfied with

Fg = lim
n→∞ Fn(g) = 1/σ 2 .

Theorem 8 Under the condition (40), for β > 1 in (34), the lower bound of the
risk Rn over all estimates is strictly positive, i.e.

lim inf
n→∞ inf

S̃n

Rn(S̃n) > 0 . (41)

Proof First, it will be convenient to write β as β = k + α where k ≥ 1 is an
integer and 0 ≤ α < 1. Now, for z = (z1, . . . , zm) ∈ �δ = (−δ, δ)m with

m = mn = [n 1
2β+1 ] and δ = ν/ϕn for some ν > 0, define a function Sz by

Sz(x) =
m∑

l=1

zlψl(x) with ψl(x) = V

(
x − al

h

)
. (42)
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Here V (·) is a positive function k + 1 times continuously differentiable such that
V (x) = 0 for |x | ≥ 1; moreover al = l/(mn + 1) and h = 1/2(mn + 1). Notice
that, for all 1 ≤ j ≤ k, the j th derivative of Sz equals

S( j)
z (x) =

m∑
l=1

zl
1

h j
V ( j)

(
x − al

h

)

and hence S( j)
z (0) = S( j)

z (1) = 0. Note also that, for all z ∈ �δ and for all
x, y ∈ [0, 1],

max
1≤ j≤k−1

|S( j)
z (x)| ≤ ν

1

hk−1ϕn
V ∗ ≤ 4k−1ν V ∗

with V ∗ = max1≤ j≤k+1 sup|a|≤1 | V ( j)(a)| and furthermore

|S(k)z (x)− S(k)z (y)| ≤ 2ν
1

hβϕn
V ∗ |x − y|α ≤ 2 ν 4β V ∗ |x − y|α .

Therefore, by Lemma 6, there exists ν > 0 such that Sz ∈ �β,r for all z ∈ �δ and
n ≥ 1.

Now a lower bound for Rn(S̃n) will be obtained through introducing the prior
distribution on �δ with density

πδ(z) = πδ(z1, . . . , zm) =
m∏

j=1

λδ(z j ) with λδ(z) = 1

δ
G

( z

δ

)

and G(u) = G∗e
− 1

1−u2 1{|u|≤1} where G∗ =
(∫ 1

−1 e
− 1

1−v2 dv

)−1

.

For S̃n(x), an estimate of S(x) based on observations y1, . . . , yn in (1), we have

sup
S∈�r,β

ES‖S̃n − S‖2
n ≥

∫

�δ

Ez ‖S̃n − Sz‖2
n πδ(z) dz

where Ez is the expectation under the distribution of y = (y1, . . . , yn) in (1)
with S = Sz . By definition of Sz , ‖S̃n − Sz‖2

n ≥ ∑m
l=1(z̃l − zl)

2 ‖ψl‖2
n , where

z̃l = z̃l(y) = (S̃n , ψl)n/‖ψl‖2
n . Therefore

Rn(S̃n) = sup
S∈�r,β

ES‖ϕn(S̃n − S)‖2
n ≥ ϕ2

n

m∑
l=1

�l ‖ψl‖2
n (43)

where

�l =
∫

�δ

Ez(z̃l − zl)
2 πδ(z) dz =

∫

(−δ,δ)m−1

m∏
j �=l

λδ(z j ) Il(z)
m∏

j �=l

dz j
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and

Il(z) =
δ∫

−δ
Ez(z̃l − zl)

2λδ(zl)dzl =
δ∫

−δ

∫

Rn

(z̃l(y)− zl)
2 f (y, z)dyλδ(zl)dzl

with f (y, z) = g(‖y − Sz‖2). In this case, it is easy to see that ∂ f (y, z)/∂zl =
ζl(y, z) f (y, z) where

ζl(y, z) = −2
ġ(‖y − Sz‖2)

g(‖y − Sz‖2)

n∑
i=1

(yi − Sz(xi )) V

(
xi − al

h

)
.

By definition of λδ , we have

δ∫

−δ

∂

∂zl
( f (y, z)λδ(zl)) dzl = λδ(δ) f (y, z)

zl=δ
− λδ(−δ) f (y, z)

zl=−δ
= 0

and

∫

Rn

δ∫

−δ
zl
∂

∂zl
( f (y, z)λδ(zl)) dzl dy = −

δ∫

−δ

∫

Rn

f (y, z) dyλδ(zl))dzl = −1 .

