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Abstract We consider pointwise mean squared errors of several known Bayesian
wavelet estimators, namely, posterior mean, posterior median and Bayes Factor,
where the prior imposed on wavelet coefficients is a mixture of an atom of proba-
bility zero and a Gaussian density. We show that for the properly chosen hyperpa-
rameters of the prior, all the three estimators are (up to a log-factor) asymptotically
minimax within any prescribed Besov ball Bs

p,q(M). We discuss the Bayesian par-
adox and compare the results for the pointwise squared risk with those for the
global mean squared error.

Keywords Bayes Factor · Bayes model · Bayesian paradox · Besov spaces ·
Minimax rates · Nonparametric regression · Point estimation · Posterior mean ·
Posterior median · Wavelets

1 Introduction

Consider the standard “signal + white noise” model:

dY (t) = f (t)dt + σndW (t), t ∈ [0, 1] (1)

where σn = σ0n−1/2, W is a standard Wiener process and an unknown f belongs
to a Besov ball Bs

p,q(M) of radius M on [0, 1]. Besov classes include, in particu-
lar, Hölder (p = q = ∞) and Sobolev (p = q = 2) classes of smooth functions,
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as well as various classes of spatial inhomogeneous functions like the class of
functions of bounded variation sandwiched between B1

1,1 and B1
1,∞ (see Meyer,

1992 for more details). Different wavelet-based estimators have been intensively
studied in the literature in the last decade (see Antoniadis 1997; Vidakovic, 1999;
Abramovich et al., 2000 for comprehensive reviews). Among them there has been
proposed a whole series of various Bayesian wavelet estimators (e.g., Chipman
et al., 1997; Abramovich et al., 1998; Clyde et al., 1998; Vidakovic 1998), see also
Müller and Vidakovic (1999) for an overview.

Numerous simulation studies demonstrated good performances of Bayesian
estimators (e.g., Abramovich et al., 1998; Antoniadis et al., 2001). However, un-
til recently their frequentist properties (e.g., minimaxity) have not been studied.
Abramovich et al. (2004) investigated frequentist performance of several Bayesian
estimators in terms of the global integrated mean squared error loss (MISE).
Pensky (2006) explored the minimaxity of the posterior mean estimator with
respect to the MISE under more general families of noise distributions and priors.
Johnstone and Silverman (2005) considered the frequentist optimality of empirical
Bayes wavelet estimators.

In this paper we explore the minimaxity of Bayesian wavelet estimators under
the pointwise risk. We derive the pointwise convergence rates within a range of
Besov spaces for the Bayesian estimators considered in Abramovich et al. (2004)
and show that for the properly chosen hyperparameters of the prior they achieve
the minimax rate up to a log-factor. The optimal choices of the hyperparameters
for the global and pointwise risks are, however, generally different.

The paper is organized as follows. In Sect. 2 we present the prior model on wave-
let coefficients and several Bayesian wavelet estimators corresponding to different
Bayesian rules. Formulation and discussion of the main results on their point-
wise convergence rates and asymptotic minimaxity over Besov classes are given in
Sect. 3. In Sect. 4 we discuss the well-known Bayesian paradox when a prior yield-
ing an optimal Bayesian estimator over a certain class of functions lies outside this
class. In particular, we answer (positively!) the open question raised by Li and
Zhao (2002) on the existence of a prior on Sobolev (or more general Besov) spaces
whose Bayes procedures attain the optimal pointwise rates. The proofs are left to
the Appendix.

