
AISM (2007) 59: 349–366
DOI 10.1007/s10463-006-0053-9

Nicolas Chopin

Dynamic detection of change points in long
time series

Received: 23 March 2005 / Revised: 8 September 2005 / Published online: 17 June 2006
© The Institute of Statistical Mathematics, Tokyo 2006

Abstract We consider the problem of detecting change points (structural changes)
in long sequences of data, whether in a sequential fashion or not, and without
assuming prior knowledge of the number of these change points. We reformulate
this problem as the Bayesian filtering and smoothing of a non standard state space
model. Towards this goal, we build a hybrid algorithm that relies on particle filter-
ing and Markov chain Monte Carlo ideas. The approach is illustrated by a GARCH
change point model.

Keywords Change point models · GARCH models ·Markov chain Monte Carlo ·
Particle filter · Sequential Monte Carlo · State state models

1 Introduction

The assumption that an observed time series follows the same fixed stationary model
over a very long period is rarely realistic. In economic applications for instance,
common sense suggests that the behaviour of economic agents may change abruptly
under the effect of economic policy, political events, etc. For example, Mikosch
and Stărică (2003, 2004) point out that GARCH models fit very poorly too long
sequences of financial data, say 20 years of daily log-returns of some speculative
asset. Despite this, these models remain highly popular, thanks to their forecast
ability (at least on short to medium-sized time series) and their elegant simplicity
(which facilitates economic interpretation). Against the common trend of build-
ing more and more sophisticated stationary models that may spuriously provide a
better fit for such long sequences, the aforementioned authors argue that GARCH
models remain a good ‘local’ approximation of the behaviour of financial data,

N. Chopin
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
E-mail: nicolas.chopin@bris.ac.uk



350 N. Chopin

provided that their parameters are allowed to change ‘from time to time’, that is at
some unknown dates denominated ‘change points’.

This paper addresses the general problem of detecting change points in time
series data, whether in an on-line fashion or not, within a Bayesian framework, and
without prior knowledge of the exact number of change points. We show that, in full
generality, a change point model can be formulated as a non standard state space
model, and we develop a particle filter and smoother that is specifically adapted to
the particular structure of this state space model. In particular, a difficulty with this
reformulated state space model is that its hidden process is not mixing well, which
makes naive particle filtering inefficient. We address this issue by introducing local
MCMC (Markov chain Monte Carlo) moves that are conditional on the date of
latest change; appropriate references for particle filtering and MCMC are given in
next section.

The Bayesian approach is particularly suited to the problem of change point
detection as it does not resort to asymptotic justifications, which would be hap-
hazard in a situation where each considered parametric model is restricted to a
finite, possibly small interval of time. There is already an important Bayesian lit-
erature on multiple change point analysis; see in particular McCulloch and Tsay
(1993), Barry and Hartigan (1993), Stephens (1994), Chib (1998), Gerlach et al.
(2000), and also first example in Green (1995); most of them rely on MCMC
methodology. The first advantage of our algorithm is that, in contrast to MCMC
approaches, and thanks to its sequential nature, it allows for performing sequen-
tial analysis in a computationally efficient way. This is useful in an number of
applied contexts. In the aforementioned example above, finance analysts are inter-
ested in having a ‘quick’ update (say 1 s of cpu time) of inference as soon as
the day’s observation is available, rather than re-analysing the whole data set
through some off-line algorithm, which may take, say, several minutes, for long
data sets.

A second advantage of our algorithm is that it can be turned into a parti-
cle smoother through a very simple modification. Thus it can also be applied
to off-line analysis, when a complete data set is made available at once. We ar-
gue that, even in such off-line scenarios, our algorithm compares favourably to
previous methods when the sample size T gets large. In particular, we will see
that its computational cost increases linearly in T , and is comparable to that
of a MCMC algorithm corresponding to the same model without change point,
e.g. a single GARCH model in the above example. In contrast, MCMC sam-
plers for change point models typically have a O(T 2) computational cost, while
their convergence properties tend to deterioriate for larger values of T . A nota-
ble exception is the O(T ) algorithm of Gerlach et al. (2000), in the specific case
of Gaussian linear state space models. We shall elaborate on these points in the
paper.

The paper is organised as follows. In Sect. 2, we formulate the problem of
sequentially detecting change points as the filtering of a non-standard Bayesian
state space model. In Sect. 3 we develop a particle filter algorithm specifically
adapted to this non standard model. Section 4 explains how to extend our approach
to off-line scenarios, when data need to be processed as a whole rather than sequen-
tially. Section 5 presents some numerical experiments. Section 6 gives concluding
remarks.
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2 State space representation of change point models

We consider a generic discrete time series model indexed by a changing parameter
θt , t ≥ 1,

yt ∼ p (yt |y1:t−1, θt ) , (1)

where y1:t−1 denotes the subsequence y1, . . . , yt−1. The changing parameter is
assumed to follow a piece-wise constant process

θt = ξk, provided that
k−1∑

i=1

δi < t ≤
k∑

i=1

δi,

that is, for the δ1 first observations, the parameter value is ξ1, then for the δ2 follow-
ing observations, it is ξ2, etc. The behaviour of the observed sequence within one
of these periods of time will be informally referred to as a ‘regime’. The δi’s and
the ξk’s are unknown, and assigned some prior densities πδ(·) and πξ (·), the former
with support over the set of positive integers. For simplicity these quantities are
assumed to be prior independent and identically distributed, but we will see later
that this assumption can be relaxed.

