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Abstract Two-way nested design with mixed effects model arises in many practical
situations. In the classical analysis of variance set-up, a test for the absence of the
random effects is obtained under the assumption that the random effects and the
errors are normally distributed. The present paper avoids this assumption and pro-
vides an asymptotically distribution-free test procedure for the above problem. The
asymptotic null distribution of the test statistic is obtained. Actual implementation
of the test is straight forward given the prior information on quantiles of the intra-
block differences of observations. In the absence of such information, working test
procedures are proposed. The performances of these tests are compared with the
classical analysis of variance test through simulations. The tests are then illustrated
by some real data sets.

Keywords Analysis of variance · Asymptotically distribution free · Normal error

1 Introduction

Consider a two-factor experiment with factors, say, A and B. The factor B is said
to be nested within A if each of its levels is observed in conjunction with just one
level of the secod factor. If we denote the levels of A by Ai, i = 1, . . . , r , then
within each Ai there are s levels of B and these are denoted by Bij , j = 1, . . . , s.
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This is a two-factor nested design. Each of the factors is either fixed or random.
In this paper, we consider a mixed model set-up with the fixed factor A and the
random factor B. For a comprehensive analysis of such design under usual para-
metric set-up, see Scheffe (1959). For interesting applications of such design, we
refer to Montgomery (1984) and Dean and Voss (1999). Morgan (1996) has given
an excellent account of nested designs in his review paper.

In the classical analysis of variance, it is assumed that the underlying dis-
tributions of the random components in the model are normal. This assumption
is essential for carrying out tests of hypotheses. Prevalence of nonnormality, in
practice, however, restricts us to make such sweeping assumption unless supported
by strong evidence. Nonparametric tests are proposed to circumvent this problem.
Nonparmetric methods in design and analysis of experiments are being developed
quite extensively during seventies and eighties. Good reviews of such methods are
available in Brunner and Puri (1996) and Dean and Wolfe (1996).

In this paper, we propose an asymptotically distribution-free test for tesing
the absence of random effects assuming a classical mixed effects model with two
factors one is nested within the other. Specifically, we assume the nested factor is
random. Under the same model, an asymptotically nonparametric test for testing
the equality of the fixed effects is proposed by Brunner and Neumann (1982). This
is discussed in Brunner and Puri (1996). However, to the best of our knowledge,
testing for the absence of random effects has not been addressed in the literature so
far . This problem is important from the practical point of view by its own merit.

In Sect. 2, the test procedure is described after introducing the testing prob-
lem in nonparametric set-up. Asymptotic distribution is studied in Sect. 3, and the
problem of a judicious choice of the test statistic supported by simulation studies
are considered and recommendation is made in Sect. 4. In Sect. 5, the proposed test
procedure is applied to some real data sets. Sect. 6 ends with concluding discussion.

2 The test procedure

2.1 The problem

Suppose there are r levels of treatment A which are denoted by Ai, i = 1, . . . , r ,
and within each Ai there are s levels of B which are denoted by Bij , j = 1, . . . , s.
Analysis of unbalanced models is complicated even in the parametric set-up. So
we confine ourselves to the balanced case only. In the following, we consider a
mixed effect model assuming that s levels of B are randomly chosen from a large
number of possible levels at each level of A. The model is thus given by

Yijk = μ + αi + bj(i) + eijk, i = 1, . . . , r, j = 1, . . . , s, k = 1, . . . , n,
(1)

where

Yijk kth observation corresponding to the level Bij ,
μ main effect,
αi effect due to Ai , assumed to be fixed with

∑r
i=1 αi = 0,

bj(i) effect due to Bij , assumed to be random,
eijk random error, independent of bj(i).
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We assume

bj(i) ∼ Fb(.) and eijk ∼ Fe(.),

independently of each other. Both the distributions are symmetric about ‘0’. In
the parametric set-up, it is assumed that bj(i)’s and eijk’s are independently and
normally distributed with means 0 and variances σ 2

b and σ 2
e , respectively, and the

test for absence of random components bj(i) in model (1) is equivalent to testing

H : σ 2
b = 0 against K : σ 2

b > 0.

In the nonparametric set-up the above null hypothesis is that Fb(.) is degenerate at
‘0’, i.e., Fb(−ε) = 0, Fb(ε) = 1 for every ε > 0. A nonparametric test procedure
for testing H is proposed in the following sub-section.

