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Abstract The purpose of this paper is to investigate the asymptotic null
distribution of stationarity and nonstationarity tests when the distribution of the
error term belongs to the normal domain of attraction of a stable law in any finite
sample but the error term is an i.i.d. process with finite variance as T ↑ ∞. This
local-to-finite variance setup is helpful to highlight the behavior of test statistics
under the null hypothesis in the borderline or near borderline cases between finite
and infinite variance and to assess the robustness of these test statistics to small
departures from the standard finite variance context. From an empirical point of
view, our analysis can be useful in settings where the (non)-existence of the (sec-
ond) moments is not clear-cut, such as, for example, in the analysis of financial time
series. A Monte Carlo simulation study is performed to improve our understand-
ing of the practical implications of the limi theory we develop. The main purpose
of the simulation experiment is to assess the size distortion of the unit root and
stationarity tests under investigation.

Keywords Stable distributions · Unit root tests · Stationarity tests · Asymptotic
distributions · Local-to-finite variance · Size distortion

1 Introduction

In the asymptotic analysis of statistics for testing stationarity and unit root in time
series a crucial maintained hypothesis concerns the existence of the variance of
the error term. Whenever this condition on the existence of the variance fails, the
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“standard” asymptotic results are no longer valid.1 A useful way to treat the infinite
variance case is to assume that the distribution of the model error term belongs to
the (normal) domain of attraction of a stable law with index α ∈ (0, 2) (Gnedenko
and Kolmogorov, 1954; Ibragimov and Linnik, 1971; Samorodnitsky and Taqqu,
1994). In this case the relevant asymptotic theory follows from the weak conver-
gence to functionals of a α-stable Levy process given in Chan and Tran (1989) and
Phillips (1990), who specialized the weak invariance principle in Resnick (1986).2

The purpose of this paper is to investigate the robustness of standard unit root
and stationarity tests to small departures from the maintained hypothesis of finite
variance. To this end, we follow a “local-to” approach. This methodology, in the
spirit of Pitman (1949), is standard in the analysis of the asymptotic power of test
statistics where it entails the specification of a sequence of local alternatives which
collapses to the null hypothesis as T ↑ ∞.3 However, in this paper we consider the
asymptotic null distribution of selected test statistics when one of the maintained
hypothesis, namely the existence of the first or the second moments of the error
term, is satisfied only as T ↑ ∞. In particular, we follow Amsler and Schmidt
(1999) who assume that the error term of a driftless random walk belongs to the
normal domain of attraction of a stable law in any finite sample but has finite var-
iance in the limit as T ↑ ∞. These local departures from the finite variance setup
are helpful to highlight the behavior of unit root and stationarity tests in border-
line or near borderline cases between finite and infinite variance and to assess the
robustness of these statistics to small departures from the standard finite variance
context.4

This robustness analysis may be empirically relevant in settings where the
(non)-existence of the (second) moments is not clear-cut, such as, for example,
in the analysis of financial time series. In fact, it is often argued that financial
asset returns can be viewed as the cumulative outcome of a large number of pieces
of information and individual decisions (McCulloch, 1996; Rachev and Mittnik,
2000). Since the empirical distribution of financial asset returns is usually found
leptokurtic, this suggests to consider non-gaussian stable laws, as first postulated by
Maldelbrot in the early 60s5 (Mandelbrot, 1997). However the empirical evidence
in favor of the stable model is not clear-cut (McCulloch, 1997).

1 See for example Hamilton (1994) for a review in the stationary case and Phillips (1987) for
dependent and heterogeneous errors.

2 When the data generating process (hereafter DGP) is a driftless random walk, Chan and Tran
(1989) developed the case of i.i.d. errors, while Phillips (1990) considered the dependent error
case. Further results on the asymptotic distributions of unit root tests in presence of infinite errors
are provided in Ahn et al. (2001) and Callegari et al (2003). The latter have shown that in the
random walk with drift case and i.i.d. errors, the functional form of the asymptotic distribution
of the least squares estimator and of the t-statistic depends on whether the maximal moment
exponent α lies between zero and one, is equal to one or lies between one and two. As for tests
of the null hypothesis of stationarity, Amsler and Schmidt (1999) have studied the asymptotic
distribution of the KPSS test of Kwiatkowski et al. (1992) and of the modified rescaled range
(MRS) test of Lo (1991). This literature shows the crucial role played by the index α affecting
the asymptotic distribution of test statistics.

3 The asymptotic power of unit root tests has been investigated by, amongst others, Phillips
(1987), Perron and Ng (1996) and Nabeya and Perron (1994).

4 A similar approach has been used to assess the robustness of inferential procedures in coin-
tegrating regressions when regressors are near-integrated (Elliott, 1998).

5 See also Loretan and Phillips (1994) for an analysis on the existence of finite moments in
financial time series.
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In this paper, we establish the limiting distributions of stationarity and unit
root tests, such as the Dickey–Fuller tests, the Durbin–Watson test (Sargan and
Bhargava, 1983) and the LM test proposed by Ahn (1993). The stationarity tests
are the KPSS, the MRS, the Kolmogoroff-Smirnov type test in Xiao (2001), the
L M proposed by Choi (1994) and the Sargan–Barghava–Durbin–Hausman test in
Stock (1994). We assess the sensitivity to the α-stable component by carrying out
a set of simulations experiments. In particular we study the size distortion arising
from using the critical values obtained in the finite variance case. To this end we
compute and graph the P-value discrepancy plot for the relevant tail of the tests.
In our opinion these graphical methods provide more information and are easier
to interpret than the tabulation of the quantiles of the empirical distributions as in
Amsler and Schmidt (1999). Our finite sample results show that the Durbin–Watson
and the Sargan–Barghava–Durbin–Hausman tests have the lowest size distortion.

The paper is organized as follows. In the next section, after having introduced
the “local-to-finite” variance approach, we present some results on the weak con-
vergence of sample moments of a random walk process characterized by “local-to-
finite” variance errors. In a Lemma we collect several convergence results on the
first and second sample moments useful in our subsequent analysis. In Sect. 2.2 we
establish the limiting distributions of some unit root tests, whereas in Sect. 2.3 we
consider some tests of the null hypothesis of stationarity. Section 3, is dedicated to
a Monte Carlo simulation study. All proofs are collected in the Appendices.