Therefore

∫

Rn

δ∫

−δ
(z̃l(y)− zl)

∂

∂zl
( f (y, z)λδ(zl)) dzl dy

=
δ∫

−δ

∫

Rn

(z̃l(y)− zl)γl(y, z) f (y, z) dy λδ(zl) dzl

=
δ∫

−δ
Ez(z̃l − zl)γl(z) λδ(zl) dzl = 1 ,

where

γl(z) = γl(y, z) =
∂
∂zl
( f (y, z)λδ(zl))

f (y, z)λδ(zl)
= ζl(y, z)+ iδ(zl)

with

iδ(u) = λ̇δ(u)

λδ(u)
= δ−1 Ġ

( u
δ

)

G
( u
δ

) .
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Thus, by Cauchy-Bunyakovski-Schwarz inequality, �l ≥ 1/Jl(δ), where

Jl(δ) =
∫

�δ

Ez γ
2
l (z)πδ(z) dz =

∫

�δ

Ez (ζl(z)+ iδ(zl))
2πδ(z) dz

and ζl(z) = ζl(·, z). Taking into acount that

Ez ζl(z) =
∫

Rn

ζl(y, z) f (y, z) dy =
∫

Rn

∂

∂zl
f (y, z) dy = 0 ,

we obtain that

Ez (ζl(z)+ iδ(zl))
2 = Ez ζ

2
l (z)+ i2

δ (zl) .

As for the first term of the right hand side of this last equality, we have

Ez ζ
2
l (z) = 4

∫

Rn

ġ2(‖u‖2)

g(‖u‖2)

(
n∑

i=1

ui V

(
xi − al

h

))2

du

= Fn(g)
n∑

i=1

V 2
(

xi − al

h

)

= Fn(g) n ‖ψl‖2
n ,

where the function Fn(g) is defined in Condition (40). Then we obtain that

Jl(δ) = Fn(g) n ‖ψl‖2
n +

∫

�δ

i2
δ (zl)πδ(z) dz

= Fn(g) n ‖ψl‖2
n +

δ∫

−δ
i2
δ (u)λδ(u) du

= Fn(g) n ‖ψl‖2
n + ϕ2

nν
−2 IG ,

where IG = 8
∫ 1

0 u2(1 − u2)−4G(u) du.
Finally, according to (43), the risk of S̃n satisfies

Rn(S̃n) ≥
m∑

l=1

ϕ2
n ‖ψl‖2

n

Fn(g) n ‖ψl‖2
n + ϕ2

nν
−2 IG

and, furthermore, taking into account that n h/ϕ2
n → 1/2 as n → ∞ and that

lim
n→∞

1

h
‖ψl‖2

n = limn→∞ 1
n h

∑n
k=1 V 2

( xk−al
h

) =
1∫

−1
V 2(u) du = ‖V ‖2 ,

we obtain that Condition (40) implies that

lim inf
n→∞ inf

S̃
Rn(S̃n) ≥ ‖V ‖2

F(g) ‖V ‖2 + 2 ν−2 IG
> 0 .

�
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Remark 8 Theorem 8 means that the estimators Ŝm̂ and S∗
m∗ are optimal in the

sense of the risk (35).

6 Estimation of functions with unknown smoothness properties

We consider here the estimation problem of the function S ∈ ∪∞
β>1�β,r , where the

set �β,r is defined in (34).

Let us introduce the adaptive risk related to an estimator S̃n as follows

Ra
n(S̃n) = sup

β>1
sup

S∈�β,r
ES‖ϕn(S̃n − S)‖2 with ϕn = n

β
2β+1 . (44)

Note that, in this case, the smoothness parameter 1 < β < ∞ is unknown. Theo-
rem 8 yields immediately that

lim inf
n→∞ inf

S̃
Ra

n(S̃n) > 0

and Inequality (38) implies that, under the condition H1),

lim sup
n→∞

Ra
n(Ŝm̂) < ∞ (45)

and, under the conditions H1) – H2),

lim sup
n→∞

Ra
n(S

∗
m∗) < ∞ (46)

respectively.
Notice that Ŝm̂ and S∗

m∗ are independent of β and (45)–(46) express that they
attain the optimal rate for every class�β,r uniformly over β > 1. Such estimators
are called optimal rate adaptive (see e.g. Tsybakov 1998).