2.2 Test procedure

We observe that

Yijk − Yijk′ = eijk − eijk′, k �= k′,

Yijk − Yij ′k′ = (
bj(i) − bj ′(i)

) + (
eijk − eij ′k′

)
, j �= j ′.

Note that each Yijk − Yij ′k′ , j �= j ′, is more dispersed than each of Yijk − Yijk′ ,

k �= k′. Now we define the indicator variables
{
u

(j)(i)

kk′ , v
(i)

(jk)(j ′k′)

}
as follows:

u
(j)(i)

kk′ = 1 or 0 according as |Yijk − Yijk′ | > c or not, and

v
(i)

(jk)(j ′k′) = 1 or 0 according as |Yijk − Yij ′k′ | > c or not,

where ‘c’ is a preassigned positive constant. The choice of ‘c’ is in the experi-
menter’s hand. The problem of a judicious choice of c and hence the test statistic
has been discussed in Sect. 4. We now define the following statistics:

Ui =
∑

j

∑

k<k′
u

(j)(i)

kk′ , Vi =
∑

j<j ′

∑

k,k′
v

(i)

(jk)(j ′k′),

and

U =
r∑

i=1

Ui, V =
r∑

i=1

Vi.

It is easy to find that

E(Ui) = s

(
n

2

)

p1, (2)

irrespective of whether H is true or not and

EK(Vi) = n2

(
s

2

)

p′
1 and EH(Vi) = n2

(
s

2

)

p1,
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the expectations under K and H , respectively, where

p1 = PH

{|eijk − eijk′ | > c
}
, k �= k′,

p′
1 = PK

{|(bj (i) − bj ′(i)) + (eijk − eij ′k′)| > c
}
, j �= j ′.

Note that p′
1 > p1 under any alternative hypothesis. Then, we set

T1 = V

r
(
s

2

)
n2

− U

rs
(
n

2

) .

Note that T1 is expected to be larger under any alternative than under H , and hence
T1 can be used as a test statistic. Right-tailed test is suggested which rejects H if

T1 > t1,

where t1 is so chosen to have a level ‘γ ’ test. Note that the test proposed above
is not strictly distribution free as the distribution of T1 depends on the parent dis-
tribution. However, one can get asymptotically distribution-free test based on the
null distribution of T1. Asymptotic distribution of T1 has been derived in the next
section.

3 Asymptotic distribution

Brunner and Neumann (1982), while tesing for equality of αi’s assuming the model
(1), found the asymptotic approximation to the distribution of the rank test statistic
with s tending to infinity. Brunner and Denker (1994), on the other hand, consid-
ered asymptotic approximation when both n and s (in a certain rate depending on
n) tend to infinity for two sample location problem. In the following, we state a
theorem for finding asymptotic approximation to the distribution of T1 when both
n and s (in a certain rate depending on n) tend to infinity. Let us denote

p2 = PH

{|Yijk − Yij ′k′ | > c, |Yijk − Yij ′′k′′ | > c
}
,

p′
2 = PK{|Yijk − Yij ′k′ | > c, |Yijk − Yij ′′k′′ | > c}.

Now we have the following two theorems whose proofs are given in the Appendix.

Theorem 3.1 Under H ,

E(T1) = 0,

and

Var(V ) = r

[

n2

(
s

2

)

p1(1 − p1) + n2(n − 1)s(s − 1)
(
p2 − p2

1

)

+n3s(s − 1)(s − 2)
(
p2 − p2

1

)
]
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and

Var(T1) = p1(1 − p1)

[
1

r
(
s

2

)
n2

+ 1

rs
(
n

2

)

]

+ (
p2 − p2

1

)
[

2(n − 1) + 2(s − 2)n

r
(
s

2

)
n2

+ 2(n − 2)

rs
(
n

2

) − 8

rsn

]

.

Theorem 3.2 Under H , as s → ∞, n = O
(
s1+δ

)
, δ ≥ 0,

T1
√

VarH

({
r
(
s

2

)
n2

}−1
V

)
d→ N(0, 1).

Remark 1 As p′
1 −p1 is equal to or greater than 0 under H or K , a right-tailed test

is appropriate.

Remark 2 From Remark 1, the proposed test is consistent against any fixed alter-
native.

Remark 3 Note that

E(V ∗ − Ṽ )2

V ar(Ṽ )
�→ 0 as n → ∞.