2 The model

2.1 The prior

For simplicity of exposition we assume that f is periodic and work with periodic
orthonormal wavelet bases on [0, 1] generated by a compactly supported scaling
function ϕ and a corresponding mother wavelet ψ (e.g., Daubechies, 1992, Sect.
9.3). Then, f can be expanded in wavelet series as

f (t) = w−10ϕ(t)+
∞∑

j=0

2 j −1∑

k=0

w jkψ jk(t), (2)

where w−10 = ∫ 1
0 f (t)ϕ(t)dt and w jk = ∫ 1

0 f (t)ψ jk(t)dt .
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Consider the following prior on w jk (Abramovich et al., 1998):

w jk ∼ π j N (0, τ 2
j )+ (1 − π j )δ(0), j ≥ 0; k = 0, . . . , 2 j − 1, (3)

where

τ 2
j = c12−α j and π j = min(1, c22−β j ), j ≥ 0, (4)

α and β are non-negative constants, c1, c2 > 0.
Some intuitive understanding of the model implied by (3), (4) can be found in

Abramovich et al. (1998) where they also established a relationship between the
choice of α and β and the parameters of Besov spaces within which realizations
from the prior will fall with probability one (see Sect. 4 below). Similar priors but
with different forms for the hyperparameters are considered in Clyde et al. (1998).

2.2 Bayesian wavelet estimators

Let Y jk = ∫ 1
0 ψ jk(t)dY (t). Subject to the prior (3)–(4), the posterior distribution

of w jk |Y jk is also a mixture of a corresponding posterior normal distribution and
δ(0) with the posterior cumulative distribution function

F(w jk | Y jk) = 1

1 + η jk



⎛

⎝w jk − Y jkτ
2
j /(σ

2
n + τ 2

j )

σnτ j/
√
σ 2

n + τ 2
j

⎞

⎠ + η jk

1 + η jk
I(Y jk ≥ 0),

(5)
where 
 is the standard normal cumulative distribution function and the posterior
odds ratio for the component at zero

η jk = 1 − π j

π j

√
τ 2

j + σ 2
n

σn
exp

(
− τ 2

j Y jk
2

2σ 2
n (τ

2
j + σ 2

n )

)
. (6)

To derive a Bayesian rule one should specify the loss function. Different losses
lead to different Bayesian estimators. The traditional L2-loss yields the posterior
mean (e.g., Chipman et al., 1997; Clyde et al., 1998; Vidakovic, 1998). From (5)
and (6) one has

ŵ jk = E(w jk | Y jk) = 1

1 + η jk

τ 2
j

τ 2
j + σ 2

n

Y jk (7)

that mimics a nonlinear smoothing shrinkage.
Abramovich et al. (1998) proposed the posterior median estimator that corre-

sponds to the L1-loss and can be obtained in the following closed form

w̃ jk = Med(w jk | Y jk) = sign(Y jk) max(0, ζ jk), (8)

where

ζ jk = τ 2
j

σ 2
n + τ 2

j

|Y jk | − τ jσn√
σ 2

n + τ 2
j


−1
(

1 + min(η jk, 1)

2

)
. (9)
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The quantity ζ jk is negative for all Y jk in some implicitly defined interval
[−λPM

j , λPM
j ], and hence the posterior median is a ‘shrink’ or ‘kill’ thresholding

rule with the level-dependent thresholds λPM
j .

The Bayes Factor estimator of Vidakovic (1998) is based on hypothesis testing
ideas and corresponds to the 0/1-loss : given Y jk , test the hypothesis H0 : w jk = 0
against a two-sided alternative H1 : w jk �= 0. If the hypothesis H0 is rejected,w jk
is estimated by Y jk , otherwise w jk = 0, that is

w̌ jk = Y jk I (η jk < 1), (10)

where the posterior odds ratio η jk = P(H0 | Y jk)/P(H1 | Y jk) is given by
(6). The Bayes Factor rule (10) mimics the level-dependent ‘keep’ or ‘kill’ (hard)
thresholding rule:

w̌ jk = Y jk I
(
|Y jk | ≥ λBF

j

)
,

where

(λBF
j )2 = 2σ 2

n (σ
2
n + τ 2

j )

τ 2
j

log

⎛

⎝1 − π j

π j

√
σ 2

n + τ 2
j

σn

⎞

⎠ . (11)