2 Asymptotic distribution under local-to-finite variance

2.1 The “local-to-finite variance” process

To build intuition for the local-to-finite variance setup, let us assume that the process
ut is a weighted sum of two independent processes6:

ut = v1t + ztv2t , (1)

where we assume that

A.1 v1t is i.i.d. with zero mean and finite variance σ 2
1 ;

A.2 v2t is also i.i.d., symmetrically distributed with distribution belonging to the
normal domain of attraction of a stable law with characteristic exponent α,
with α ∈ (0; 2), denoted as v2t ∈ ND(α).

As for the weight, several specification are of interest. One possibility is to
consider the Bernoulli random variable zt ∼ B(1, p), mutually independent on v1t
and v2t . Intuitively, when p is made suitably small, the process ut is, from time to
time, hit by a realization from an infinite variance distribution. Loosely speaking,
since the probability of “extreme” realizations is bigger when drawing from random
variables whose distribution belongs to the normal domain of attraction of a stable
law than for random variables whose density has finite variance, this model may
be helpful in explaining outliers occurrence in time series. This intuition is made
rigorous in Appendix C where we show that the tail behavior of the distribution

6 This is the socalled innovative outlier model.
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function the process ut is of the Pareto–Lévy form, with characteristic exponent α.
However, under this specification we have infinite variance both in finite samples
and asymptotically.

Here we follow an alternative specification, proposed in Amsler and Schmidt
(1999), which maintain the infinite variance in finite samples but collapses to the
standard finite variance assumption asymptotically. In particular, we assume that
the process ut is generated according to the following mechanism7

ut = v1t + γ

aT 1/α−1/2 v2t (2)

so that ut exhibits infinite variance in any finite sample size but finite variance in the
limit as T approaches infinity8. Notice that the importance of the stable component
diminishes as the sample size grows but at a slower rate as α increases. Thus, for a
given γ , when α is close to 2 we need a large sample size to annihilate the stable
component whereas when α is less than 1 a relatively small sample size is required.

By Donsker’s theorem (Billingsley (1968)), we have T −1/2 ∑[T r ]
t=1 v1t ⇒ σ1

W (r), where⇒ stands for the weak convergence of probability measures, and W (r)
is the standard Wiener process. Under the above assumptions on the sequence v2t ,
from Resnick (1986) and Phillips (1990), we also have the following weak con-
vergence result

(
1

aT

[T r ]∑

t=1

v2t ,
1

a2
T

[T r ]∑

t=1

v2
2t

)

⇒ (Uα(r), V (r)) , (3)

where the norming sequence is given by aT = aT 1/α , Uα(r) is the Lévy
α-stable process on the space D[0, 1] and V (r) is its quadratic variation process
V (r) = [Uα, Uα]r = U 2

α(r) − 2
∫ r

0 U−
α dUα (see Protter, 1990, pg. 58, Phillips,

1990, eq. (11)). Here, U−
α (r) stands for the left limit of the process Uα(·) in r .

In order to investigate the asymptotic distribution of the test statistics of inter-
est (to be described below) when the error term is given by (2), it is convenient
to obtain beforehand some convergence results concerning sample moments and
partial sums of the local-to- finite variance error term . These convergence results
are collected in the following Lemma whose proof can be found in the Appendix A.

Lemma 2.1 Let ut be generated as in (2) with v1t ∼ i.i.d.(0, σ 2
1 ) and v2t ∼ i.i.d.

and v2t ∈ ND(α), and let yt = ∑t
j=1 u j , then as T ↑ ∞,

1√
T

[T r ]∑

t=1

ut ⇒ σ1W (r) + γUα(r) ≡ Zα,γ (r),

1√
T

[T r ]∑

t=1

(ut − ū) ⇒ Zα,γ (r) − r Zα,γ (1) ≡ Z̃α,γ (r),

7 As suggested by an anonymous referee, one could consider the process u′
t = (1 − γ )v1t +

γ /(aT 1/α−1/2)v2t and then replace the process Zα,γ (r) with Z ′
α,γ (r) = σ1(1−γ )W (r)+γUα(r)

with no further change in the limiting distribution of Lemma 2.1 and Theorem 2.1 and 2.2.
8 In (2), we could have multiplied v2t by zt too, in the spirit of (1). Since we show in Appen-

dix C that the product process dt = ztv2t ∈ ND(α), then all asymptotic results would remain
unchanged.
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Fig. 1 Sample trajectories of W (r), Uα(r) and Zα,γ (r), α = 1.5, γ = 3.16

1

T

[T r ]∑

t=1

u2
t ⇒ σ 2

1 r + γ 2V (r) ≡ Kγ (r),
1

T 3/2

[T r ]∑

t=1

yt ⇒
r∫

0

Zα,γ (r),

1

T 2

[T r ]∑

t=1

y2
t ⇒

r∫

0

Z2
α,γ (r),

1

T

[T r ]∑

t=1

yt−1ut ⇒
r∫

0

Zα,γ dZα,γ ,

1

T 3/2

T∑

t=1

tut ⇒ Zα,γ (1) −
1∫

0

Zα,γ ,
1

T 5/2

T∑

t=1

t yt ⇒
1∫

0

r Zα,γ .

As expected, two are the key parameters affecting these asymptotic distribu-
tions: α, the maximal moment exponent characterizing the Lèvy process Uα(r),
and γ , which provides the relative importance of the Lèvy process in the limiting
distributions. In short, α select the Lévy process while γ tells how important it
is. The interaction between these two parameters will determine how much these
limiting distributions will differ from those under standard assumptions.

Figure 1 presents one sample trajectory of the three processes W (r), Uα(r) and
Zα,γ (r) for α = 1.5 and γ = 3.16; it is evident the effect of the outliers in the
trajectory of Uα(r), which is reflected in that of Zα,γ (r).