On the other hand, for ensuring
[
r
(
s

2

)
n2

(
p1 − {

rs
(
n

2

)}−1
U

)]

√
VarH (V )

→ 0,

as s tends to infinity does not work. We need to make n tending to infinity main-
taining appropriate order relation with n.

But, it is again an interesting question: “how large s and n should be for the as-
ymptotics to work?" We carried out a detailed simulation study for r = 2, s = 10,
n = 6. We report our findings in Sect. 5.

4 Choice of c: some suggestions

To carry out the above test in Neyman–Pearson sense, one needs to specify the
value of c before observing the data. In essence, the problem is similar to the basic
problem of choosing a score in a given nonparametric testing context as mentioned
in Sect. 1 of the classic book by Hajek and Sidak (1967). Note, in our context,
choosing a value of c amounts to choosing a score that leads to a specific non-
parametric test. For rank tests, the general problem of choosing a score was first
adressed and tackled by Hajek and Sidak (1967) and later by Hajek (1969, 1970),
Hogg et al. (1975). A good review is given in Sidak et al. (1999). Chatterjee and
Banerjee (1986, 1991) gave a solution to this general problem in nonparmetric
linear regression set-up.
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Although our problem here is in essence similar to the problem noted above,
the experimental set-up is, however, more complicated. In fact none of the above
solutions would be directly applicable here. We offer a workable solution in the
following.

A natural choice of c is a higher-order quantile of the distribution of intrablock
differences. In experimental design, prior knowledge of such quantiles may usu-
ally be available from historical data from past studies. To motivate, we suppose
a company produces an item in several factories located in several places of a
country (several countries). The product of each factory may go to a number of
locations for sales. A given location may have products from several factories too.
Suppose the response is a quality characteristic (quantitative, may be lifetime of
a sports shoe/television/laptop)and Yijk denotes the response of the kth unit in the
j th location (where the products are being used) from the ith factory. Here αi is the
ith factory effect and bj(i) is the j th location effect nested within the ith factory.
In such cases life testing experiments in each factory would generate enough data
for having precise estimates of the quantiles of intrablock differences and hence
can be effectively utilized for determining c.

Given the higher-order quantiles, the question is, which of these is to be chosen
as the value of c or more specifically is there any optimum choice of c? Intuitively
it is clear that larger the r

(
s

2

)
n2, the power of the test against a nonlocal alternative

would, in general, increase with the increase in the chosen value of c. However, for
a fixed set of values of r , s and n, the value of c should be so chosen as to ensure
reasonable estimates of tail probabilities both under the null and the alternatives.
Thus an optimum choice of c irrespective of different configurations of r , s and
n does not exist. On the other hand, for a given choice of r , s and n and a given
alternative, the performance of the test would depend on the shape of the parent
distribution (see Sidak et al. 1999; Hajek 1969, 1970; Hogg et al. 1975; Chatterjee
and Banerjee 1986, 1991). Hajek (1969, 1970), in particular, showed that change
in tail weights of the unknown parent distribution significantly affects the optimum
choice of the score. Thus, in order to prescribe a workable choice of c, we conduct
simulation studies to investigate the sensitivity of the optimum value of c to the tail
weight, to different configurations of r , s and n and to different alternatives. The
main idea is, of course, to prescribe a guideline for the choice of c given the prior
information about the tail weight of the null distribution of intra-block difference.

Although we have considered different configurations of r, s and n, for brevity,
we report only the computations for r = 2, s = 3, n = 6. Also we have chosen
four distributions according to their tail weights, viz., light tailed (Double Expo-
nential), moderate tailed (Normal distribution), heavy tailed (Cauchy) and abrupt
tailed (rectangular). The pattern we observe for other configurations of r, s and n
is similar. We carry out 10,000 simulations. Generating data from a distribution,
we estimate c as a predetermined quantile of the null distribution of the intrablock
differences (70, 75, 80, 90, 95 and 97 quantiles are considered). Consequently we
obtain t1, the cut-off point, and the powers at different alternatives keeping the level
at 5%. A part of the results is presented in Table 1.