Abramovich et al. (2004, Lemma 1) showed that the sequences of level-depen-
dent thresholds λPM

j and λBF
j are asymptotically ‘similar’ (λPM

j ∼ λBF
j ) in the

sense that there exist two positive constants 0 < C1 ≤ C2 < ∞ such that C1 ≤
λPM

j /λBF
j ≤ C2 for all j and

λP M
j ∼ λB F

j ∼
⎧
⎨

⎩

√
log n

n , j ≤ Jα,√
j2α j

n , j > Jα,
(12)

where Jα = (1/α) log2 n.
The resulting Bayesian wavelet estimators f̂ , f̃ and f̌ are obviously obtained

by substituting ŵ jk , w̃ jk and w̌ jk respectively instead of w jk , and Y−10 instead of
w−10 in (2).

3 Main results

Consider again the white noise model (1), where f ∈ Bs
p,q(M), s > 1/p,

p, q ≥ 1. The difficulty of the pointwise estimation of f at a point t0 ∈ [0, 1]
is usually measured by the pointwise (local) minimax mean squared error:

Rl(n, t0, Bs
p,q(M)) = inf

f est
sup

f ∈Bs
p,q(M)

E( f est(t0)− f (t0))
2

Cai (2003) established the minimax pointwise rates over a Besov class Bs
p,q(M):

Rl(n, t0, Bs
p,q(M)) � n−2(s−1/p)/(2(s−1/p)+1). (13)

We derive now the pointwise rates for the three Bayesian estimators introduced in
Sect. 2 and compare them with the optimal rate in (13).
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Theorem 1 Let a mother wavelet ψ have regularity r , 1/p < s < r , p, q ≥ 1
and α > 1. Let f ∗ be any of the f̂ , f̃ or f̌ . Then for any fixed t0 ∈ [0, 1]

sup
f ∈Bs

p,q(M)
E( f ∗(t0)− f (t0))

2 = O
(√

log n n−(α−1)/α
)

+O
(

n−2(s−1/p)/α
)
. (14)

The following Corollary 1 is an immediate consequence of Theorem 1:

Corollary 1 Let f ∗ be any of the f̂ , f̃ or f̌ with α = 2(s −1/p)+1. Then, under
the conditions of Theorem 1, for any fixed t0 ∈ [0, 1]

sup
f ∈Bs

p,q(M)
( f (t0)− f ∗(t0))2 = O

(√
log n n−2(s−1/p)/(2(s−1/p)+1)

)

Corollary 1 shows that with α = 2(s − 1/p)+ 1 all the three Bayesian estimators
up to a log-factor achieve the optimal rate (13).

It is interesting to compare the obtained results for the local pointwise risk with
the corresponding results for the global mean squared error. Donoho and Johnstone
(1998) derived the minimax rates for the global (integrated) mean squared error
over a Besov class Bs

p,q(M):

Rg(n, Bs
p,q(M)) = inf

f est
sup

f ∈Bs
p,q(M)

E || f est − f ||2L2[0,1] � n−2s/(2s+1). (15)

Abramovich et al. (2004) showed that for p ≥ 2, all the above Bayesian esti-
mators attain the optimal global rate (15) (up to a log-factor) with α = 2s + 1.
These results still hold for the Bayes Factor estimator for p ≥ (2s + 2)/(2s + 1),
while the posterior mean and posterior median estimators for 1 ≤ p < 2 can
achieve only the best possible rates for linear estimators with α = 2(s + 1 − 1/p).
This is caused by too large thresholds (or too strong extent of shrinkage for the
posterior mean) implied by the procedures for large j (see (12)). They become
‘too severe’ towards significant coefficients present on high resolution levels for
spatially inhomogeneous functions with 1 ≤ p < 2. To get optimal global rates
for 1 ≤ p < 2 one should replace a Gaussian nonzero part of the prior (3) by
heavier-tailed distributions (Johnstone and Silverman, 2005; Pensky, 2006).