In Fig. 2 we graph an estimate of the empirical density9 of
∫ 1

0 Zα,γ , for several
values for γ and α = 1.5.

Throughout the paper we make the assumption that both v1t and v2t are i.i.d.
error processes even though one might find it desirable to consider serially depen-

9 The nonparametric estimate of all densities is computed by kernel smoothing, with
Epanechnikov and bandwidth as suggested in Silverman (1986).
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Fig. 2 Nonparametric estimate of the empirical density of
∫ 1

0 Zα,γ , for several values for γ and
α = 1.5

dent errors, such as linear processes10. This extension is left to future research
because we prefer to concentrate our efforts in the assessment of the robustness
of test statistics in non-standard but neat settings and we do not want that our
conclusions can be affected by some other factors such as the lag length selection
in augmented Dickey–Fuller tests or the consistent estimation of the “long-run”
variance.

2.2 Unit root tests

In order to investigate unit root tests, we assume that {yt } is generated according
to the mechanism

yt = ρyt−1 + ut , t = 1, . . . , T (4)

with ρ = 1 and that the initial condition y0 is any random variable.
We consider several well-known test statistics for testing the null hypothesis

HDS : ρ = 1 in (4) against the alternative hypothesis |ρ| < 1. First, we study
two nowadays standard test statistics proposed by Dickey and Fuller (1976), the
T (ρ̂ − 1) and the t-ratio statistics. We also consider the Lagrange Multiplier test

10 See Phillips (1990) for a treatment of unit root tests when v2t is a linear process.
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(hereafter LM) proposed by Ahn (1993), and the well-known Durbin–Watson (DW)
test. The interest in the DW test stems from the optimality properties of the test
statistic in the first-order autoregressive model with i.i.d. Gaussian errors. In fact,
Sargan and Bhargava (1983) and Bhargava (1986) show that the DW test statistics
can be used for constructing uniformly most powerful tests of the null hypothesis
of a random walk against stationary alternatives in a driftless and with drift DGP,
respectively. Thus, besides T (ρ̂ − 1), our test statistics for the null of a unit root
are given by

tρ̂ =
(

T∑

t=2

y2
t−1

)1/2

(ρ̂ − 1)/s, (5)

LM =
(∑T

t=2(yt − yt−1)yt−1

)2

s̄2
∑T

t=2 y2
t−1

, (6)

DW =
∑T

t=2(yt − yt−1)
2

∑T
t=2 y2

t−1

, (7)

where ρ̂ is the OLS estimator of ρ given by ρ̂ =
(∑T

t=2 y2
t−1

)−1 ∑T
t=2 yt yt−1,

s2 = T −1 ∑T
t=2(yt − ρ̂yt−1)

2 and s̄2 = ∑T
t=2(yt − yt−1)

2/T .
The limiting behavior of the above test statistics under the local-to-finite var-

iance setup is summarized in the following theorem whose proof is omitted, but
available upon request, since it follows directly by Lemma 2.1 and repeated appli-
cation of the continuous mapping theorem.

Theorem 2.1 When yt is generated according to (2) and (4), under the null hypoth-
esis HDS : ρ = 1 and as T ↑ ∞, we have

T (ρ̂ − 1) ⇒
∫ 1

0 Zα,γ dZα,γ
∫ 1

0 Z 2
α,γ

, (8)

t (ρ̂) ⇒
∫ 1

0 Zα,γ dZα,γ
(

Kγ (1)γ 2V (1)
∫ 1

0 Z 2
α,γ

)1/2 , (9)

LM ⇒
(∫ 1

0 Zα,γ dZα,γ

)2

Kγ (1)
∫ 1

0 Z2
α,γ

, (10)

TDW ⇒ Kγ (1)
∫ 1

0 Z2
α,γ

. (11)

It is noticeable that, notwithstanding asymptotically the process ut has finite
variance, the limiting distribution of the unit root test statistics is a (complicated)
function of both the Wiener process W (r) and the Lévy α-stable process Uα(r).
In contrast with the asymptotic distributions available in the infinite variance case
(see Ahn et al. 2001), here they depend not only on the maximal moment exponent
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α but also on the nuisance parameters σ 2
1 and γ . The role played by Uα(r) in

shaping the asymptotic distribution of the test statistics depends on the magnitude
of the weight γ . Of course, the limit distribution of the test statistics collapse to
the standard ones as γ → 0.

2.3 Stationarity tests

Following Kwiatkowski et al. (1992) let us assume that the observable time series
yt is generated according to

yt = dt + rt + ut , t = 1, . . . , T, (12)

rt = rt−1 + ηt , (13)

where dt = δ′xt depends on the unknown coefficients δ of the (known) determin-
istic components, typically a constant and a linear time trend, ut is generated as in
(2) and ηt ∼ i.i.d.(0, σ 2

η ). In DGP (12)–(13) the null hypothesis of stationarity is
specified as HS : σ 2

η = 0. For simplicity, we set δ = 0, restricting ourselves to the
case in which yt is stationary around the level r0.

The first set of stationarity tests look at some measure of “magnitude” of the
cumulated sums of the residual series obtained by demeaning or detrending the
observable time series. If the observable process is stationary it does have finite
mean, finite variance and it cannot grow without bounds. On the other hand, a unit
root process has trending variance so that its fluctuations are much larger than those
of a stationary process. This suggests that test statistics based on some measure of
the fluctuations in the time series might be useful in deciding between stationarity
and nonstationarity by rejecting the null hypothesis of stationarity whenever the
time series fluctuates too much bewildering.

Let et be the residuals of a regression of the observable time series yt on a
constant, namely et = yt − ȳ, define the cumulative process St = ∑t

j=1 e j and

the estimated variance σ̂ 2
e = T −1 ∑T

t=1 e2
t , we consider the tests

KPSS = 1

σ̂ 2
e

1

T 2

T∑

t=1

S2
t , (14)

MRS = 1√
T σ̂e

(
max

t
St − min

t
St

)
, (15)

KS = max
k=1,...,T

k

σ̂eT 1/2

∣
∣
∣
∣
Sk

k
− ST

T

∣
∣
∣
∣ , (16)

where the KPSS is due to Kwiatkowski et al. (1992), the Modified Range Statistic,
MRS, has been proposed by Lo (1991) and the KS test, a Kolmogorv–Smirnov
test, is in Xiao (2001).