7 Conclusions

In this article, we provide an extension of the classical model Y = S + ξ , where
ξ = (ξ1, . . . , ξn)

′ is a vector of independent errors ξi , to the case where these errors
are dependent, but non correlated. Such an extension is given in the framework of
the spherically symmetric distributions. Our basic examples are variance mixture
of normal distributions and the Kotz distributions.

For this model, we develop the selection model method proposed by Barron et
al. (1999) for a regression of the form (1). Our contribution to this problem consists
in the construction of a model selection procedure based on general estimators for
which we can derive an Oracle inequality. Note that the procedure proposed by
Barron et al. (1999) is founded on the least squares estimator alone.

An important feature of our method is that we can improve their procedure
replacing the least squares estimator by improved estimators with respect to the
quadratic risk.
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8 Appendix

8.1 A property of variance mixtures of normal distributions

In this section, we consider a generating function g corresponding to a variance
mixture of normal distributions, that is,

g(t) = E
1

(2ϑ π)n/2
e− t

2ϑ , (47)

where ϑ is a non negative random variable.

Lemma 1 Let ξ = (ξ1, . . . , ξn) a random vector having a generating function as
in (47). If the random variable ϑ is bounded by a constant σ ∗ > 0 then, for any
0 < µ1 < 1/2σ ∗,

sup
1≤k≤n

(
ln E eµ1

∑k
j=1 ξ

2
j − µ0 k

)
≤ 0 ,

where µ0 = − 1
2 ln(1 − 2σ ∗µ1).

Proof If ξ̃1, . . . , ξ̃n are i.i.d. N (0, 1) and Fϑ is the distribution of ϑ

E eµ1
∑k

j=1 ξ
2
j =

σ ∗∫

0

E evµ1
∑k

j=1 ξ̃
2
j Fϑ(dv)

Therefore the result follows from the fact that, if µ < 1/2σ 2, then

E eµ1
∑k

j=1 ξ
2
j ≤ E eσ

∗µ1
∑k

j=1 ξ̃
2
j = eµ0k .

�

8.2 A property of the Kotz distribution

Lemma 2 Let ξ = (ξ1, . . . , ξn) a random vector in Rn with spherically symmetric
density of the form g(‖ · ‖2) with

g(t) = �(n/2)

(π)n/2(2σ 2)n/2+q�(n/2 + q)
tq e−t/2σ 2

, (48)

where q is a real number such that n/2 + q > 0. Then for any 0 < µ1 < 1/2σ 2

sup
1≤k≤n

(ln E eµ1
∑k

j=1 ξ
2
j − µ0 k) ≤ ln M∗ ,

where µ0 = − 1
2 ln(1 − 2σ 2µ1) and M∗ = e2qµ0 .
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Proof First note that, for k = n,

ES e
µ1

n∑
j=1

ξ2
j =

∫

Rn

e
µ1

n∑
j=1

x2
j

g

⎛
⎝

n∑
j=1

x2
j

⎞
⎠ dx1, . . . , dxn

=
∞∫

0

eµ1r 2πn/2

�(n/2)
rn−1 g(r2) dr

= 1

2n/2+q �(n/2 + q)

∞∫

0

tn/2+q−1 e− 1
2σ2 (1−2σ 2µ1)t dt

= 1

(1 − 2σ 2µ1)n/2+q
= eµ0 n+2qµ0 .

Now, for 1 ≤ k ≤ n, we can write, through conditioning on ‖ξ‖ = r ,

ES e
µ1

k∑
j=1

ξ2
j =

∫

Rn

e
µ1

k∑
j=1

x2
j

g

⎛
⎝

n∑
j=1

x2
j

⎞
⎠ dx1, . . . , dxn

= 2πn/2

�(n/2)

∞∫

0

Ir rn−1 g(r2) dr

with

Ir =
∫

Sr

e
µ1

k∑
j=1

x2
j
�r dx (49)

and where �r (·) is the uniform distribution on the sphere

Sr = {x ∈ Rn : ‖x‖ = r} ,
i.e. �r (·) = �r (·)/�r (Sr ) where �r (·) is the superficial measure on Sr .