On the contrary, all three Bayesian estimators achieve the minimax pointwise
rates for any p ≥ 1 with the same α = 2(s − 1/p) + 1 which is less than those
for the global risk. Note also that under the pointwise risks both the minimax rates
and the optimal α always depend not only on s but on p as well.

Different (unless p = ∞) choices for α for the local and global risks are not, in
fact, surprising. Similar results are known for Bayesian Fourier estimators within
Sobolev spaces (Zhao, 2000; Li and Zhao, 2002). Cai et al. (2006) discussed the
significant differences in minimax properties under the pointwise risk measures and
the global MISE. They showed that for p < ∞ no estimator can simultaneously
have minimax rate both globally and locally at each point. Substituting α = 2s +1
into (14) shows that the penalty on the maximum local risk of the globally optimal
Bayesian estimators is a power of n. The same is also true for the maximum global
risk of the locally optimal Bayesian estimators (apply Theorem 2 of Abramovich
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et al., 2004 for α = 2(s − 1/p) + 1). Cai et al. (2006) proved that while such a
penalty is inherent for any locally optimal estimator, there exists a globally optimal
estimator that attains the pointwise minimax rate up to a log-factor only (instead
of power). It is achieved by a wavelet-based estimator with thresholds smaller on
high levels than those in (12) (see Cai et al., 2006 for details).

For p = ∞, the local and global minimax rates coincide and with α = 2s + 1
all the three Bayesian estimators are both locally and globally optimal (up to log-
factors).

4 Bayesian paradox

There is a well-known Bayesian paradox when a prior (and, hence, a posterior)
leading to a Bayesian estimator that attains the minimax rate over a certain space
of functions, has a zero measure on this space (e.g., Wahba, 1983; Zhao, 2000; Li
and Zhao, 2002). The additional requirements on the hyperparameters of the prior
(3)–(4) are needed to avoid such a paradox. Whereas α = 2(s − 1/p) + 1 yields
the optimal rates (13) for any β, the choice of β should guarantee that the prior is
also supported on the assumed Besov space Bs

p,q .
From (3) and (4) the expected number of non-zero wavelet coefficients on the

j th level is c22 j (1−β). Applying the first Borel–Cantelli lemma, in the case β > 1,
the number of non-zero coefficients in the wavelet expansion is finite almost surely
and, hence, with probability one, f will necessarily belong to the same Besov
space as the mother wavelet ψ . Consider the more interesting case 0 ≤ β ≤ 1.
For β = 1 the expected number of non-zero wavelet coefficients is the same on
each level which is typical for piecewise polynomial functions. The case β = 0
assumes the same probability of being non-zero for all coefficients on all levels
that characterizes self-similar processes such as white noise or Brownian motion.
Abramovich et al. (1998, Theorem 1) showed that for 0 ≤ β ≤ 1 realizations from
such a prior will fall (with probability one) within a Besov space Bs

p,q if and only
if either

s +
(1

2

)
−

(β
p

)
−

(α
2

)
< 0, (16)

or:

s + 1

2
− β

p
− α

2
= 0 and 0 ≤ β < 1, 1 ≤ p < ∞, q = ∞. (17)

Abramovich et al. (2004) used these results to find the ranges of admissible β for
the globally optimal Bayesian estimators.

The situation is different for their locally optimal counterparts. For the point-
wise optimal α = 2(s − 1/p)+ 1, (16) and (17) immediately imply that the corre-
sponding Bayesian estimators with probability one will lie outside the considered
Besov space and the Bayesian paradox is, therefore, unavoidable. These results
are similar to those of Li and Zhao (2002) for Bayesian Fourier estimators over
Sobolev spaces which are the particular cases of Besov classes with p = q = 2.
The existence of a prior on Sobolev (or more general Besov) spaces whose Bayes
procedures attain the optimal pointwise rates (at least up to a log-factor) has been
left as a conjecture in Li and Zhao (2002). It turns out that a modification of the
prior (3)–(4) allows one to construct such a prior. Following Abramovich et al.
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Table 1 Conditions for parameter γ to produce sample path within the specified Besov space

p, q < ∞ p = ∞, q < ∞ p < ∞, q = ∞ p, q = ∞
0 ≤ β < 1 γ < −2/q γ < −1 − 2/q γ ≤ 0 γ ≤ −1
β = 1 γ < −2/q γ < 0