The results show that both tail weights and the design in terms of r, s and n
have significant effect on the choice of c. It also depends on the chosen alternative.
For abrupt tailed (rectangular) higher quantile seems to be a better choice while
for heavy tailed (Cauchy) not so high quantile will be a good choice. We keep the
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Table 1 Power at different alternatives for different parent distributions where c is considered as
different quantiles (here σ 2

e = 1)

σ 2
b c as different quantiles T ∗

1

70% 75% 80% 90% 95% 97%

Normal parent
1.0 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
1.6 0.1884 0.2864 0.3842 0.7134 0.8061 0.7977 0.6440
2.2 0.3968 0.6317 0.8280 0.9942 0.9978 0.9952 0.8440
2.8 0.5949 0.8624 0.9757 0.9999 0.9999 0.9999 0.8860

Double exponential parent
1.0 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
1.6 0.2058 0.2860 0.4074 0.6868 0.7596 0.7502 0.7423
2.2 0.4290 0.6294 0.8477 0.9840 0.9837 0.9741 0.9232
2.8 0.6312 0.8589 0.9793 0.9990 0.9982 0.9961 0.9750

Cauchy parent
1.0 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
1.6 0.2234 0.3102 0.4187 0.5625 0.5889 0.6579 0.7424
2.2 0.4540 0.6682 0.8310 0.8670 0.8497 0.8519 0.8322
2.8 0.6682 0.8818 0.9634 0.9379 0.9306 0.9010 0.8783

Rectangular parent
1.0 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
1.6 0.1811 0.2512 0.3204 0.6601 0.8557 0.8962 0.3700
2.2 0.3648 0.5406 0.7189 0.9925 0.9991 0.9994 0.4560
2.8 0.5455 0.7822 0.9294 0.9997 1.0000 1.0000 0.8333

choice at the discretion of the experimenter subject to the availability of the prior
information about the quantiles. See Banerjee (1984) for a discussion on utilization
of additional information in nonparametric tests.

In case such information is not at all available, one could as well perform the
test procedure by choosing several possible values of c (which will correspond to
different quantiles). If c is sufficiently small or sufficiently large, then the detection
power of the test on the basis of a finite sample will be almost nil (as T1 will be
zero in both the cases). Thus, one can think of T1(c) for c ∈ R, defining a class of
tests and it is rational to choose c to maximize the power of the test. But, in this
case, since the parent distribution is unknown, choosing ‘c’ by maximizing power
is not feasible. Instead, we can maximize a sort of empirical power, that is we can
minimize the P value. Thus, one can take a decision on the basis of the observed
P value.

As one referee has suggested, one sensible approach might be to consider

T ∗
1 = max

0<c<∞
T1(c)

as a test statistic. We carried out a detailed simulation study to investigate the null
and nonnull distributions of T ∗

1 . The power of the test is compared with that of the
tests based on T1(c) for different c, in Table 1. The P -values are compared with
the proposed test and that of F -test or permutation test for some real data sets in
Table 3. We observe that the performance of the test with T ∗

1 as the test statistic
is reasonably good in terms of power and P -values. So this can be recommended
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for application. But, certainly the power is much more if one can identify the
appropriate percentile point. Since that is not possible, T ∗

1 is a very good working
solution.

5 Example and simulation studies

In the following example, we illustrate our procedure with a real life data set in the
absence of any prior information. First, we choose ‘c’minimizing the P value and
then apply the asymptotic test based on T1.

5.1 Example

We use an unpublished data set (S. Sarkar, unpublished data) obtained from an
experimental study of the effects of different hormones on the ovarian weight of
the soft-shelled turtles Lissemys punctata punctata, which is an endangered spe-
cies. The data are collected at two different time points, i.e., r = 2. At each time
point there are three blocks (i.e., s = 3) corresponding to control and two different
hormones. Two blocks at each time point record responses of six turtles (n = 6)
treated with control and Leutinizing hormone (LH). The other two blocks one each
at a given time point record responses of the turtles treated with Estradiol-17β
(E-17β) anf Follicle stimulating hormone (FSH). Dose applied was 15-μg per
100-g body weight for 15 days. The data are provided in Table 2

We take different percentile points as determined from the intra-block differ-
ences of the data as the choices of c and the P values of permutation test based
on T1 are reported in Table 3. We take c = 5.7 as it minimizes the P value of the
permutation test based on T1. It is to be noted that the P value corresponding to
the asymptotic test based on T1 broadly agrees with the P values corresponding
to the permutation tests based on T1 and T ∗. On the otherhand, it should be noted
that the P value of the paprametric F test differs from others by a factor 1,000.