We propose to reformulate this generic model into a non-standard state space
model, that is a model of an observed process (yt ) whose behaviour is expressed
conditional upon a hidden Markov process (xt ). Let dt the duration at time t since
latest change, that is dt = t − δ1− · · · − δk−1 if in regime k, let xt = (θt , dt ), then,
conditional upon xt−1 = (θt−1, dt−1),

xt = (θt , dt ) =
{

(θt−1, dt−1 + 1) with probability πδ(δ ≥ dt−1 + 1|δ ≥ dt−1),
(ξ ∗, 1) with probability πδ(δ = dt−1|δ ≥ dt−1),

(2)

where ξ ∗ is drawn independently from the prior πξ (·), and πδ(·|δ ≥ dt−1) refer to
probabilities conditional on δ ≥ dt−1, where δ is random (dt−1 is fixed) and follows
the prior distribution πδ .

In this particular context, state filtering, that is the sequential derivation of
p(xt |y1:t ), amounts to dynamically estimating the date of latest change, and the
parameter value since then. In contrast, state smoothing, that is the derivation of
p(x1:T |y1:T ) allows for jointly estimating all the change points and the correspond-
ing regime parameters, for a complete data set y1:T . Since filtering and smoothing
cannot be carried out analytically outside of some specific cases (including the
normal linear state-space model, Kalman and Bucy, 1961), we will develop in next
section a particle filter algorithm for these purposes. Note one could also simulate
the smoothing distribution through Gibbs sampling (McCulloch and Tsay, 1993):
denoting ut the indicator function of a change, ut = 1dt=1, such a sampler would
involve simulations of ut conditional on the ut ′ , t ′ �= t , and the other parameters.
Unfortunately, this leads to a O(T 2) algorithm, as the cost of simulating one single
ut is O(T ). Morever, there is a general agreement in the literature on the poor
performance of this approach for general state space models (Carter and Kohn,
1994; Früwirth-Schnatter, 1994; de Jong and Shephard, 1995): the presence of
numerous, strongly correlated components in the augmented joint density (of the
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ut ’s and parameters) tend to hinder the congervence of a Gibbs sampler. Note
that, although it does rely on such a Gibbs structure, the reservible jump algorithm
that Green (1995) specifically derived for change point models is also O(T 2), as
new change points are proposed by drawing from a [1, T ] uniform distribution,
and are accepted or rejected according to a acceptance probability involving T
terms; thus, the simulation of ‘good’ change points requires O(T 2) operations on
average. Finally, and as mentioned in the introduction, Gerlach et al. (2000), in
the specific case of linear Gaussian models, obtain a O(T ) sampler, with better
convergence properties, by marginalising out the parameters in the above condi-
tionals. (We believe their algorithm is, in this specific case, more efficient than the
one developed in this paper.)

3 Particle filtering

3.1 A first algorithm

Consider the problem of filtering a state space model with observed process (yt )
and hidden Markov process (xt ). Particle filtering consists of generating and updat-
ing a stream of weighted simulations x

(j)
t , j = 1, . . . , H , commonly denominated

‘particles’, through iterative steps described below.

Step 1. Simulate independently for j = 1, . . . , H ,

x
(j)
t ∼ p(xt |x(j)

t−1),

where p(xt |xt−1) stands for the conditional density of hidden Markov chain
(xt ).
Step 2. Weight particles, for j = 1, . . . , H ,

w
(j)
t = p(yt |y1:t−1, x

(j)
t ),

where p(yt |y1:t−1, xt ) stands for the conditional likelihood of observed pro-
cess (yt ).
Step 3. ‘Resample’ the particles, that is replace the current set of particles
by a set containing n

(j)
t replicates of x(j)

t , j = 1, . . . , H , where n
(j)
t is random

and fulfills E[n(j)
t ] = Hw

(j)
t /

∑H
j=1 w

(j)
t and

∑H
j=1 n

(j)
t = H .

Step 4. t ← t + 1. Go to Step 1.