(1998), consider a more delicate dependence of the variance τ 2
j in (4) on the level

j by adding a third hyperparameter γ : τ 2
j = c12−α j jγ , γ ≤ 0. We omit here the

straightforward calculus analogous to the proof of Theorem 1 but, intuitively, it is
clear that the exponential term 2−α j dominates the asymptotic behavior of τ 2

j and
α = 2(s − 1/p)+ 1 still implies the optimal pointwise rate (13) up to a log-factor
(depending now on γ as well).

On the other hand, the additional hyperparameter γ allows one more flexibility
to satisfy the requirement on the prior to be within a given Besov space. Abra-
movich et al. (1998, Theorem 2) extended the conditions (16) and (17) for the
modified three-parameter prior. They showed that for 0 ≤ β ≤ 1 and γ ≤ 0 the
corresponding realizations will almost surely lie within a Besov space Bs

p,q(M) if
and only if either

s +
(1

2

)
−

(β
p

)
−

(α
2

)
< 0,

or: s + 1/2 − β/p − α/2 = 0 and γ satisfies the conditions summarized in
Table 1.

Thus, for the optimally chosen α = 2(s − 1/p) + 1, setting β = 1 and any
γ < −2/q guarantees that the resulting prior will belong with probability one to
a Besov space Bs

p,q and essentially solves the Bayesian paradox for the pointwise
optimal (up to a log-factor) Bayesian estimators.

Appendix: Proof of Theorem 1

Throughout the proof we use C to denote a generic positive constant, not
necessarily the same each time it is used, even within a single equation.

Using Minkowski inequality we have

E( f ∗(t0)− f (t0))
2 = E

(
(Y−10 − w−10)ϕ−10(t0)

+
∑

j≥0

2 j −1∑

k=0

(w∗
jk − w jk)ψ jk(t0)

)2

≤
⎛

⎝
√

E(Y−10 − w−1,0)2|ϕ−10(t0)|

+
∑

j≥0

2 j −1∑

k=0

√
E(w∗

jk − w jk)2|ψ jk(t0)|
⎞

⎠
2
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:= (T1 + T2)
2,

where, immediately, T1 = O(1/√n).
Consider now the second term T2. Let L be the support length ofψ and K j (t0) =

{k : ψ jk(t0) �= 0}. At each resolution level j there are at most L basis functions
ψ jk whose supports contain t0 and, therefore, Card(K j (t0)) ≤ L . Exploiting also
that |ψ jk(t0)| ≤ C 2 j/2 we have

T2 =
∑

j≥0

2 j −1∑

k=0

√
E(w∗

jk − w jk)2|ψ jk(t0)|

≤ C

⎛

⎝
Jα∑

j=0

∑

k∈K ( j,t0)

2 j/2
√

E(w∗
jk − w jk)2

+
∞∑

j=Jα+1

∑

k∈K ( j,t0)

2 j/2
√

E(w∗
jk − w jk)2

⎞

⎠

:= A1 + A2 (18)

Denote b j = τ 2
j /(τ

2
j + σ 2

n ) and Jα = (1/α) log2 n as in (12). A simple calculus
yields

b j ∼
{

1, j ≤ Jα
2−α j n, j > Jα

and 1 − b j ∼
{

2α j/n, j ≤ Jα,
1, j > Jα.

