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Abstract The discrete multi-way layout is an abstract data type associated with
regression, experimental designs, digital images or videos, spatial statistics, gene or
protein chips, and more. The factors influencing response can be nominal or ordinal.
The observed factor level combinations are finitely discrete and often incomplete
or irregularly spaced. This paper develops low risk biased estimators of the means
at the observed factor level combinations; and extrapolates the estimated means to
larger discrete complete layouts. Candidate penalized least squares (PLS) estima-
tors with multiple quadratic penalties express competing conjectures about each
of the main effects and interactions in the analysis of variance decomposition of
the means. The candidate PLS estimator with smallest estimated quadratic risk
attains, asymptotically, the smallest risk over all candidate PLS estimators. In the
theoretical analysis, the dimension of the regression space tends to infinity. No
assumptions are made about the unknown means or about replication.

Keywords Nominal factor - Ordinal factor - Estimated risk - Tensor-product
penalty - Multiparametric asymptotics - Penalized least squares - Bayes estimator

1 Introduction

The discrete multi-way layout is an abstract data type that is associated with regres-
sion, experimental designs, digital images or videos, spatial statistics, gene or pro-
tein chips, and other applications. In a discrete ky-way layout, each of the k factors
assumes a finite number of levels. The levels of a factor may be either nominal (i.e.,
pure labels) or ordinal (i.e., real-values whose order and magnitude bear informa-
tion). Factors of both types may occur in a multi-way layout.
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Example 1 The coal ash data from Cressie (1993, p. 34) records percentage of coal
ash in 208 assay samples. The data forms an incomplete two-way layout with one
observation per observed cell; the factor pairs are the grid coordinates at which the
assay samples were obtained. The factors row coordinate and column coordinate
are both ordinal, are both equally spaced, and range over 23 and 16 equally spaced
levels, respectively. On the grid of 368 factor level pairs so defined, an assay sam-
ple was taken at the 208 points identified in subplot (1, 2) of Fig. 1. Subplot (1,1)
is a mesh plot of the observations. Relating mean coal ash percentage to the grid
coordinates is the regression problem.

Example 2 The starch data from Freeman (1942, pp. 120-121), reprinted in Scheffé
(1959, pp. 216-217), gives the breaking strength and the film thickness in tests on
seven types of starch film. The data forms an incomplete unbalanced two-way
layout with 94 observations in which breaking strength is the observed response,
factor one is the type of starch, and factor two is the thickness of the starch film.
In this case, factor one is nominal with seven levels while factor 2 is ordinal with
69 unequally spaced values. On the grid of 483 factor level pairs so defined, one
or more observations of breaking strength were taken at the 81 points identified in
subplot (1) of Fig. 2. At all but a few of the 81 observed design points, we have
only one breaking strength measurement. Relating mean breaking strength to the
factors starch type and film thickness is the regression problem.

As these two examples indicate, nominal or ordinal factors, significant incom-
pleteness, and lack of replication are not uncommon in multi-way layout data.
Indeed, any regression model with & covariates (or factors) and real-valued re-
sponses forms a kg-way layout of data that is usually incomplete and may be
unbalanced.

An incomplete multi-way layout may be modeled in terms of a larger com-
plete layout of means. We will first describe the complete layout and then extract
the observed incomplete layout as a subset. Consider k factors, whether nomi-
nal or ordinal, in which factor k has p; distinct levels. Let Z denote the set of
all ko-tuples i = (i1, i2,...,ix) such that 1 < iy < pyforl < k < k¢. The
component i; indexes the levels of factor k. These ky-tuples express all possible
combinations of the factor levels. A complete ko-way layout of means consists of
real values {m; : i € Z}. To facilitate algebra, we order the p = ]_[i‘)=1 pr elements
of the index set 7 in mirrored dictionary order: iy, serves as the first “letter” of
the word, ix,—; as the second “letter”, and so forth. Hereafter, the components of
7 are always taken in this order. With the index set so ordered, the means for the
complete multi-way layout form the p x 1 vector

m={m;:i€l}= {-~-{{mi1,iz,...,ik0: 1 <i; < pi},
l<ir<ps..., 1 <igy < pr}- ¢))