A different strategy to test the null of stationarity is based on the Lagrange
Multiplier principle as proposed by Choi (1994), Choi and Ahn (1999) and Choi
and Yu (1997). These authors consider the following DGP

yt = dt + rt (17)
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and the null hypothesis is rt ∼ I (0). Defining the cumulated sum Ct = ∑t
i=1 yi ,

they show that the above null hypothesis is equivalent to β = 1 and yt ∼ I (0) in
the model

Ct = βCt−1 + yt .

Writing the log-likelihood for this DGP under Gaussian error, they obtain LM tests,
according to how the estimator of the information matrix is chosen

LM1 = 1

ω̂4

(
1

T

T∑

t=1

Qt−1	Qt

)2

, (18)

LM2 = 1

ω̂2

(∑T
t=1 Qt−1	Qt

)2

∑T
t=1 Q2

t−1

, (19)

where Qt are the residuals of a regression of Ct on the trend variable t , ω̂2 =
T −1 ∑T

t=1 	Q2
t and 	 is the first-difference operator.

We also consider the Sargan–Barghava–Durbin–Hausman (SBDH) test given
by

SBDH = 1

ω̂2

1

T 2

T∑

t=1

Q2
t . (20)

This statistic is clearly a Durbin–Watson test on the residuals Qt and can be inter-
preted as a stationarity test for the observable yt when the rejection region is the
right tail of the distribution (Stock, 1994).

The asymptotic distributions of the above test statistics are summarized in the
following Theorem (see the Appendix B for the proof).

Theorem 2.2 Let yt be generated as in (12)–(13) and ut be as in (2), then under
the null hypothesis σ 2

η = 0 and as T ↑ ∞,

KPSS =
∫ 1

0 Z̃ 2
α,γ

Kγ (1)
, (21)

MRS = 1

Kγ (1)1/2

(

sup
r

Z̃α,γ (r) − inf
r

Z̃α,γ (r)

)

, (22)

KS = 1
√

Kγ (1)
sup

r
|Z̃α,γ (r)|, (23)
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LM1 = 1

Kγ (1)

⎛

⎝

1∫

0

Z̄α,γ d Z̄α,γ

⎞

⎠

2

, (24)

LM2 = 1
√

Kγ (1)

(∫ 1
0 Z̄α,γ d Z̄α,γ

)2

∫ 1
0 Z2

α,γ − 3
(∫ 1

0 r Zα,γ

)2 , (25)

SBDH = 1
√

Kγ (1)

⎛

⎜
⎝

1∫

0

Z2
α,γ − 3

⎛

⎝

1∫

0

r Zα,γ

⎞

⎠

2⎞

⎟
⎠ , (26)

where Z̄α,γ = Zα,γ − 3r
∫ 1

0 r Zα,γ dr and d Z̄α,γ = dZα,γ − 3
∫ 1

0 r Zα,γ dr .

As for the unit root test, the limiting distribution of stationarity test is a com-
plicated function of the compound process Zα,γ = σ1W (r) + γUα(r) and of its
quadratic variation Kγ (1). These asymptotic distribution are also affected by the
maximal moment exponent and the weight γ . Once again the relative importance
of the Wiener and stable components depends on the size of weight attached to the
infinite variance component.

3 Finite sample size

In order to improve our understanding of the practical implications of Theorems
2.1 and 2.2, we carry out a MonteCarlo experiment whose main purpose is to inves-
tigate the size distortion of the unit root and stationarity test under local-to-finite
variance. In the experiment we set a = σ 2

1 = 1, T = {100, 1000, 10000} and
α = {1.5, 1, 0.5}. Moreover, as in Amsler and Schmidt (1999), we consider the
following values for γ

γ = {0.1, 0.316, 1, 3.16, 10, 31.6},
where 3.16 ≈ √

10. The Monte Carlo experiment has been carried out using Gauss
5 and the number of replications N has been set to 20,000. We have 18 parameter
combinations for each sample size and three different sample sizes amounting to a
total of 54 experiments. For each experiment and in each replication, we simulate
a driftless random walk with the error term generated as in (2), calculate each test
statistic and store their values. Thus, we end up with a sample of 20,000 values of
each test statistic for each of the 54 experiments.

The effective size of the tests, when the nominal size is fixed at 5% and the
critical values for the finite variance case are used11, is reported in Tables 1 and 2
for the unit root and stationarity tests, respectively.

With regard to unit root tests we have that as expected, for a given sample size,
the effective size worsens as the stable component becomes more important, i.e. as
γ increases. In general, these tests have effective size smaller than the reference 5%

11 The 5% critical values have been obtained for all tests by simulation of the case γ = 0,
T = 100, 000 and 20,000 replications .
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Table 1 Effective size (in %) with 5% nominal size for nonstationarity tests under (2)

γ γ
0.1 0.316 1 3.16 10 31.6 0.1 0.316 1 3.16 10 31.6

T α T (ρ̂ − 1) Left tail t (ρ̂) Left tail

0.5 4.38 3.76 3.23 2.69 2.32 2.02 4.64 3.92 3.34 2.58 2.21 1.88
100 1.0 4.96 4.53 4.14 3.15 2.92 3.31 5.44 4.98 4.37 3.25 2.98 3.34

1.5 5.10 4.86 4.50 4.06 3.94 4.14 5.50 5.19 4.79 4.15 4.13 4.38
0.5 4.37 3.68 3.14 2.73 2.21 2.14 4.39 3.76 3.06 2.60 2.02 1.93

1000 1.0 5.03 4.78 3.88 3.02 3.28 3.38 5.04 4.86 3.91 2.98 3.16 3.23
1.5 5.26 4.92 4.61 4.09 4.04 4.02 5.39 5.00 4.76 4.11 4.06 4.04
0.5 4.38 3.80 3.16 2.54 2.36 1.93 4.37 3.74 3.13 2.41 2.17 1.80

10000 1.0 4.92 4.77 3.72 3.41 3.22 2.94 4.98 4.75 3.69 3.31 3.11 2.77
1.5 5.09 4.97 4.44 4.41 4.38 3.83 5.13 5.03 4.44 4.38 4.35 3.84