Next we present a limited simlulation study to investigate (i) how the asymp-
totic approximation to the distribution of T1 works even for moderate values of
s and n? (ii) when would we expect our test to outperform the parametric F test
completely? We investigate both these questions by comparing the attained level
of significance with the stipulated level of significance.

Table 2 Ovarian weight of soft-shelled turtle at two different times using different treatments
and control

A1 (Time point 1) A2 (Time point 2)

B1: Control B2: LH-treated B3: E-17β treated B1: Control B2: LH-treated B3: FSH-treated

22.8 38.0 30.0 24.0 28.4 30.2
27.4 37.3 26.7 27.8 35.0 29.6
32.4 40.3 27.2 28.0 35.7 31.2
25.4 35.4 28.0 25.3 38.9 28.4
27.5 36.3 32.2 31.0 36.4 30.3
30.0 41.3 33.1 25.3 37.0 31.0
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Table 3 P values of the turtle data using the permutation test and the asymptotic test for different
percentile points taken as the choice of c

Percentile Exact permutation test

points taken c U V T1 P value

70 3.2 32 163 0.3991 1.67 × 10−4

75 3.8 29 160 0.4185 1.00 × 10−4

80 4.2 24 154 0.4463 1.00 × 10−4

90 5.7 12 116 0.4037 0.67 × 10−4

95 7.0 6 96 0.3778 0.67 × 10−4

97 8.0 3 75 0.3139 1.67 × 10−4

P value of the asymptotic test (T1-statistic) = 1.44 × 10−4

P value of the parametric test (F -statistic) = 4.29 × 10−8

P value of the test based on T ∗
1 = 0.75 × 10−4

5.2 Simulation studies

We design our simulation study with samples from normal distribution assuming
μ = 0, α(i) = 0, bj(i) = 0 and eijk ∼ Normal(0, 1). The configuration chosen
is r = 2, s = 10 and n = 6. For applying our test, we take c as 80% quantile
of the null distribution of intrablock difference. We observe that the level attained
by the asymptotic test based on T1 is almost same for α = 0.05 and above. For
α = 0.01 there is a small discrepancy. The asymptotic procedure, thus, seems
to work well even for a value of s as small as 10 and n equal to 6. In addition,
we have carried out a simulation study to understand the robustness of our pro-
posed nonparametric test. For this we contaminate 15% of eijk’s by observations
from N(0, 52).Assuming absence of contamination we carry out usual paprametric
F test and the asymptotic test based on T1 at 5% level of significance repetetive-
ly for 10,000 samples. The attained levels of significance of the asymptotic test
based on T1 and the the parametric test based on F are found to be 0.038 and 0.56,
respectively. Thus the test based on T1 outperforms the usual F test. It shows that
the test based on T1 is highly robust especially in the presence of outliers.

6 Concluding remarks

In this paper, we have proposed a nonparametric test for testing the presence of
a variance component in the nested two-way mixed model. We now discuss two
possible generalizations of the proposed test. Suppose, instead of c, we have a
sequence of constants {c1, c2, . . . , ct } such that 0 < c1 < c2 < · · · < ct . Setting
the intervals

Ij = [cj−1, cj ), j = 1(1)t + 1,

with c0 = 0 and ct+1 = ∞, we can consider the following general scores:

u
(j)(i)

kk′ = d if|Yijk − Yijk′ | ∈ Id,

and

v
(i)

(jk)(j ′k′) = d if|Yijk − Yij ′k′ | ∈ Id,
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to propose a generalization of our proposed procedure. For each such interval, we
can find a statistic of type T1 defining an indicator. First one needs to take a convex
combination of these two types of quantities separately. The weights are so chosen
that it increases (or decreases) with d, i.e., the subscript of c so that the observations
away from central part get increasing weights with the increase of the distance.
Then the difference of U and V after adjusting for number of such differences will
serve as a test statistic. Choice of cj ’s are also to be made using some quantiles
as before. The study will be taken up in future, and we intend to communicate it
in a separate issue. A random effect model like (1) is also true in different bio-
medical problems. For example, in teratological experiments some dose levels are
considered, and there may be many other such possible dose levels. The same is
true in dose response studied in toxicity (phase I trial). The asymptotic results in
terms of s → ∞ is conceptually alright and has some physical interpretation. For
example, if we are interested in the production rate by a machine we can take a
block consisting the production in one hour. Instead of increasing the time, we
can take many such one hour slots for our purpose. Such types of works where
asymptotics are done in terms of s are available in literature. [see, for example,
the asymptotics of Friedman statistic as the number of blocks tends to infinity in
Hajek’s (1967) book.] But, instead of s, if we want the asymptotic results in terms
of n, there is some problem with the test statistic. Here n ×VarH (T1) converges to
zero as n goes to infinity. To interpret the results in terms of n we do the following.
Define