Step 1 of the first iteration (t = 1) generates independently the x
(j)

1 ’s from
the prior distribution on x1. The iteration of Step 1 and Step 2 is equivalent to a
sequence of importance sampling operations: Step 1 transforms the target density
from p(xt−1|y1:t−1) to p(xt |y1:t−1); then Step 2 computes the importance weights
corresponding to the passage from p(xt |y1:t−1) to p(xt |y1:t ). For our particular
model the Markov transition p(xt |xt−1) in Step 1 is given by (2) and the con-
ditional likelihood p(yt |y1:t−1, xt ) in Step 2 is simply p(yt |y1:t−1, θt ), as defined
by (1), since xt = (θt , dt ). The third step is a ‘Darwinian’ procedure that repro-
duces the most representative particles (those with large weights) and eliminates
the others. A simple way of resampling is to draw independently H times from the
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multinomial distribution which produces x
j
t with a probability proportional to w

(j)
t

Gordon et al. (1993), but more efficient alternatives exist, such as deterministic
resampling (Kitagawa, 1996) or residual resampling (Liu and Chen, 1998). For a
more general presentation of particle filters and their numerous applications, the
reader is referred to Künsch (2001), Doucet et al. (2001) and references therein.

The weighted particle sample produced by the second step approximates the
true filtering density p(xt |y1:t ) in the sense that

∑H
j=1 w

(j)
t ϕ

(
x

(j)
t

)

∑H
j=1 w

(j)
t

→ E [ϕ(xt )|y1:t ]

almost surely as H →+∞, for any ϕ such that the expectation above exists. Under
appropriate assumptions, asymptotic normality also holds (Chopin, 2004)

H 1/2

⎛

⎝
∑H

j=1 w
(j)
t ϕ

(
x

(j)
t

)

∑H
j=1 w

(j)
t

− E [ϕ(xt )|y1:t ]

⎞

⎠ D→ N {0, Vt (ϕ)}

for a given sequence of asymptotic variances Vt(ϕ).
While many variants exist and may be more efficient (see, for instance, Pitt

and Shephard, 1999), the algorithm above, initially proposed by Gordon et al.
(1993), typically works well for filtering a state space model whose hidden Mar-
kov process mixes well. The depletion in simulated values due to resampling is
counterbalanced by the rejuvenation due to simulating from the Markov transition
of the model. Under appropriate conditions (Del Moral and Miclo, 2000; Chopin,
2004), the sequence of Vt(ϕ)’s remains below some constant bound. Additionally
the computational load remains constant along iterations.

Unfortunately, the Markov transition of our change point model does not mix
properly as its first component remains constant with positive probability, see (2).
We develop in the following sections various strategies for improving this initial
algorithm.

3.2 Rao-Blackwellisation of the discrete component

Consider the simulation of x
(j)
t conditional upon x

(j)

t−1 in Step 1. Given the particular
structure of p(xt |xt−1), see (2), this would involve the simulation of a binary com-
ponent, that is whether a change point occurs at time t or not. Since the probability
of this event can be computed exactly, this binary component can be ‘Rao-Black-
wellised’, that is to say, marginalised out in order to achieve variance reduction
(Casella and Robert, 1996). The application of Rao-Blackwellisation to particle
filters has been formalised by Doucet et al. (2000), see also Chen and Liu (2000),
and proved to always lead to smaller asymptotic variances by Chopin (2004).

Assume x
(j)

t−1 = (ξ, d), and create two particles, each corresponding to one of
the two possibilities, with weights:

x
(j,1)
t = (ξ, d + 1), w

(j,1)
t = πδ(δ ≥ d + 1|δ ≥ d)p(yt |y1:t−1, θt = ξ),

x
(j,2)
t = (ξ ∗, 1), w

(j,2)
t = πδ(δ = d|δ ≥ d)p(yt |y1:t−1, θt = ξ ∗),
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where ξ ∗ is drawn independently from πξ . In this way we obtain a set of 2H

particles, which can be resampled with respect to the weights w
(j,1)
t , w

(j,2)
t , so as

to obtain H resampled particles. Note the probabilities πδ(δ ≥ d + 1|δ ≥ d),
πδ(δ = d|δ ≥ d) do not need to be available in closed form. Since

πδ(δ = d|δ ≥ d) = 1− πδ(δ ≥ d + 1|δ ≥ d) = πδ(d)

1−∑d−1
k=1 πδ(k)

,

one can store the partial sums
∑d−1

k=1 πδ(k) when they are computed for the first
time and re-use them as often as necessary.

This algorithm has an interesting connection with the optimal proposal strat-
egy of Doucet et al. (2000). To see this, let’s point out first that, in the initial
algorithm, the next states can also be simulated from an arbitrary distribution
qt (xt |xt−1); the weight function have then the more general expression wt(xt−1, xt )
= p(yt |y1:t−1, xt )p(xt |xt−1)/qt (xt |xt−1). The above authors have shown the pro-
posal distribution that minimises the variance of the weights is p(xt |xt−1, y1:t ). In
our case simulating from this optimal distribution would amount exactly to choose
between x

(j,1)
t and x

(j,2)
t , with respective probabilities proportional to w

(j,1)
t and

w
(j,2)
t . Thus this optimal strategy would have exactly the same computational cost

as our Rao-Blackwellised particle filter, but the latter leads to even further variance
reduction as the randomness inherent to the simulation of the binary component is
removed.