Observations are available only on the means {m;: i € Z,}, where Z; is a
subset of Z. When the cardinality g of Z; is less than p, these observations y =
{ {yij:1<j<m}ie IU} form an incomplete ko-way layout, which is unbal-
anced unless the {n;} are equal. The observation vector yisnx 1 withn =} ;7 n;.
Define the means-incidence matrix D to be the g x p matrix of zeroes and ones
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Fig. 1 The coal ash data, its observed factor-level grid, the adaptive PLS estimate 7, (7) of mean
coal ash percentages, its extrapolation to the estimated regression function 7 (f), and residual
plots that identify one very large outlier

such that mp = Dm lists, in vector form, the means {m; : i € Z,} for the observed
incomplete ko-way layout. Let C be the n x ¢ data-incidence matrix of zeroes and
ones that suitably replicates components of the vector mp = Dm into the vector
n = E(y) = Cmp. For a complete layout of data, g equals p and D is just the
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Fig. 2 The observed factor-level grid of the Starch data and the extrapolated adaptive PLS esti-
mate 772(f) of mean breaking strengths

identity matrix. In general, ¢ < min{p, n}, rank(C) = ¢q and DD’ = I,. Conse-
quently, rank(D) = ¢ and rank(C D) = q. For the coal ash data, ¢ = n = 208
and p = 368. For the starch data, ¢ = 81, n = 94, and p = 483.

This paper identifies regression with two tasks:

e Estimating efficiently the means mp = {m;: i € Zy} on the factor level com-
binations where response data is observed. Because mp = C*1, where the
superscript 4+ denotes pseudoinverse, this task is equivalent to estimating 7.

e Extrapolating the fit to estimate the means m = {m, : i € Z}. The extrapolation
defines the estimated regression function.

Note that the product set Z can be chosen larger than the product set of observed fac-
tor levels. In defining 7, we may include all unobserved factor level combinations
that are of interest for extrapolation.

The strong Gauss-Markov model for the incomplete layout of observations y
asserts

y=n+e, n=Cmp=CDm, meR"’. 2)

There are no restrictions on the mean vector m. The components of e are indepen-
dent, identically distributed with mean 0, unknown variance o2, and finite fourth
moment. All non-Bayesian risk calculations and asymptotic convergences in this
paper use the strong Gauss-Markov model (2) for y. The model expresses the idea
that we know little about the means and are not willing to assume away this lack
of knowledge through restrictions on the means.

When ¢ < p, the parametric function mp = C*n has an unbiased linear
estimator while m does not. The least squares estimator of 1 in model (2) is

s = CD(CD)*y =CC*y. 3)

The corresponding least squares estimator of mp is mp1s = CTiLs = Cty.
For any matrix A, including the special case of a vector, let |A| denote the
Euclidean (or Frobenius) norm: |A|> = tr(A’A) = tr(AA’). Define the normalized
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quadratic loss of any estimator 7 of 1 to be

L#,m) =q 'lh—nl 4)

The risk of 7 is then

R (7. n,0%) = EL(f., n), )

where the expectation is calculated under the strong Gauss-Markov saturated model
2).

The least squares estimator 7. s in model (2) is an unbiased linear estimator with
risk R (AiLs, 7, 0%) = o', According to the Gauss-Markov theorem, 7 s has small-
est risk among all linear unbiased estimators of 1. However, Stein (1956) proved
that the least squares estimator is inadmissible for n under quadratic loss whenever
q > 3 and the errors are independent, identically normally distributed. In statistical
practice, #j.s is often too variable an estimator unless the rank ¢ of the regression
space is small. The basic message, gradually strengthened by subsequent statistical
theory, is the need to consider biased estimators of 7.