LM Right tail DW Right tail

0.5 4.25 3.68 3.02 2.26 1.93 1.59 5.41 5.29 5.32 5.26 5.35 5.34
100 1.0 4.78 4.52 3.81 2.92 2.52 2.86 5.29 5.26 5.10 4.64 4.62 5.05

1.5 5.04 4.81 4.46 3.80 3.67 3.76 5.37 5.16 5.00 4.64 4.79 4.99
0.5 4.40 3.55 3.01 2.38 1.88 1.71 5.26 5.04 4.86 5.02 5.04 5.00

1000 1.0 4.90 4.71 3.75 2.86 2.81 2.94 5.37 5.32 4.84 4.56 4.73 4.60
1.5 5.25 4.89 4.50 3.89 3.78 3.84 5.51 5.05 4.94 4.75 4.56 4.81
0.5 4.18 3.70 2.99 2.28 2.08 1.60 5.24 5.24 5.04 4.87 5.03 4.65

10000 1.0 4.86 4.74 3.52 3.12 2.83 2.61 5.19 5.31 4.71 4.75 4.72 4.56
1.5 5.14 4.96 4.36 4.20 4.11 3.62 5.36 5.33 5.01 5.08 5.03 4.71

nominal size. This leads to fewer rejections than admissible under the probability
of type I error chosen which in turns makes them conservative tests. A noticeable
exception is the behavior of the DW test for any value of γ , α = 0.5 and T = 100
and for the smallest value of γ when T = 1, 000. On the other hand and for all
tests considered, for a given value of γ , the effective size is closer to the nominal
size as α increases. The DW test is little sensitive both to increases in α and in γ
displaying a rather constant behavior across all simulation experiments. This good
performance of the DW test is in accordance with previous simulation experiments
in standard settings, see Stock (1990). The T (ρ̂ − 1), t (ρ̂), and LM tests have
close patterns of effective size with little differences in relative performance, even
though the T (ρ̂ − 1) test has somehow less severe size distortion.

Analogously, the effective size of stationarity tests at the 5% nominal level, for
a given α decreases as γ increases and, for a given γ increases with α. These find-
ings are not surprising since both γ and α govern the behavior of the test statistics
under the sequence of local-to finite variances. Considering the 5% nominal size
the KPSS and SBDH have effective size closer to the nominal level. The LM1 test
displays effective sizes larger than the nominal ones for the sample size T = 100,
being a liberal test in this case. The effective size decreases as the sample size grows
and it adjusts around the true nominal level as T = 10, 000. The MRS test statis-
tics has the worst behavior with smallest effective size amongst all test statistics.
These findings are in accordance with the simulation results in Amsler and Schmidt
(1999). The KS test exhibits a slightly better behavior which is clearly dominated
by the remaining test statistics. The rather bad behavior of the KS and MRS test
statistics can be rationalized by noticing that these tests consider the maximum or
the difference between the maximum and the minimum and that these values may
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Table 2 Effective size (in %) with 5% nominal size for stationarity tests under (42)

γ γ
T α 0.1 0.316 1 3.16 10 31.6 0.1 0.316 1 3.16 10 31.6

KPSS MRS
0.5 4.12 3.45 2.80 2.34 1.71 1.34 1.74 1.32 0.86 0.50 0.14 0.01

100 1.0 4.69 4.56 3.66 3.12 2.94 2.76 2.09 1.76 0.88 0.33 0.09 0.05
1.5 5.05 4.76 4.40 4.10 4.04 4.13 2.29 2.11 1.25 0.77 0.65 0.63
0.5 4.39 3.47 3.03 2.05 1.59 1.24 3.12 2.36 1.61 0.77 0.23 0.07

1000 1.0 4.83 4.25 3.80 2.99 2.67 2.90 3.79 2.97 1.60 0.48 0.18 0.14
1.5 4.76 4.77 4.23 3.96 3.93 4.20 3.91 3.72 2.45 1.32 1.15 1.09
0.5 4.28 3.56 2.95 2.10 1.58 1.37 3.51 3.06 1.91 0.80 0.25 0.03

10000 1.0 4.65 4.44 3.61 3.04 3.02 2.74 4.48 3.60 1.87 0.58 0.20 0.18
1.5 4.97 4.61 4.31 3.93 4.02 4.10 4.87 4.20 2.71 1.47 1.27 1.23

KS LM1

0.5 2.74 2.20 1.48 0.94 0.41 0.19 12.85 11.77 10.51 8.05 7.04 5.95
100 1.0 3.18 2.83 1.89 0.96 0.64 0.56 15.15 13.57 11.63 8.77 8.09 7.85

1.5 3.43 3.32 2.51 1.99 1.88 1.81 15.20 14.78 13.43 11.49 11.05 10.98
0.5 3.75 2.71 2.04 0.97 0.49 0.19 6.18 5.69 5.17 4.71 4.22 3.72

1000 1.0 4.37 3.52 2.46 1.12 0.89 0.81 6.75 6.46 5.85 4.74 4.65 4.47
1.5 4.54 4.15 3.10 2.37 2.17 2.35 7.35 6.78 6.17 5.67 5.57 5.45
0.5 3.78 3.16 2.23 1.12 0.55 0.19 4.84 4.53 4.13 4.11 3.87 3.46

10000 1.0 4.45 3.88 2.44 1.29 0.77 0.78 5.19 4.88 4.64 4.31 4.02 4.32
1.5 4.84 4.22 3.20 2.31 2.35 2.27 5.34 5.45 4.65 4.58 4.68 4.55

LM2 SBDH
0.5 3.89 3.30 2.79 2.26 2.00 1.96 4.98 4.44 4.06 3.48 3.04 2.80

100 1.0 4.53 3.96 3.15 2.43 2.56 2.69 5.15 5.15 4.78 4.23 3.86 4.10
1.5 4.42 4.23 3.81 3.36 3.43 3.33 5.05 5.48 4.81 4.70 4.72 4.92
0.5 4.13 3.55 2.65 2.18 1.69 1.82 4.19 4.13 3.42 2.73 2.18 1.97

1000 1.0 4.76 4.41 3.67 2.83 2.69 2.92 4.93 4.43 4.20 3.55 3.19 3.17
1.5 5.01 4.61 4.20 3.97 3.83 3.93 4.96 5.04 4.56 4.47 4.30 4.02
0.5 4.04 3.69 3.01 2.20 1.71 1.54 4.36 3.80 3.41 2.75 2.26 1.95

10000 1.0 4.85 4.63 3.59 2.92 2.48 2.65 4.97 4.57 3.99 3.53 3.30 3.23
1.5 5.01 4.92 4.68 3.88 3.77 3.82 5.21 4.92 4.40 4.50 4.25 4.18

be the most sensitive to the presence of the outliers induced by the infinite variance
error terms. The performance of the LM2 test is in between the KPSS, LM1 and
SBDH, on the one hand, and the MRS and KS, on the other hand, even tough it is
not negatively affected by small sample sizes as the LM1 test.