The integrand term in (49) depends of ξ = (ξ1, . . . , ξn) through the orthogonal
projection ξ̃k = (ξ1, . . . , ξk). Now, under �r , this projection has the density

�(n/2) r2−n

�((n − k)/2)πk/2

⎛
⎝r2 −

k∑
j=1

x2
j

⎞
⎠
(n−k)/2−1

1Br
(x1, . . . , xk) ,

where 1Br
denotes indicator function of the ball Br = {x ∈ Rk : ‖x‖ ≤ r} of

radius r and centered at 0 in Rn (see Fourdrinier and Strawderman (1996) for more
references). Hence the integral in (49) can be written as
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Ir = �(n/2) r2−n

�((n − k)/2)πk/2

∫

Br

e
µ1

k∑
j=1

x2
j

⎛
⎝r2 −

k∑
j=1

x2
j

⎞
⎠
(n−k)/2−1

dx1, . . . , dxk

= 2�(n/2) r2−n

�((n − k)/2)�(k/2)

r∫

0

eµ1u2
(r2 − u2)(n−k)/2−1 uk−1 du

= �(n/2)

�((n − k)/2)�(k/2)

1∫

0

eµ1r2t (1 − t)(n−k)/2−1 tk/2−1 dt

=
1∫

0

eµ1r2t νk,n(dt) , (50)

where νk,n(·) is the Beta distribution with parameters k/2 and (n − k)/2.
Therefore it follows from (50) that

ES e
µ1

k∑
j=1

ξ2
j =

1∫

0

J (t) νk,ndt (51)

where

J (t) = 2πn/2

�(n/2)

∞∫

0

eµ1r2t rn−1 g(r2) dr

= 2

(2σ 2)n/2+q �(n/2 + q)

∞∫

0

r2q+n−1 e−(1−2µ1σ
2t)r2/2σ 2

dr

= 1

(2σ 2)n/2+q �(n/2 + q)

∞∫

0

vn/2+q−1 e−(1−2µ1σ
2t)v/2σ 2

dv

= 1

(1 − 2µ1σ 2t)n/2+q
.

Finally (51) gives that

ES e
µ1

k∑
j=1

ξ2
j =

1∫

0

1

(1 − 2µ1σ 2t)n/2+q
νk,ndt

≤ 1

(1 − 2µ1σ 2)q

1∫

0

1

(1 − 2µ1σ 2t)n/2
dνk,n(t)

= 1

(1 − 2µ1σ 2)q+k/2 = eµ0 k+2qµ0
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since the last integral corresponds to the case q = 0 (that is the normal case) and
equals (1 − 2µ1σ

2)−k/2. Hence we obtain the desired result. �
Notice that this lemma implies the condition H1) by the Markov inequality.

8.3 Some properties of spherically symmetric distributions

Lemma 3 Consider a spherically symmetric distribution on Rn with generating
function g. Let D be a linear subspace of Rn with dimension d such that 0 < d < n
and let Ŝ be the orthogonal projector from Rn onto D. Then the distribution of Ŝ is
spherically symmetric on D with generating function gd defined, for any w ∈ R+,
by

gd(w) = π(n−d)/2

�((n − d)/2)

∞∫

0

v(n−d)/2−1g(w + v) dv .

Proof The density of the spherically symmetric distribution on Rn is the form
x �−→ g(‖x − θ‖2) for some θ ∈ Rn . It is clear that the proof reduces to the case
where θ = 0 and to consider that D is isomorphic to Rd so that the density of Ŝ
can be written as

y �−→
∫

Rn−d

g(‖y‖2 + ‖z‖2)dz .

Thus the distribution of Ŝ is spherically symmetric (around 0) and has the gener-
ating function gd defined, for any w ≥ 0, by

gd(w) =
∫

Rn−d

g(w + ‖z‖2)dz

= 2π(n−d)/2

�((n − d)/2)

∞∫

0

g(w + r2) rn−d−1dz

through polar coordinates. With the change of variable v = r2, we obtain the stated
result. �
Lemma 4 In the context of Lemma 3, consider the functions G and Gd defined,
for any w ≥ 0, by

G(w) = 1

2

∫ ∞
w

g(v)dv

g(w)
and Gd(w) = 1

2

∫ ∞
w

gd(v)dv

gd(w)
.