This paper studies penalized least squares (PLS) estimators for n, mp, and m
that rely on multiple quadratic penalties to determine the fit. Let D be a set of finite
cardinality d. Let {t;: s € D} be relative penalty weights such that 0 < ¢, < 1.
Let {Q;: s € D} be symmetric positive semi-definite p x p penalty matrices.
Section 2 will provide specific useful constructions of D and of Q. Without loss
of generality, assume that the elements of D have been ordered. Let ¢ denote the
vector in [0, 1]¢ formed by taking the {z,} in the order imposed on the subscript s.
For any matrix A, let

A
p(A) =sup ——. (6)

The function p is a matrix norm. In the theory to be developed, we scale each
penalty matrix Q; so that p(Qy) = 1.

Let ¢ be a large positive constant and let € be a small positive constant, say
10~7. Define

Q) =€l +¢Y 10, )

seD

The € term ensures nonsingularity of Q(t). For ¢ € [0, 1]¢, the PLS estimators of
m, n, and mp are

m(t) = argmin [|y — CDm|* + m' Q(t)m]

meR?P
=[pc'cD+0mw] ' D'Cly ®)
and
ity = CDm(t) = CD[D'C'CD + Q)] D'C'y
mp(t) = CTi(r) = Dim(r). )
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The foregoing expressions define linked families of candidate PLS estima-
tors. The candidate estimator 71 p(f) estimates the means at factor level combina-
tions where data is observed. The candidate estimator /1 (f) uses prior conjecture
expressed through the penalty term m’ Q(t)m to estimate m at every factor level
ko-tuple, including those at which no data is observed. Through this extrapolation,
m(t) defines a candidate regression function on Z. Section 2.1 rederives the candi-
date PLS estimators as Bayes estimators in the restriction of model (2) to normally
distributed errors.

Remark Families of candidate least squares fits to submodels of model (2) are
limits of a subset of the candidate PLS fits just described. Indeed, suppose that
submodel s, for s € D, asserts that m lies in specified subspace of R”. Let P
denote the p x p matrix that orthogonally projects R” into that subspace. Let
Qs = I, — P;. The constraint Q,m = 0 is satisfied if and only if m lies in the
subspace that forms the range of P;. In the penalty weight vector ¢, set component
t; = 1 and set the remaining components equal to 0. Then, as ¢ tends to infinity,
the PLS estimator 7(¢) converges to the least squares estimator of 7 for submodel
s of (2). In this fashion, the class of candidate PLS estimators effectively extends
the class of candidate submodel fits.

The PLS estimators {ﬁ(t): t €0, 14 } defined in Eq. (9) constitute a class of
candidate symmetric linear estimators for n. How should we construct the penalty
matrices {Q,: s € D} defining this class? This construction needs to address the
nominal or ordinal type of each factor. How should we choose ¢ to obtain an esti-
mator with relatively low risk within the class of candidates? If we knew the risk
function of #(¢), we would naturally use the oracle estimator #(f), where # mini-
mizes the risk over all ¢ € [0, 1]¢. Because the risk function is usually unknown,
we pursue the following modified program:

e Construct suitable penalty matrices {Q;: s € D} for multi-way layouts with
nominal and ordinal factors. The penalty matrices are carefully designed to
respect the nature of each factor and to express competing hypothetical notions
about the smoothness (if pertinent) and the magnitude of each main effect and
interaction in the analysis of variance (ANOVA) decomposition of m. Accord-
ing to their construction, the penalty matrices generate candidate PLS estima-
tors that shrink toward ANOVA submodel fits with or without smoothing (see
Sect. 2.3).

o Construct an estimator 7 (¢) of the risk function of 7(¢). The estimated risk func-
tion used in this paper is equivalent to the Mallows (1973) C,, criterion and
involves an estimator of o2 (see Sect. 2.2 for discussion of both estimators).

e Construct the adaptive estimator 7(f) such that { = argmin, ¢ e F(t) (see
Sect. 2.2).