3.3 Fractional move

Our Rao-Blackwellised particle filter remains highly inefficient due to the lack of
mixing properties of the hidden process (xt ), as explained in (3). Considering the
problem posed by constant parameters included in the hidden Markov process,
Gilks and Berzuini (2001) proposed to create an artificial rejuvenation effect by
‘moving’ the particles through a MCMC kernel which is invariant by the current
target density. Thanks to the invariance property, the asymptotic results given in
§3 still hold. The reader is referred to Robert and Casella (2004) for a general
presentation of MCMC methods.

Since the degeneracy of our Rao-Blackwellised algorithm is mainly due to the
presence of constant parameters in the state variable, we propose to ‘move’ only
the θt -component of each particle x

(j)
t = (θ

(j)
t , d

(j)
t ) through a MCMC kernel with

invariant distribution

η
(j)
t (ξ) = p

(
θt = ξ |dt = d

(j)
t , y1:t

)
∝ πξ (ξ)

t∏

k=t−d
(j)
t +1

p (yk|y1:k−1, θk = ξ) . (3)

This comes down to implement a MCMC move with respect to the model corre-
sponding to the current period, since latest change. This is conceptually simpler
and computationally cheaper than considering the complete model corresponding
to the observations up to t ; in particular the computational cost should be O(d

(j)
t )

rather than O(t).
Since in most applications one wishes to have a constant computational cost

for each iteration, we propose to move only a subset S of the particle system, under
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the constraint
∑

j∈S d
(j)
t ≈ C, for some constant C. This subset is obtained by

drawing randomly without replacement among the resampled particles, until the
sum of the d

(j)
t ’s is larger than C. Then the last selected particle is discarded, and

the remaining particles are moved.
Another rationale for this fractional move strategy is that the degeneracy effect

due to constant parameters tend to decrease as the number of observations in the
considered regime accumulates.As the corresponding conditional distribution con-
centrates on a smaller and smaller region, exploring locally becomes less and less
necessary; see Chopin (2002) for a more formal argument on this phenomenon.
We will see in our simulation experiments that this strategy indeed stabilises the
Monte Carlo error over iterations, even if the numbers of moved particles becomes
eventually extremely small.

In summary, our Rao-Blackwellised fractional move particle filter can be de-
scribed as follows.

Step 1. Simulate independently for j = 1, . . . , H , ξ (j) ∼ πξ (·), and condi-
tional on x

(j)

t−1 = (θ
(j)

t−1, d
(j)

t−1),

x
(j,1)
t = (θ

(j)

t−1, d
(j)

t−1 + 1),

x
(j,2)
t = (ξ (j), 1).

Step 2. Reweight particles,
for j = 1, . . . , H ,

w
(j,1)
t = πδ(δ ≥ d

(j)

t−1 + 1|δ ≥ d
(j)

t−1)p(yt |y1:t−1, θt = θ
(j)

t−1)

w
(j,2)
t = πδ(δ = d

(j)

t−1|δ ≥ d
(j)

t−1)p(yt |y1:t−1, θt = ξ (j))

Step 3. ‘Resample’ the 2H particles with respect to the weights w
(j,1)
t , w

(j,2)
t ,

so as to obtain H resampled particles.
Step 4.Select a subset S of the resampled particles such that

∑
j∈S d

(j)
t ≤ C

as explained above, and for each selected particle x
(j)
t = (θ

(j)
t , d

(j)
t ), replace

θ
(j)
t by

θ̃
(j)
t ∼ k

(j)
t (θ

(j)
t , ·),

where k
(j)
t is a MCMC kernel with invariant distribution η

(j)
t as defined in (3).

Step 5. t ← t + 1. Go to Step 1.

3.4 Practical implementation of the MCMC moves

Recall that the MCMC move in Step 4 of our algorithm is built with respect to the
time-series model restricted to the current period (since latest change point), that is,
its invariant distribution is given by (3). An obvious choice, especially when Gibbs
sampling cannot be implemented because full conditionals are not available, as in
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our GARCH example in §5, is to update the parameter values through a Gaussian
random walk Metropolis-Hastings, that is ξ |θ(j)

t ∼ q(ξ |θ(j)
t ) = N(θ

(j)
t , �̂t ) and

θ̃
(j)
t =

{
ξ with probability1

∧ q(θ
(j)
t |ξ)η

(j)
t (ξ)

q(ξ |θ(j)
t )η

(j)
t (θ

(j)
t )

,

θ
(j)
t otherwise.

The calibration of the random step in random walk algorithms is always an
important issue, as too small steps slow down the exploration of the target distri-
bution, and too large steps are rarely accepted. In this context however, we have
the opportunity to scale our proposal distribution to the covariance matrix of the
particle sample itself:

�̂t = γ 2

⎡

⎣ 1

H

H∑

j=1

θ
(j)
t

(
θ

(j)
t

)T
−

⎛

⎝ 1

H

H∑

j=1

θ
(j)
t

⎞

⎠

⎛

⎝ 1

H

H∑

j=1

θ
(j)
t

⎞

⎠
T⎤

⎦ ,

where γ is a tuning parameter. This conveniently take into account the information
contained in the particle system on the range (and correlations between compo-
nents) of ‘plausible’ values for the θ

(j)
t .