So far, by looking at the size distortion we have compared the distributions
under finite variance and the local-to-finite variance at the 5% percentile for the
T (ρ̂ − 1) and t (ρ̂) statistics and at the 95% percentile for all other tests. A bet-
ter understanding of the differences between these distributions can be achieved
using graphical methods. In particular, following Davidson and MacKinnon (1998)
we use the P value discrepancy plots which are built as follows. For each of the
j = 1, 2, . . . , 20, 000, realizations of the test statistics, we compute its P value,
say p j (using the distribution under the finite variance case). Then, we estimate
the empirical distribution function of the P values, at m points, as

F̂(ri ) = 1

N

N∑

j=1

I (p j ≤ ri ),
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Table 3 Discrepancy (in %) between effective and nominal size for all tests under local to finite
variance, α = 1.5

Nominal
Size T (ρ̂ − 1) t (ρ̂) LM DW KPSS MRS KS LM1 LM2 SBDH

T = 100, γ = 1
0.01 −0.155 −0.030 −0.275 0.070 −0.355 −0.830 −0.705 10.840 −0.400 0.040
0.05 −0.505 −0.205 −0.535 0.000 −0.605 −3.745 −2.495 8.435 −1.190 −0.190
0.10 −1.230 −0.850 −1.300 −0.415 −0.570 −6.825 −4.300 6.395 −2.175 0.010

T = 1000, γ = 1
0.01 −0.005 −0.030 −0.100 0.205 −0.195 −0.620 −0.465 2.520 −0.255 −0.060
0.05 −0.395 −0.245 −0.505 −0.055 −0.765 −2.545 −1.905 1.175 −0.800 −0.440
0.10 −1.000 −0.920 −1.070 −0.375 −0.465 −4.790 −2.820 0.840 −1.640 −0.535

T = 10000, γ = 1
0.01 −0.215 −0.255 −0.265 0.015 −0.365 −0.555 −0.525 0.210 −0.120 −0.270
0.05 −0.565 −0.575 −0.635 0.005 −0.690 −2.295 −1.800 −0.345 −0.315 −0.605
0.10 −0.770 −0.770 −1.075 −0.325 −0.860 −4.100 −2.755 −0.500 −1.175 −1.015

T = 100, γ = 31.6
0.01 −0.200 −0.100 −0.285 0.170 −0.340 −0.940 −0.810 8.235 −0.365 −0.045
0.05 −0.860 −0.620 −1.240 −0.010 −0.870 −4.365 −3.185 5.975 −1.670 −0.085
0.10 −1.480 −1.325 −2.100 −0.640 −1.000 −8.26 −5.445 4.520 −2.860 −0.195

T = 1000, γ = 31.6
0.01 −0.185 −0.215 −0.305 0.125 −0.375 −0.915 −0.680 1.515 −0.215 −0.345
0.05 −0.980 −0.970 −1.160 −0.190 −0.805 −3.910 −2.650 0.455 −1.070 −0.980
0.10 −1.655 −1.640 −2.120 −0.955 −1.055 −7.165 −4.720 0.135 −2.435 −1.030

T = 10000, γ = 31.6
0.01 −0.325 −0.355 −0.420 −0.035 −0.435 −0.905 −0.770 −0.145 −0.115 −0.325
0.05 −1.170 −1.160 −1.385 −0.290 −0.905 −3.770 −2.730 −0.450 −1.185 −0.820
0.10 −2.095 −2.195 −2.410 −1.010 −0.985 −6.795 −4.405 −0.570 −2.210 −0.735

where I (·) is the indicator function and

ri = .001, .002, . . . , .010, .015, . . . , .990, .991, . . . , .999 (m = 215).

When plotted against ri , F̂(ri ) should be close to the 45◦ line. This is the so called
P value plot. Instead, we plot F̂(ri ) − ri against ri , which should result in a hor-
izontal line with zero intercept, which is just the deviation of the actual size from
the nominal size obtaining the so-called P value discrepancy plots.

Table 3 reports P value discrepancies for all test statistics, α = 1.5, two values
of γ (medium and large) and for three different nominal levels, 1, 5 and 10%. The
conservative behavior of all test statistics testified by negative discrepancies is evi-
dent, apart from the DW test and the LM1 test for small and medium sample sizes.
This feature tends to be more pronounced as the nominal size increases and/or γ
increases. Two facts are noteworthy: first, in most cases the P value discrepancies
are small in magnitude, usually much less than 1%, and second, the MRS and KS
(and the LM1 for small sample sizes) have large P value discrepancies casting
consistent doubts on their robustness to the kind of local departures from finite
variance we are considering.

In Figs. 3 and 4 we graph these P values discrepancies for our battery of unit
root (top panel) and stationarity (bottom panel) tests for a sample size of T = 1, 000
and α = 1.5, which may be the most relevant case when working with financial
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Fig. 3 Discrepancy between effective and nominal size for all tests under local to finite variance,
unit root tests in the upper window and stationarity tests in the lower window, T = 1, 000,
α = 1.5, γ = 31.6

time series, and for γ = 31.6 and 1, a large and a moderately small weight on the
infinite variance component, respectively. From the top panels of Figs. 3 and 4, it
is clear how the DW test outperforms other unit root tests both at the 5% nominal
size and at all other significance level the researcher might choose. It is also clear
that the L M test has the worst discrepancy while the T (ρ̂ − 1) and t (ρ̂) moves
very closely. Of course, one should also notice the negative effect of increasing γ
on the P values discrepancies.