e Find theoretical conditions in the strong Gauss-Markov model under which the
loss and estimated risk functions of 7(¢) converge uniformly over ¢ € [0, 1]¢
in the L sense to the true risk function as g tends to infinity (see Theorem 3
in Sect. 3).

e Hence deduce that the risk of adaptive estimator 7(f) converges to the risk
of oracle estimator #(f) as g tends to infinity. In other words, show that the
asymptotic risk of () converges to the smallest risk achievable over the class
of candidate estimators {7j(¢): ¢ € [0, 1]?} (see Theorem 4 in Sect. 3).
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e On the basis of the foregoing considerations, use #ip = CTij to estimate the
means m p at factor levels where data is observed; and use the adaptive estima-
tor M1 () to extrapolate the fit to m, that is, to estimate the regression function
on Z (see Sect. 4).

A candidate PLS fit based on one or more quadratic penalty terms is a biased
linear estimator, constructed in this instance through a mathematical regularization
strategy. Under quadratic loss, the aim of biased estimation is to achieve a favorable
trade-off between bias and variance that reduces risk in estimating . Earlier stud-
ies of biased linear estimators for 7 include ridge regression (Hoerl and Kennard,
1970), PLS fits to discrete one-way layouts with nominal or ordinal factors (Beran,
2002), shrinkage estimators for complete balanced multi-way layouts with nominal
factors (Stein, 1966), monotone shrinkage estimators for abstract one-way layouts
(Beran and Diimbgen, 1998), symmetric linear estimators (Buja et al. 1989), and
certain multiple penalty PLS estimators (Wood, 2000; Beran, 2005).

The scope of PLS goes well beyond smoothing if one pays attention to the
choice of the penalty matrices. For example, through suitable construction of the
penalty matrices, Beran (2005) closely approximated, by an adaptive PLS estima-
tor, Stein’s (1966) superior shrinkage estimator for a complete balanced multi-way
layout with all factors nominal. The appropriate penalty matrices in this instance,
based on flat annihilators defined in Sect. 2.3, encourage shrinkage when fitting
each main effect and interaction in the ANOVA decomposition of the mean vector.
The present paper handles incomplete unbalanced layouts with nominal or ordinal
factors and uses only the strong Gauss-Markov assumption on model errors rather
than normality. As a special case, our adaptive PLS methodology yields a superior
estimator for an incomplete unbalanced multi-way layout with all factors nominal.

The results in this paper carry out the bulleted program above. Sect. 2 provides
systematic constructions of multiple penalty terms for incomplete, unbalanced
multi-way layouts that respect the ANOVA structure and the nominal or ordinal
character of each factor. The asymptotics in Section 3 justify adaptive choice of
the penalty-weight vector ¢ to minimize estimated risk. The theory developed uses
asymptotics for loss and risk in which the dimension ¢ of the regression space
for linear model (2) tends to infinity while the sample size n > ¢g. Because the
number of parameters being estimated tends to infinity with g, such asymptotics
are aptly termed “multiparametric”. These asymptotics suit multi-way layouts that
provide only a few observations per observed combination of factor-levels—a not
uncommon situation.

Remark Under classical asymptotics where n tends to infinity for fixed ¢, the var-
iance contribution to quadratic risk is small. Thus, trading off variance against
bias cannot help much unless the bias is also small. Under these asymptotics, we
conjecture that the adaptive estimator 7)(#) behaves asymptotically like the least
squares estimator except at or sufficiently near superefficiency points. This hap-
pens demonstrably in the Stein special case cited above.