In our simulation experiments (see §5) we found that values between 0.5 and
1 for γ led to the best performance of the algorithm, in terms of Monte Carlo
error. Interestingly, this led to an average acceptance rate over iterations of about
25%, which is considered as ‘optimal’ in standard implementations of random walk
algorithms (Roberts et al. 1997).

We also experimented with a Langevin proposal strategy, namely,

q
(
ξ |θ(j)

t

)
= N

(
θ

(j)
t +

1

2

{
H

(j)
t

}1/2
∇ log η

(j)
t

(
θ

(j)
t

)
, H

(j)
t

)
(4)

where ∇ log η
(j)
t denotes the gradient function of log η

(j)
t , and

H
(j)
t = −γ 2

{
∇′∇ log η

(j)
t

(
θ

(j)
t

)}−1
,

that is −γ 2 times the inverse of the Hessian matrix of log η
(j)
t at point θ

(j)
t . For

γ = 1, this proposal density can be seen as a second-order approximation of tar-
get density η

(j)
t around θ

(j)
t (Robert and Casella, 2004, p. 266). The gradient term

pushes the exploration towards zones of higher posterior probability, whereas the
Hessian term ensures that each proposed step is scaled with respect to the appro-
priate target density.

Our motivation for this second strategy was that it may lead to significant
improvements at times where the particle sample is quite heterogeneous, espe-
cially when particles ‘disagree’ on whether a change has occurred recently or not.
A different scaling for each particle would then be more appropriate. In our simula-
tions however we did not observe substantial improvements, especially in regard of
the increased computational cost. This may indicate that our simple random walk
strategy performs ‘well enough’.



Dynamic detection of change points 357

3.5 Positive discrimination strategy

In our simulation studies we did notice that the filtered estimates could be less
stable around change times, but for a reason independent of the implemented move
strategy. Consider a time t when a change does occur. Typically the probability that
this change is detected at time t is small, as a single observation is not enough to
provide significant evidence of a change. Thus few particles that correspond to a
change at time t , see §3.2, survive the resampling step, even if they may become pre-
dominant shortly afterwards. Therefore, and despite the MCMC step, there may be
a temporary lack of diversity among particles in the following iterations. To avoid
this, we propose to boost the population size of those ‘young’ particles through
‘positive discrimination’: at iteration t , for any particle such that its dt -component
is equal to d with d ≤ k, multiply its weight before resampling by λk−d+1; then
after the resampling and the move steps, assign weight λ−(k−d+1) to any particle
such that its dt -component equals d (while the other particles are assigned an unit
weight). Note that since particles do not have equal weight after the move step
anymore, these weights must be propagated appropriately in Step 2, that is

w
(j,1)
t = w

(j)

t−1πδ

(
δ ≥ d

(j)

t−1 + 1|δ ≥ d
(j)

t−1

)
p

(
yt |y1:t−1, θt = θ

(j)

t−1

)

w
(j,2)
t = w

(j)

t−1πδ

(
δ = d

(j)

t−1|δ ≥ d
(j)

t−1

)
p

(
yt |y1:t−1, θt = ξ (j)

)

where w
(j)

t−1 stands for the weight of resampled (possibly moved) particle θ
(j)
t . This

positive discrimination strategy incurs virtually no additional computational cost,
and did increase the stability of the filtered estimated in our simulations, at least
locally around changes, see §5. We have taken k = 10 and λ = 1.414 in these
simulations, but any values such that λk is between 10 and 100 seems to lead to
equally acceptable results.

4 Particle smoothing

Our algorithm only requires a minor modification in order to provide simulated
samples from the smoothing distribution p(x1:T |y1:T ), that is the posterior distri-
bution of the whole state trajectory until some final time T . As already said, this is
useful when the data y1:T need to be processed as a whole rather than sequentially.

A first solution would be to carry forward the past values x
(j)

1:t−1 of each particle

x
(j)
t along iterations. Then the resampled trajectories obtained at the last iteration

(t = T ) should approximatively represent draws from the smoothing distribution.
This is very inefficient in practice as these samples tend to be extremely correlated
in the first dimensions. Typically even for a large number of particles, the x

(j)

1 ’s
may all take the same value (Kitagawa, 1996).