As for the bottom panels of Figs. 3 and 4, first one notices the striking bad
behavior of the KS and MRS. A look at the behavior of the LM2 test is instructive
of the kind of information one is able obtain from P values discrepancy plots. In
fact, from both figures we notice that the graph of the LM2 test is very close to
those of the KPSS, SBDH, and LM1 tests at the 5% nominal level. However, the
P value discrepancy of the LM2 test differs remarkably from those of the above
mentioned tests as the nominal size increases. Thus, the LM2 tests has a tendency
to under-reject at all nominal sizes while KPSS, SBDH, and LM1 do not display
such a behavior.
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Fig. 4 Discrepancy between effective and nominal size for all tests under local to finite variance,
unit root tests in the upper window and stationarity tests in the lower window, T = 1, 000,
α = 1.5, γ = 1

4 Conclusions

In this paper we have investigated the null distribution of several stationarity and
nonstationarity tests when the maintained hypotheses of finite variance is almost
satisfied. Considering the local-to-finite variance approach suggested by Amsler
and Schmidt (1999) we establish the limiting null distributions of the test statistics
and remark that they depend on the maximal moment exponent and on the weight
attached to the stable component. Simulation results on the empirical size of the
test statistics indicate clearly that some test are more sensitive than others to a local
departure from the maintained hypothesis of finite variance and allow us to rank
the test statistics according to their empirical size distortion. Our simulation results
suggest that using the DW statistics when testing for a unit root and the KPSS or
the SBDH statistics when the null is the stationarity one is not likely to induce
significant size distortions. Therefore, when one is uncertain about the presence
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of a stable error term or does not want to rely too much in the estimated value of
the maximal moment exponent, a reasonable strategy could be to use the standard
critical values under finite variance.

Appendix A: Proof of Lemma 2.1

We begin by establishing the weak convergence of T −1/2 y[T r ]. We have

1√
T

y[T r ] = 1√
T

[T r ]∑

t=1

ut

= 1√
T

[T r ]∑

t=1

v1t + γ

aT 1/α

[T r ]∑

t=1

v2t

⇒ σvW (r) + γUα(r) ≡ Zα,γ (r).

Next, we turn to the second convergence result

1

T

[T r ]∑

t=1

u2
t = 1

T

[T r ]∑

t=1

v2
1t + γ 2

aT 2/α

[T r ]∑

t=1

v2
2t + 2γ

aT 1/α+1/2

[T r ]∑

t=1

v1tv2t

⇒ σ 2
v r + γ 2V (r),

since the first term of the second line converges in probability to σ 2
v r , and thus in

distribution, the second term converges in distribution to γ 2V (r) and the last term
converges in probability to zero, as T ↑ ∞. The convergence of the last term to
zero follows from the fact that the tail behavior of the product, say εt = v1tv2t ,
of independent variates belongs to the normal domain of attraction of the variate
with the smallest maximal moment exponent, see Phillips (1990, Appendix A).
Since εt ∈ ND(α) it follows that (aT 1/α)−1 ∑[T r ]

t=1 εt converges in distribution
to a Lévy α-stable process while T −1/2 converges to zero, as T ↑ ∞. Thus, the
product tends to zero as T ↑ ∞.

The third and fourth convergence results follow by direct application of the con-
tinuous mapping theorem. The fifth one can be obtained as follows. After simple
manipulations, we have that

1

T

[T r ]∑

t=1

yt−1ut= 1

T

[T r ]∑

t=1

xt−1v1t+1

T

[T r ]∑

t=1

zt−1v1t+ γ

T 1/α+1/2

[T r ]∑

t=1

xt−1v2t+ γ 2

T 2/α

[T r ]∑

t=1

zt−1v2t

⇒ σ 2
v

r∫

0

W (s)dW (s) + γ σv

r∫

0

U−
α (s)dW (s)

+ γ σv

r∫

0

W (s)dUα(s) + γ 2

r∫

0

U−
α (s)dUα(s)

≡
r∫

0

Zα,γ (s)dZα,γ (s),
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where xt = ∑t
s=1 v1s and zt = (γ /aT 1/α−1/2)

∑t
s=1 v2s . The weak convergence

of the first terms follows from the weak convergence to stochastic integrals for
sample covariances of i.i.d. processes, convergence of the second term follows
from Hansen (1992), while the weak convergence of the third and fourth terms
follows from Caner (1997). Finally, rearranging terms gives the result in the text.

Appendix B: Proof of Theorem 2.2

The limiting behavior of the KPSS, MRS, and KS test are obtained from Lemma
2.1, namely,

S[T r ]√
T

= 1√
T

[T r ]∑

t=1

(ut − ū) ⇒ Zα,γ (r) − r Zα,γ (1) ≡ Z̃α,γ (r)

and application of the continuous mapping theorem. Amsler and Schmidt (1999)
provide a proof for the KPSS and MRS tests whereas for the KS test we have

K S = max
k=1,...,T

k

σ̂eT 1/2

∣
∣
∣
∣
Sk

k
− ST

T

∣
∣
∣
∣

⇒ sup
r

∣
∣Zα,γ (r) − r Zα,γ (1)

∣
∣ ≡ sup

r

∣
∣
∣Z̃α,γ (r)

∣
∣
∣ .

As for the LM and SBDH tests we proceed as follows. First, we establish the lim-
iting distribution of the OLS estimator of a regression of Ct on a time trend under
our DGP (12)–(13) and (2), then we derive the asymptotic behavior of the test
statistics. Letting µ̂ = ∑T

t=1 tCt
/ ∑T

t=1 t2 it is easy to obtain

√
T (µ̂ − µ) ⇒ 3

1∫

0

r Zα,γ dr (27)

Then, given the definition of Qt as the residuals of the above regression we have

Qt = Ct − µ̂t

=
t∑

j=1

u j − (µ̂ − µ)t, so that

Qt−1 =
t−1∑

j=1

u j − (µ̂ − µ)t + (µ̂ − µ), and

	Qt = ut − (µ̂ − µ)

Upon substitution of these expressions in (18)–(20) we can derive the asymptotic
distributions of Theorem 2.2. Thus, letting xt = ∑t

j=1 u j , we have
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1

T

T∑

t=1

Qt−1	Qt = 1

T

T∑

t=1

(
xt−1 − t (µ̂ − µ) + (µ̂ − µ)