(19)

From now on we consider the three cases separately using several intermediate
technical results obtained in the proof of Theorem 2 of Abramovich et al. (2004)
for the global risk.
Posterior mean. From the proof of Theorem 2 of Abramovich et al. (2004) for the
posterior mean we have

E(ŵ jk − w jk)
2 ≤ C

(
b2

jσ
2
n + 2b2

jw jk E

(
η jkY jk

1 + η jk

)
+ (1 − b j )

2w2
jk

)

E(η jkY jk/(1 + η jk)) is a symmetric (nonlinear) shrinkage of Y jk and it is easy to
verify that w jk E(η jkY jk/(1 + η jk)) ≥ 0. Thus,

T2 ≤ C
∑

j≥0

∑

k∈K ( j,t0)

2 j/2

√

b2
jσ

2
n + 2b2

jw jk E

(
η jkY jk

1 + η jk

)
+ (1 − b j )2w

2
jk

≤ C
∑

j≥0

∑

k∈K ( j,t0)

2 j/2

(
b jσn + b j

√

2w jk E

(
η jkY jk

1 + η jk

)

+(1 − b j )|w jk |
)

(20)

The assumption f ∈ Bs
p,q implies |w jk | ≤ C 2− j (s+1/2−1/p). In addition, in the

proof of their Lemma 4, Abramovich et al. (2004) showed that
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w jk E
(
η jkY jk/(1 + η jk)

) ∼ log n/n for j ≤ Jα , while for j > Jα we use the
trivial inequality w jk E

(
η jkY jk/(1 + η jk)

) ≤ w2
jk . We then have from (18)–(20):

A1 ≤ C

⎛

⎝σn

Jα∑

j=0

2 j/2 +
√

log n

n

Jα∑

j=0

2 j/2 + 1

n

Jα∑

j=0

2 j (α−s+1/p)

⎞

⎠

= O
(√

log n n−((α−1)/2α)
)

+ O
(

n−((s−1/p)/α)
)

and

A2 ≤ C

⎛

⎝σnn
∞∑

j=Jα+1

2− j (α−1/2) + n
∞∑

j=Jα+1

2− j (α+s−1/p) +
∞∑

j=Jα+1

2− j (s−1/p)

⎞

⎠

= O
(

n−((α−1)/2α)
)

+ O
(

n−((s−1/p)/α)
)
.

Posterior median. Abramovich et al. (2004, Proof of Theorem 2) showed that

E(w̃ jk − w jk)
2 ≤ C

(
b2

j (λ
PM
j )2 + (1 − b j )

2w2
jk + σ 2

n b2
j

)
,

where λPM
j are given in (12). Repeating the arguments for the posterior mean case

we have

A1 ≤ C

⎛

⎝
√

log n

n

Jα∑

j=0

2 j/2 + 1

n

Jα∑

j=0

2 j (α−s+1/p) + 1√
n

Jα∑

j=0

2 j/2

⎞

⎠

= O
(√

log n n−((α−1)/2α)
)

+ O
(

n−((s−1/p)/α)
)

and

A2 ≤ C

⎛

⎝
∞∑

j=Jα+1

√
j2− j (α−1)/2 +

∞∑

j=Jα+1

2− j (s−1/p) + √
n

∞∑

j=Jα+1

2− j (α−1/2)

⎞

⎠

= O
(√

log n n−((α−1)/2α)
)

+ O
(

n−((s−1/p)/α)
)

Bayes Factor From the Proof of Theorem 2 of Abramovich et al. (2004) it follows
that

E(w̌ jk − w jk)
2 ≤ C

(
min((λBF

j )
2, w2

jk)+ σ 4
n

(λBF
j )

2

)
,

where λBF
j are also given in (12). The arguments analogous to those used for the

previous two cases imply

A1 ≤ C

⎛

⎝
√

log n

n

Jα∑

j=0

2 j/2 +
√

1

n log n

Jα∑

j=0

2 j/2

⎞

⎠ = O
(√

log n n−((α−1)/2α)
)



434 F. Abramovich et al.

and

A2 ≤ C

⎛

⎝
∞∑

j=Jα+1

2− j (s−1/p) +
∞∑

j=Jα+1

2− j (α−1)/2 j−1/2

⎞

⎠

= O
(

n−((s−1/p)/α)
)

+ O
(

n−((α−1)/2α)
)
.
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