Rather, we propose to reconstruct the simulated trajectories backwards, starting
from the set of resampled particles obtained at the last iteration of our algorithm.
Draw with replacement such a particle, and denote it x̃T , say x̃T = (ξ, d). By
virtue of resampling, this value can be considered as a draw from p(xT |y1:T ).
Clearly the previous states are already known up to time T ′ = T − d + 1, that is
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x̃t = (ξ, d − T + t), for T ′ ≤ t ≤ T . We then need to append some xT ′−1 drawn
from distribution

p(xT ′−1|xT ′ = (ξ, 1), y1:T ) = p(xT ′−1|uT ′ = 1, y1:T ′−1),

where uT ′ is the indicator variable of a change point occurrence at time T ′. Such a
draw can be obtained at iteration T ′ of our filtering algorithm: for each resampled
particle x

(j)

T ′ such that d
(j)

T ′ = 1, store its ‘ancestor’ x
(j ′)
T ′−1, that is the particle from

which x
(j)

T ′ has been simulated. Then draw with replacement one of these stored
values, say x̃T ′−1 = (ξ ′, d ′), reconstruct the sequence x̃T ′−d ′:T ′−1 up to time T ′ −d,
and process by induction.

In summary, one has to add the following step to our algorithm to turn it into
a smoothing algorithm:

Step 4b is. For each resampled particle x
(j)
t such that d

(j)
t = 1, j = 1, . . . , H ,

store a copy of its ancestor x
(j ′)
t−1.

Then one may obtain at the final stage of the algorithm as many smoothed
trajectories as required, using the backward construction principle stated above.
Note the full computational cost of this smoothing strategy is indeed O(T ), as our
particle filter algorithm is designed in a way that ensures a constant cost across
iterations, see §3.3. Also, the number of stored values at iteration t is proportional
to the filtered probability of a change point occurrence at time t , which seems
cost-effective in terms of storage. In contrast the particle smoothers of Kitagawa
(1996) and Godsill et al. (2004) require to store the whole set of particles at every
iteration, but these are general methods while our approach is specific to change
point models.

5 Numerical illustration

5.1 The model

We consider a Gaussian GARCH change point model,

yt ∼ N (
0, σ 2

t

)
,

where

σ 2
t = m−1

t + αty
2
t−1 + βtσ

2
t−1, (5)

and θt = (mt , αt , βt ) denotes the three-dimensional changing parameter, con-
strained to mt > 0, αt > 0, βt > 0, αt + βt < 1, the last constraint ensuring
stationarity (within each regime). The prior πξ for ξ = (m, α, β) is set to the prod-
uct of Gamma(a, b) for m and Dirichlet(1, 1, 1) for (α, β). One can prove that
the posterior expectation and variance of mt are infinite whatever t and whenever,
respectively, a ≤ 0.5, and a ≤ 1.5; this is because, conditional on a change at t
(an event with positive probability) the posterior of mt turns into a GARCH pos-
terior given one single observation, which have infinite moments for given values
of a. One has therefore to select a slightly informative prior in such settings; say
a ∈ (1.5, 2.5] and b = s2(a−1), where s is the typical scale of the considered data,
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Fig. 1 From top to bottom: simulated GARCH data (solid line) and change points (dotted lines);
estimated marginal probability of a change at time t ± 20, conditional on complete data set

so that the prior mean of 1/m is s2. Note such a prior becomes quite informative
as a increases, as the prior variance of 1/m is s2/(a − 2), for a > 2, and is +∞
otherwise (we take a = 2 in our simulations). The prior πδ is set to the uniform
distribution on the set of integers between some values δ and δ. The rationale for
this prior is that this seems the simplest way to express prior information on the
range of plausible durations. We shall see that this prior is very reasonable in our
real data application, although other choices may be preferable in other settings.
An alternative, popular choice for πδ is the geometric distribution (with parameter
ε being either fixed or random). This second choice seems however less appealing
in applications where change occurs at a low frequency, as it requires to assign
to ε either a very small fixed value, or a random distribution with a very narrow
support. In doing so, one may still introduce a bias towards small durations (given
the particular shape of a geometric distribution), and renders the analysis more
sensitive to outliers.

Note (5) departs from the standard parameterisation of GARCH models, say
(μ, α, β) with μ = m−1. This different parameterisation was initially motivated by
the Langevin move strategy evoked in §3.4, as it ensures that H

(j)
t in (4) is always

positive definite. It turned out however that this was also beneficial for the random
walk move strategy (as implemented in these simulations), possibly because it
reduces the tails of the posterior density and therefore facilitates its exploration by
a Gaussian random walk.

5.2 A simulated example

We simulated T = 2,000 data points from five successive regimes, of respec-
tive durations 300, 200, 100, 400 and 1,000. The successive parameter values are,
respectively, (0.5, 3.33, 0.33, 1, 1) for mt , (0.2, 0.2, 0.2, 0.3, 0.8) for αt , (0.1, 0.1,
0.7, 0.2, 0.1) for βt . Figure 1 plots the simulated data and indicates the change times
by a vertical line. Hyperparameters were set to: δ = 10, δ = 2,000, a = 2, b = 1.