If there exists a constant c > 0 such that, for anyw ≥ 0, G(w) ≥ c then Gd(w) ≥
c.
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Proof Let w ≥ 0. According to Lemma 20, we have

2 Gd(w)

∞∫

0

v(n−d)/2−1g(w + v)dv =
∞∫

w

∞∫

0

v(n−d)/2−1g(u + v)dvdu

=
∞∫

0

∞∫

w

g(u + v)du v(n−d)/2−1dv

=
∞∫

0

∞∫

w+v
g(t)dt v(n−d)/2−1dv .

Therefore

Gd(w) =
∞∫

0

1

2

∫ ∞
w+v g(t)dt

g(w + v)

v(n−d)/2−1g(w + v)
∞∫
0

z(n−d)/2−1g(w + z)dz

dv

which can be written as

Gd(w) = Ew G(V + w) ,

where Ew denotes the expectation with respect to the density

v �−→ v(n−d)/2−1g(v + w)
∞∫
0

z(n−d)/2−1g(z + w)dz

.

Thus, if G(w) ≥ c for any w ≥ 0, then Gd(w) ≥ c as well. �

8.4 Proof of condition (28)

Notice that, to check (28), it suffices to show that, for any dm ≥ 3,

ES ‖Ŝm‖−2 < ∞ .

Indeed, we have that

ES ‖Ŝm‖−2 =
∫

Rdm

1

‖u + Sm‖2 gdm
(u) du

=
∫

‖u+Sm‖≤1

gdm
(u)

‖u + Sm‖2 du +
∫

‖u+Sm‖≥1

gdm
(u)

‖u + Sm‖2 du

≤ sup
‖u+Sm‖≤1

gdm
(u)

∫

‖u+Sm‖≤1

1

‖u + Sm‖2 du +
∫

Rdm

gdm
(u)du

= sup
‖u+Sm‖≤1

gdm
(u)

∫

‖u‖≤1

1

‖u‖2 du + 1 .
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By using polar coordinates in the last integral, we obtain the desired result. �

8.5 Some properties of the Fourier coefficients

The following lemma is inspired from Timan (1963) (p. 254). We give a proof which
underlines the link between the upper bound in (53) and the regularity condition
expressed in (52).

Lemma 5 Let f be a function in C1[0, 1] such that f (0) = f (1), f ′(0) = f ′(1)
and, for some constants L0 > 0, L > 0 and 0 ≤ α < 1,

sup
0≤x≤1

| f (x)| ≤ L0 and | ḟ (x)− ḟ (y)| ≤ L |x − y|α (52)

for all x , y ∈ [0, 1]. Then the Fourier coefficients (ak)k≥0 and (bk)k≥1 of the
function f , defined through

f (x) = a0

2
+

∞∑
k=1

(ak cos(2π kx)+ bk sin(2π kx)) ,

satisfy the following inequality

sup
n≥0
(n + 1)β

( ∞∑
k=n

(ak)
2 + (bk)

2

)1/2

≤ c∗ (L + L0) (53)

where β = 1 + α and

c∗ = 1 + 2β + π4 9β
∫ ∞

0 uα−3 sin4(π u) du

8
∫ 1/2

0 u−4 sin4(π u) du
.

Proof Let F(x)be a 1-periodic function on R such that F(x) = f (x) for x ∈ [0, 1].
Note that we can also represent this function as

F(x) = a0

2
+

∞∑
k=1

(
ãk cos(π kx)+ b̃k sin(π kx)

)
,

where ãk = am and b̃k = bm if k = 2m and ãk = b̃k = 0 for k = 2m + 1,
m ≥ 0. Then, by denoting pn(x) = a0

2 + ∑n
k=1 (ak cos(2π kx)+ bk sin(2π kx)),

we obtain that, for n ≥ 2,

∞∑
k=n

(a2
k + b2

k ) =
1/2∫

−1/2

(F(x)− pn−1(x))
2 dx

= 1

2
inf
α j ,β j

1∫

−1

⎛
⎝F(x)− α0

2
−

2(n−1)∑
k=1

(αk cos(π kx)+ βk sin(π kx))