V ∗
i =

∑

j<j ′

(j,j ′)�=(s−1,s)

∑

k �=k′
v

(i)

(jk)(j ′k′),

and consequently setting V ∗ = ∑s
i=1 V ∗

i , we note that

EH(V ∗
i ) = n2

[(
n

2

)

− 1

]

p1.

Then setting

T2 = V ∗

r
[(

s

2

) − 1
]
n2

− U

rs
(
n

2

) ,

a right-tailed test based on T2 can be suggested. As in (4) and (5), we can obtain

VarH (V ∗) = r

{

n2 ×
[(

s

2

)

− 1

]

p1(1 − p1) + 2n2(n − 1)

×
[(

s

2

)

− 1

]
(
p2 − p2

1

) + n3[s(s − 1) − 4](s − 2)
(
p2 − p2

1

)
}

,

covH (U, V ∗) = rn2(n − 1)(s + 1)(s − 2)
(
p2 − p2

1

)
.

Then, as in Theorem 3.2, we have as n → ∞, under H ,

√
nT2

d→ N(0, σ 2
2 ),
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where

σ 2
2 = 4(s3 − 4s2 − s + 13)

r(s2 − s − 2)

(
p2 − p2

1

)
> 0.

The test is also consistent. There is one problem with the test provided by T2. The
behavior and performance of the test depends on the pair excluded from the possi-
ble

(
s

2

)
possible pairs for each level of A considered in defining T1. Here we have

excluded the (s−1, s)th pair, but if we could exclude any other pair, T2 would have
any other realization with a possibility of other decision. It is to be noted that, as
we are considering n tending to infinity and s being kept fixed, probably dropping(
s

2

)
observations do not have serious effect on inference.

Appendix

Proof of Theorem 3.1 The expectation part is immediate from (2) and (3). In var-

iance of U , there are
(
n

2

)
components of VarH

(
u

(j)(i)

kk′

)
[= p1(1 − p1)] and n(n −

1)(n − 2) components of covH

(
u

(j)(i)

kk′ , u
(j)(i)

kk′′

) [= p2 − p2
1

]
in each block of each

level. Hence

VarH (U) = rs

[(
n

2

)

p1(1 − p1) + n(n − 1)(n − 2)
(
p2 − p2

1

)
]

. (3)

In the variance of V within each level of A, there are
(
s

2

)
between block compar-

isons, yielding n2
(
s

2

)
variance components. We call these

(
s

2

)
as reduced blocks.

Within each block there are n2(n − 1)s(s − 1) covariance parts. [There are n sub-
blocks within each reduced block,

(
n

2

)
covariances for each subblock and there

are
(
s

2

)
reduced blocks.] Between the reduced blocks, there are some covariance

factors. There are n subblocks within each reduced block and one subblock has
n2 covariance components with one other block. There is a term s(s − 1)(s − 2)
which comes in the same way as n(n − 1)(n − 2) comes in VarH (U). Thus

VarH (V ) = r

[

n2

(
s

2

)

p1(1 − p1) + n2(n − 1)s(s − 1)(p2 − p2
1)

+ n3s(s − 1)(s − 2)
(
p2 − p2

1

)
]

. (4)

Similarly, to find the covH (U, V ) we note that, for U there are s blocks, in V there
are n subblocks within each reduced block, there are n(n − 1) covariance terms
between one block of U and one subblock of a reduced block V , and components
(Yijk) of one block of U are spread into (s − 1) reduced blocks of V . Thus

covH (U, V ) = an2(n − 1)s(s − 1)
(
p2 − p2

1

)
. (5)

Using (3)–(5), the theorem is immediate. ��
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Proof of Theorem 3.2 Note that

T1
√

VarH
({

r
(
s

2

)
n2

}−1
V

) = V − EH(V )√
VarH (V )

+
[
r
(
s

2

)
n2

(
p1 − {

rs
(
n

2

)}−1
U

)]

√
VarH (V )

.