We executed our algorithm ten times, with H = 50,000 particles. Figure 2
reports the estimated filtered expectation of each component of θt as given by the
first execution, and the standard deviation of these estimates over the ten runs,
the latter quantity being of order 0.03 for the first component mt , of order 0.01
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Fig. 2 From top to bottom, estimate of the filtered expectation of resp. mt , αt , βt (solid line), same
quantity ± twice its standard deviation over ten Monte Carlo exercises (dotted lines), estimated
filtered 10% and 90%-quantiles (dashed lines)

for the other components αt , βt . This figure also provides the estimated 10 and
90%-quantiles of each marginal distribution of π(θt |y1:t ).

From the output of the first run, we built 10,000 smoothing trajectories, out of
which 79% featured five regimes, 18% six regimes, and 3% a different number.
From the samples featuring five regimes, we constructed histograms of simulated
values for the five regime parameters and the durations of the four first regimes,
the last regime having not necessarily ended, see Fig. 3.

The constant C described in §3.3 was set to the number of particles H . This
implies that the total computational cost of the move steps is roughly the same as
the cost of H iterations of a random walk Hastings–Metropolis algorithm for a
single GARCH model, without change point (and for the complete data set). The
move steps accounted for 40% of the total computational load.

The tuning factor γ was set to 0.75, leading to an average acceptance rate of
about 25%. Simulations with a different value of γ led to either similar results, for
0.5 ≤ γ ≤ 1, or larger variability of the estimates, for values outside that interval.
The ‘positive discrimination’ strategy described in §3.4 was applied, with the same
constants as given in that section. The same simulations without positive discrim-
ination gave similar results, except locally around changes where up to six times
larger standard deviations of the filtering estimates were obtained. Each iteration
of the algorithm took an average of 1.2 s on a 2.8 GHz desktop computer.

These results are more than satisfactory, given the challenging nature of the
problem. GARCH models are notoriously difficult to estimate, as they produce
rather flat likelihoods. Moreover some of the changes in the simulated data were
deliberately small: for instance more than 150 observations after time t = 1,000
were necessary to detect the last change significantly, see Fig. 2. Despite this, the
algorithm has been able to carry over a small number of particles that predict a
change around 1,000 as long as necessary, then to make them evolve as a larger
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Fig. 3 Histograms of the simulated values of the regime parameters ξk = (mk, αk, βk),
k = 1, . . . , 5, and of the regime durations δk , k = 1, . . . , 4, from posterior distribution condi-
tional on y1:T and on having five regimes; true values of the parameters are indicated by dotted
vertical lines

and more diverse population as the estimated probability of a change around 1,000
increased.

5.3 A real data example

We applied the same analysis to the daily log-returns of the Standard and Poor
500 index between 1970.01.01 and 1979.12.31; for an economic discussion on the
relevance of a GARCH change point model for these data, see Mikosch and Stărică
(2003, 2004). Hyperparameters are set to: δ = 10, δ = T = 2,526, T being the
sample size, a = 2, b = 5 × 10−5. Figure 4 plots these data, and the estimated
probability of a change occurrence between max(t − �, 1) and min(t + �, T ),
with � = 20. We selected particular time intervals around the four most important
modes of the latter functions (modes are marked by dashed lines in top plot, inter-
vals by dotted lines in bottom plot). The posterior probability of having exactly
one change within these intervals are estimated as, respectively, 84, 58, 96, and
74%. The evidence in favour of having a change in the second interval is not very
strong, and is not robust to prior specification, see below; thus, only the first, third
and fourth change will be considered as significant from now on. The posterior
probability of having k changes over these 10 years were estimated to be 0, 15, 27,
27.5, 18, 8.5% for k = 2, . . . , 7, respectively, and smaller that 5% for all other
values of k.

Even conditional on a fixed number k of changes, the posterior distribution
is polymodal, as it assigns certain probability to non-comparable combinations
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of change dates: for instance, a (slight) majority of simulations have their second
change in the second interval mentioned above, but some have it in the third inter-
val. For this reason, Fig. 5 gives histograms of only those simulations that feature
exactly one change point within the first, the third and the fourth of the intervals
represented in Fig. 4, and none outside (6% of the complete sample). One must
bear in mind however that this figure represents only a part of the full complexity of
the posterior distribution. Figure 5 also gives histograms corresponding to function
τi = [(1 − αi − βi)μi]−1/2, the standard deviation of the stationary distribution
corresponding to GARCH model with parameters (μi, αi, βi).

Fit and predictive power of the model are reasonable: Figure 6 gives a QQ-plot
of residuals estimated from the simulated paramater values with highest posterior
density (within those featuring three changes). Figure 7 plots �−1(p̂t ), where p̂t

is an estimator of the probability p(yt > ỹt |y1:t−1), defined with respect to the
predictive distribution of yt , where ỹt denotes the value actually observed at time t .
Note the transformation �−1(·) is just a convenient way to represent more extreme
values of p̂t , as the marginal predictive distribution is not Gaussian. Note also that
the marginal predictive density p(yt |y1:t−1) takes into account parameter incer-
tainty; as such the fact that p̂t do not take too extreme values after change points
indicates the prior is reasonable, and is not unduly non informative. Right plot in
Figure 7 represents the three estimated quartiles of p(et |y1:t ), where et = t+dt−1
is the date where latest change has occured, at time t .