⎞
⎠

2

dx

≤ 1

2

1∫

−1

(F(x)− tm(x))
2 dx ,
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where

tm(x) = 2

1/2∫

−1/2

F(u)ρm(u − x)du − 1

2

1∫

−1

F(u)ρm

(
u − x

2

)
du ,

ρm(u) = 1

γm

⎛
⎝1

2
+

m∑
j=1

cos(2π ju)

⎞
⎠

4

= 1

γm

(
sin((2m + 1)π u)

2 sin(π u)

)4

,

γm =
1/2∫

−1/2

(
sin((2m + 1)π u)

2 sin(π u)

)4

du

and m = [n/8]. Here [a] denote a integer part of any number a. We rewrite the
term tm(x) as

tm(x) =
1/2∫

−1/2

(2F(u + x)− F(x + 2u))ρm(u) du .

Note that the condition f ′(0) = f ′(1) implies that the function F is continuously
differentiable and satisfies the following inequality

|F(x + 2u)− 2F(x + u)+ F(x)| ≤ 2 L |u|β
for all u , x ∈ R. Hence, taking into account that 2 u ≤ sin(πu) ≤ π u for
0 ≤ u ≤ 1/2, we obtain that

|tm(x)− F(x)| ≤
1/2∫

−1/2

|F(x + 2u)− 2F(x + u)+ F(x)|ρm(u)du

≤ L

4γm

1/2∫

0

uβ
(

sin((2m + 1)π u)

sin(π u)

)4

du

≤ L

64γm

1/2∫

0

uβ
(

sin((2m + 1)π u)

u

)4

du .

By a change of variable in the last integral and setting

θ1 =
∞∫

0

uβ
(

sin(π u)

u

)4

du ,

we obtain

|tm(x)− F(x)| ≤ L(2m + 1)3 θ1

64 γm

(
1

2m + 1

)β
.



462 D. Fourdrinier and S. Pergamenshchikov

Furthermore, for m ≥ 0,

γm =
1/2∫

−1/2

(
sin((2m + 1)π u)

2 sin(π u)

)4

du

≥ 1

8π4

1/2∫

0

(
sin((2m + 1)π u)

u

)4

du

≥ (2m + 1)3

8π4 θ2

where

θ2 =
1/2∫

0

(
sin(π u)

u

)4

du .

The last inequality implies that

sup
x∈R

|tm(x)− F(x)| ≤ ρ∗ L

(
1

2m + 1

)β
with ρ∗ = π4θ1

8θ2
.

Taking into account that

sup
n≥2

n + 1

2m + 1
= sup

n≥2

n + 1

2[n/8] + 1
≤ 9 ,

we obtain that

sup
n≥2
(n + 1)β

( ∞∑
k=n

(ak)
2 + (bk)

2

) 1
2

≤ 9β ρ∗ L .

Moreover, by the Parseval equality and the condition of this lemma, we have
that

( ∞∑
k=0

(ak)
2 + (bk)

2

) 1
2

=
⎛
⎝

1∫

0

f 2(x) dx

⎞
⎠

1
2

≤ L0 .

Finally we obtain (53).

Now we extend this lemma to a k time differential function with k ≥ 1.

Lemma 6 Let S be a function in Ck[0, 1] such that S( j)(0) = S( j)(1) for all
0 ≤ j ≤ k and, such that, for some contants L0 > 0, L > 0 and 0 ≤ α < 1

max
0≤ j≤k−1

max
0≤x≤1

|S( j)(x)| ≤ L0 and |S(k)(x)− S(k)(y)| ≤ L |x − y|α (54)
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for all x , y ∈ [0, 1]. Then the Fourier coefficients (ak)k≥0 and (bk)k≥1 of the
function S satisfies the inequality

sup
n≥0
(n + 1)β

⎛
⎝

∞∑
j=n

(a j )
2 + (b j )

2

⎞
⎠

1
2

≤ c∗ (L + L0) , (55)

where β = k + α (k being an integer and 0 ≤ α < 1) and c∗ is defined in (53).

Proof For k = 1, Inequality (55) is shown in Lemma 3. For k ≥ 2, first, note that,
by Lemma 3, the Fourier coeficients (a′

j ) and (b′
j ) of the function f = S(k−1)

satisfy Inequality (53). Therefore, taking into account that

(a′
j )

2 + (b′
j )

2 = (
4π2 j2)k−1 (

(a j )
2 + (b j )

2) ,
we obtain Inequality (55). �
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