(6)

Let Ṽ be the projection of V ∗ (the standardized version of V , i.e., V − E(V )). For
any fixed i, j < j ′, consider

V
(j,j ′)
i =

∑

k �=k′
v

(i)

(jk)(j ′k′) − n2p′
1

= V
(
Yij1, . . . , Yijn, Yij ′1, . . . , Yij ′n

)
(say).

Define

Ṽ (yij1) = EV
(
yij1, Yij2, . . . , Yijn, Yij ′1, . . . , Yij ′n

)

= nP
{|yij1 − Y | > c

} + n(n − 1)P
{|Yij1 − Yij ′1| > c

} − n2p′
1

= n
[
P

{|yij1 − Y | > c
} − p′

1

]
,

where Y has same distribution as any Yijk . Clearly,

n−2Var
(
Ṽ (Yij1)

)

= E
[
P

{|Yij1 − Y | > c|Yij1
}]2 − [

EP
{|Yij1 − Y | > c|Yij1

}]2

= E
[
P

{|Yij1 − Yij ′k′ | > c|Yij1
}
P

{|Yij1 − Yij ′′′′ | > c|Yij1
}] − p′2

1

= E
[
P

{|Yij1 − Yij ′k′ | > c, |Yij1 − Yij ′′k′′ | > c|Yij1
}] − p′2

1

= P
{|Yij1 − Yij ′k′ | > c, |Yij1 − Yij ′′k′′ | > c

} − p′2
1

= p′
2 − p′2

1 .

Now, define

Ṽ
(j,j ′)
i = Ṽ (Yij1) + · · · + Ṽ (Yijn) + Ṽ (Yij ′1) + · · · + Ṽ (Yij ′n),

and

Ṽi =
∑

1≤j<j ′≤s

Ṽ
(j,j ′)
i = (s − 1)

s∑

j=1

{
Ṽ (Yij1) + · · · + Ṽ (Yijn)

}
.

Hence

Ṽ =
r∑

i=1

Ṽi .

Consequently,

Var(Ṽ ) = (s − 1)2rsn Var
(
Ṽ (Yij1)

)
= (s − 1)2rsn3

(
p′

2 − p′2
1

)
.
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Since Ṽ is the projection of V ∗, it can be easily shown that

E(V ∗ − Ṽ )2

Var(Ṽ )
=Var(V ∗)

Var(Ṽ )
− 1

= r
[
n2

(
s

2

)
p′

1(1 − p′
1) + n2(n − 1)s(s − 1)

(
p′

2 − p′2
1

)+n3s(s − 1)(s − 2)
(
p′

2 − p′2
1

)]

(s − 1)2srn3
(
p′

2 − p′2
1

) − 1

→ 0 as s → ∞.

Hence

(

Ṽ /

√

Var(Ṽ )

)

and
(
V ∗/

√
Var(V )

)
have the same asymptotic distribution.

Since Ṽ is the sum of bounded independent random variables

Ṽ
√

Var(Ṽ )

d→ N(0, 1) as s → ∞.

Hence

V − EH(V )√
VarH (V )

= V ∗
√

VarH (V )

d→ N(0, 1) as s → ∞.

So it is enough to prove that the second term in (6) converges in probability to zero.
Now,

[
r
(
s

2

)
n2

(
p1 − {

rs
(
n

2

)}−1
U

)]

√
VarH (V )

=
r
(
s

2

)
n2(rs)−1 ∑r

i=1

∑s
j=1

√
Var(Uij )(p1 − Uij )/

√
Var

(
Uij

)

O
(
n3/2s3/2

)

= s−1
(
s

2

)
n2 ∑r

i=1

∑s
j=1

√
Var(Uij )Zij

O
(
n3/2s3/2

) ,

where Uij = (
n

2

)−1 ∑
k<k′ u

(ij)

k,k′ , and Zij = (p1 − Uij )/
√

Var(Uij ) are iid random
variables with mean 0 and variance 1. Noting that

√
Var(Uij ) = λn−1 + O(n−γ ),

γ > 1, the leading term of the above becomes

(
s

2

)
nλ

∑r
i=1

[
s−1 ∑s

j=1 Zij

]

O(n3/2s3/2)
.

Now, s−1 ∑s
j=1 Zij

P→ 0 (by WLLN), and n = O
(
s1+δ

)
, δ ≥ 0, entail the proof

of the Theorem. ��
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