We conducted some prior sensitivity analysis: values of δ corresponding to a
duration between 5 and 20 years also lead to the same significant changes corre-
sponding to first, third and four intervals in Fig. 4, while the change corresponding
to the second interval drops significantly below 50% when δ > 15 years. Basic eco-
nomic insight and common sense suggest that values larger than 20 years for δ are
not appropriate. Similarly, for values smaller than 5 years, durations almost equal to
δ start to appear; a clear sign that values as small are not suitable either. Therefore,
and despite its simplicity, an uniform prior for durations between changes seems
convenient and reasonable in this particular application. A similar analysis for a
varying within (1.5, 2.5] (while b is set to s2(a−1), see above for a justification of
this particular interval) leads roughly to the same results, that is, the detection of a
change in first, third and fourth intervals is prior robust, the detection of a change
in second interval is not.

6 Concluding remarks

6.1 Extensions

We mention here some straightforward extensions for our algorithm. Sequential
forecasting can be performed in the following way: after Step 1, draw y

(j)
t ∼

p(yt |y1:t−1, θ
(j,1)
t ), for j = 1, . . . , H , in order to obtain a weighted discrete repre-

sentation of the marginal posterior distribution of yt , conditional on y1:t−1 and the
event that there is not a change point at time t . Note it straightforward to adapt this
to forecasting unconditional on the latter event, but that is arguably less useful and
relevant in practice. The assumption of prior independence between the δ’s and
the ξ ’s may be relaxed: for instance, in Step 2 ξ (j) can be drawn from some prior
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Fig. 4 From top to bottom, daily log-returns of the Standard and Poor 500 index between
1970.01.01 and 1979.12.31; estimated probability of a change between max(t − 20, 1) and
min(t + 20, T ); dashed lines in top plot represent local maxima of the latter function; dotted
lines represent interval in which exactly one change occurs with high probability

Fig. 5 Histograms of simulated values of the regime parameters ξk = (mk, αk, βk), k = 1, . . . , 4,
from posterior distribution conditional on y1:T and having exactly one change in first, third and
fourth intervals of Fig. 4, for Standard and Poor example

conditional on the previous regime parameter θ
(j)

t−1. One may penalise in this way
successive regimes that are too similar, in the spirit of the discriminating factor
in Chopin and Pelgrin (2004). Unfortunately, the extension to hierarchical priors
seems more difficult.
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Fig. 6 From left to right: QQ-plot of the residuals estimated from simulation with highest pos-
terior density (x-axis gives standard normal quantiles, y-axis gives residual quantiles); estimated
quartiles of p(dt + t − 1|y1:t ), e.g. date of last observed change at time t Standard and Poor
example

6.2 Discussion

Let’s comment on the computational efficiency of our algorithm. We have seen in
previous section that its computational cost is comparable to that of a very reason-
able number of iterations of a MCMC algorithm corresponding to the same model
without change point; e.g. a single GARCH model in our example. This is mostly
due to its sequential nature, which allows for breaking down the dimensionality of
the problem: at a fixed time only one change needs to considered, or equivalently up
to two competing models. Another appeal of particle filter algorithms is their unbi-
asedness: in our simulation experiments we could obtain reasonable estimates even
with 5,000 particles, at the expense of course of larger Monte Carlo errors. This is
particularly useful for experimentation and prior sensitivity purposes. In contrast,
convergence is often an awkward issue with complex MCMC schemes, and, given
the initial value of the chain, many iterations may be required before reaching the
vicinity of the posterior mode. A third advantage of our particular approach is its
ability to calibrate automatically its MCMC moves to an appropriate scale, while
plain MCMC algorithms, such as random walk Hastings–Metropolis, require a
manual tuning of the size the random step, which is sometimes cumbersome.

Beyond the computational aspects of this problem, we are convinced that
change point modelling is a very promising way of dealing with non-stationarity.
However it does not solve, and in some sense complicates, the issue of choosing an

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
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−4

2

4

Fig. 7 Plot of �−1(p̂t ), where p̂t is an estimate of p(yt > ỹt |y1:t−1), and ỹt is the value of yt

actually observed, for Standard and Poor example
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appropriate model within each period of time. To paraphrase George Box’s famous
statement: all models are wrong; some models fit longer.
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Ledoux, M.Yor, (Eds.) Séminaire de Probabilités XXXIV, (vol 1729 pp 1–145). Lecture Notes
in Mathematics, Berlin Heidelberg New York: Springer.

Doucet, A., de Freitas, N., Gordon, N. (2001). Sequential Monte Carlo Methods in Practice.
Berlin Heidelberg New York: Springer.

Doucet, A., Godsill, S., Andrieu, C. (2000). On sequential Monte Carlo sampling methods for
Bayesian filtering. Statistics and Computing, 10(3), 197–208.
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