) (
ut − (µ̂ − µ)

)

= 1

T

T∑

t=1

xt−1ut − √
T (µ̂ − µ)

1

T 3/2

T∑

t=1

tut

+√
T (µ̂ − µ)

1

T 3/2

T∑

t=1

ut + √
T (µ̂ − µ)

1

T 3/2

T∑

t=1

xt−1

+T (µ̂ − µ)2 1

T 2

T∑

t=1

t + T (µ̂ − µ)2 1

T 2

T∑

t=1

1

⇒
1∫

0

Zα,γ dZα,γ − 3

1∫

0

dZα,γ

1∫

0

r Zα,γ +
1∫

0

r

⎛

⎝3

1∫

0

r Zα,γ

⎞

⎠

2

≡
1∫

0

Z̄α,γ d Z̄α,γ ,

where Z̄α,γ and d Z̄α,γ are defined in Theorem 2.2,

1

T

T∑

t=1

	Q2
t = 1

T

T∑

t=1

(
ut + (µ̂ − µ)2 − 2(µ̂ − µ)ut

)

= 1

T

T∑

t=1

ut + T (µ̂ − µ)2 1

T 2

T∑

t=1

1 − 2
√

T (µ̂ − µ)
1

T 3/2

T∑

t=1

ut

⇒ σ 2
1 + γ V (1) ≡ Kγ (1)

and

1

T 2

T∑

t=1

Q2
t−1 = 1

T

T∑

t=1

x2
t−1 + T (µ̂ − µ)2 1

T 3

T∑

t=1

t2 + T (µ̂ − µ)2 1

T 3

T∑

t=1

1

−2
√

T (µ̂ − µ)
1

T 5/2

T∑

t=1

t xt−1+2
√

T (µ̂ − µ)2 1

T 5/2

T∑

t=1

xt−1

−2
√

T (µ̂ − µ)
1

T 5/2

T∑

t=1

t

⇒
1∫

0

Z2
α,γ −

⎛

⎝3

1∫

0

r Zα,γ

⎞

⎠

2

which, together with the continuous mapping theorem yield Theorem 2.2.
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Appendix C: Tail behavior of ut = v1t + ztv2t

In this section, we provide a Lemma establishing the tail behavior of the process
ut = v1t + ztv2t introduced in Sect. 2.

Lemma C.1. Let v1t be an i.i.d. process with zero mean and finite variance σ 2
1

and distribution function F1t (·), let v2t belong to the normal domain of attraction
of a stable law with characteristic exponent α with 0 < α < 2 with distribution
function F2t (·), independent on v1t and let zt ∼ B(1, p). Let ut = v1t + ztv2t , then
the distribution function Fu(·) of ut belongs to the normal domain of attraction of
a stable law with characteristic exponent α.

Proof The proof is in two steps. First, we show that the random variable ztv2t
belongs to the normal domain of attraction of a stable law with characteristic expo-
nent α, secondly, we show that ut also belongs to the normal domain of attraction
of a stable law with the same characteristic exponent α.

Letting dt = ztv2t we have

dt =
{

0 if zt = 0
v2t if zt = 1

for each t . Letting Fd(·) and fd(·) be the distribution function and the density
function of dt , respectively, we factorize the marginal density of dt as

fd(h) = fd|u(h|zt = 0)prob(zt = 0) + fd|u(h|zt = 1)prob(zt = 1)

= (1 − p)δ0(h) + p fu(h),

where δ0(·) is a p.d.f. that assigns probability one to the value zero and f2(·) is the
density of v2t . Integrating the p.d.f., we obtain the distribution function of dt as

Fd(h) = (1 − p)

h∫

−∞
δ0(s)ds + p

h∫

−∞
fu(s)ds

= (1 − p)I(h≥0)(h) + pFu(h),

where

I(h≥0)(h) =
{

0 if h < 0
1 if h ≥ 0

It is immediate to see that

Fd(h) =
{

pFu(h) if h < 0
1 − p + pFu(h) if h ≥ 0

which, taking into account the tail behavior of f2(·), can be written as

Fd(h) =

⎧
⎪⎨

⎪⎩

[
c̃1aα + α̃1(h)

] 1

|h|α if h < 0

1 − [
c̃2aα + α̃2(h)

] 1

|h|α if h ≥ 0,
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where c̃1 = pc1, c̃2 = pc2, α̃1 = pα1, and α̃2 = pα2. Since c̃1 > 0, c̃2 > 0 with
c̃1 + c̃2 > 0, and limh→−∞ α̃1(h) = p limh→−∞ α1(h) = 0 and limh→∞ α̃2(h) =
p limh→−∞ α2(h) = 0, the distribution function Fd(·) belongs to the normal do-
main of attraction of a stable law with characteristic exponent α by Theorem 2.6.7
of Ibragimov and Linnik (1971).

Next, we turn to the compound process ut . Let us define the normed sums

Sd,T = d1 + d2 + · · · + dT

Bd,T
− Ad,T

and

Su,T = u1 + u2 + · · · + uT

Bd,T
− Ad,T ,

where the norming factors Bd,T and Ad,T are those required for the convergence of
∑T

t=1 dt to a non-degenerate random variable. Since Fd(·) belongs to the normal
domain of attraction of stable law with characteristic exponent α and the norming
factor Bd,T is given by aT 1/α , it follows that Su,T may be rearranged as

Su,T = 1

aT 1/α−1/2

v1 + v2 + · · · + vT

T 1/2 + d1 + d2 + · · · + dT

aT 1/α
− Ad,T .

Now, T −1/2 ∑T
t=1 vt →d N (0, σ 2

v ) by a CLT for i.i.d. sequences and aT 1/2/

T 1/α → 0 because of 1/α > 1/2 for α ∈ (0, 2), the first term converges in
distribution to zero, and hence in probability. Therefore, Su,T is asymptotically
equivalent to Sd,T . It follows that the distribution function Fu(·) belongs to the
normal domain of attraction of a stable law with the same characteristic exponent
α of Fd(·), which, in turn, is the same characteristic exponent of the distribution
function Fu(·).
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