In general, the spectral decomposition of the symmetric linear candidate esti-
mator 7j(¢) in (9) has eigenvalues and eigenvectors that both depend on the penalty-
weight vector ¢. Earlier asymptotics in the literature [cf. Kneip 1994; Beran and
Diimbgen 1998; Beran 2002) justified adaptation over ¢ only in cases where the
eigenvectors do not depend on ¢. This simplification of the spectral decomposition
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occurs for complete balanced multi-way layouts (Beran 2005) but not for unbal-
anced or incomplete multi-way layouts. The arguments in the proofs of Sect. 5 do
not rely on the spectral decomposition, justify adaptation for PLS estimators in
incomplete unbalanced multi-way layouts, and require only the strong Gauss-Mar-
kov error assumption rather than the normality assumption that is made in some of
the work cited.

For the coal ash data, cell (2,1) in Fig. 1 displays 715 (), the adaptively esti-
mated means at the factor level pairs where data is observed. Cell (2,2) presents
the extrapolated adaptive mean estimator 771 (¢). For the starch data, Fig. 3 and cell
(1,2) of Fig. 2 display the extrapolated adaptive mean estimator 71 (¢). Each extrap-
olation expresses the regression function implicit in the adaptive PLS estimation
technique. Section 4 develops the details of these two case studies.

The extensive literature on regularization also treats estimators of a mean func-
tion that is deemed to be a function of continuous ordinal factors. The observations
are made at a discrete grid of factor level combinations, as above. However, a usual
aim with continuous-factor approaches is to estimate the smooth (by assumption)
mean function on a continuum [cf. Wahba 1990; Wahba et al. 1995; Heckman
and Ramsay 2000; Lin 2000]. This objective differs in mathematical formulation
and analysis from the discrete estimation problem addressed by this paper. At first
glance, estimating the means m on a very fine grid Z of factor level combinations,
at most of which we lack observations, might seem to differ little from estimat-
ing a smooth mean function. However, our discrete formulation of the estimation
problem requires no assumptions on the mean vector m, even for the asymptotics
of Sect. 3, in which the cardinality of 7 tends to infinity.

2 Candidate estimators, adaptation, and penalty matrices

Section 2.1 rederives the candidate PLS estimators (8) and (9) as Bayes estimators.
The risk and estimated risk of the candidate estimator 7(¢) and adaptation over ¢
are the subjects of Sect. 2.2. Section 2.3 constructs penalty matrices {Q;: s € D}
that are suitable for fitting an incomplete multi-way layout with nominal or ordinal
factors.

2.1 Bayes estimators and penalized least squares

Candidate Bayes estimators for n and mp are the subject of this section. For their
derivation, we assume temporarily that the errors in model (2) are normally dis-
tributed. The competing Gaussian Bayesian models, indexed by the choice of the
matrix Q(¢), are given by

ylm ~ N (CDm,o?I,), m~ N (0,607 (1)). (10)

The small constant € in definition (7) of Q(¢) makes the prior distribution proper,
thereby ensuring admissibility of each candidate Bayes estimator.
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Fig. 3 The Starch data (small 0), plotted by starch type, and the extrapolated adaptive PLS esti-
mate 7 (f) of mean breaking strengths (small x). The normal quantile residual plot draws attention
to the large outliers for starch 5

Theorem 1 Under Bayesian model (10) and for quadratic loss, the respective
Bayes estimators for m, mp and n are

m() = [D'C'CD + Qw)] ' D'C'y,
mp(t) = DID'C'CD + Q(1)]™'D'C'y
—[c'c+ @' D) '] ¢y,

D

(12)



180 R. Beran

and
A(t)=CD[D'C'CD + Q(z)]" D'C'y
=c[cc+mo'tp) '] C'y. (13)

Section 5 proves the theorem. The equalities in Eqgs. (12) and (14) will be seen to
follow both by direct algebra and by probability reasoning.

The Bayes estimators for  and m coincide with the PLS estimators previously
derived and provide alternative algebraic expressions for 77(¢) and 7 p(¢). Further-
more, it follows from the second expression in Eq. (12) that i p (¢) is itself a PLS
estimator:

#p(t) = argmin [|y — CmplP +m)y (DO ()D')” mD] . (14)

mpeR?

A connection between Bayes and PLS estimators is not unexpected. For instance,
Kimeldorf and Wahba (1970) established a correspondence between smoothing
splines and and certain Bayes estimators for function estimation. The PLS and Ba-
yes formulations illuminate, in complementary ways, the role of the matrix Q(t)
in expressing prior conjecture about m. It is important not to confuse such conjec-
ture with fact. The estimated frequentist risks considered in Sect. 2.2 have, as their
point, enabling the data to comment on the quality of prior conjecture.

2.2 Risk, estimated risk, and adaptation

Following the program outlined in Sect. 1, we consider the {j(t): ¢ € [0, 1]¢} as
candidate estimators for  in the incomplete unbalanced multi-way layout layout.
It is not assumed that the Bayesian model used in the preceding subsection is cor-
rect. Instead, the performance of 7(¢) as a function of the penalty-weight vector
t is scored through its estimated risk under the strong Gauss-Markov model (2).
This approach assesses the approximate bias-variance trade-off achieved by each
candidate estimator 7(z).
Let

R=C'C, U=CR'2 (15)
Evidently, U is n x g with U'U = I, and R = diag{n,, n,, ... , n,} records the
number of replications at each observed factor level combination. It follows that

n = UE with &€ = R'>?Dm. Hence & = U’n. In model (2), let z = U’y and
w = U'e. From the second expression in Eq. (14),

W0 =USmU'y, St =[I,+Vn] ™",
V(t)=R (DO (t)D') " R, (16)

The loss function (4) of candidate estimator 7(¢) is

L), n) =q '17@) —nl* = ¢~ ' 1S@t)z — &% (17)
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Let (1) = S*(t) and T(t) = I, — S(t)]z. From Eq. (17), the risk function of the
candidate estimator is

r(t) =BL>(t),n) =g ' [o? (T (1)} + tr{T (1)&E"}]. (18)

Let 62 be an L;-consistent estimator of o->. An asymptotically unbiased esti-
mator of £&" is zz/ — 821q. The Mallows (1973) estimator of risk function (18),
implicit in the derivation of the C), criterion, is then

Aty =q ' [62 (T} + w {T 1)z — 6°1p}]. (19)
The (not necessarily unique) adaptive PLS estimator of 7 is

A(f), with f = argmin7(z). (20)
te[0,1]4

The quality of 7(f) will be assessed empirically by the estimated risk 7 (f). The
asymptotics in Sect. 3 provide theoretical support for this approach by establishing
suitably uniform convergence of estimated risk to risk. The corresponding adaptive
PLS estimator of mp is i p(f) = CTH(7).

To estimate m itself, we use 71 (7). However, we cannot estimate the risk of
m(f) at factor level combinations that lack data. This is a logical consequence of
model (2), which makes no assumptions about the means m. The extrapolation of
mp(t) on Iy to m(f) on Z, illustrated in Fig. 1 for the coal-ash data and in Fig. 3
for the starch data, draws strongly on the Bayes prior or penalty structure that is
used in constructing the adaptive estimator. This extrapolation is a powerful what-if
experiment that reveals the regression function implicit in the adaptive PLS fit /i p.

Variance estimation. When n > q, the least squares variance estimator is

6is = —q@) My —iiLs = €', = UUe. @1)

Itis L;-consistent in the sense of (38) below, under the strong Gauss-Markov model
(2), if n — ¢ tends to infinity as ¢ tends to infinity.

When n = g, the absence of replication requires that an L -consistent estima-
tor of o> be based on additional data or on trustworthy prior information about 7.
The pooling of high-order interactions, as in the ANOVA, provides one way to do
this. See Sect. 3.1 in Beran (2005) for details. Variance estimation based on first
differences of adjacent observations is another way when the factors are ordinal
and the means are thought to vary smoothly with factor level. Example 1 in Sect. 4
illustrates this technique.

2.3 Penalty matrices

This section considers the ANOVA decomposition for the complete ky-way layout
of means associated with the observed incomplete layout. We design competing
classes of tensor-product penalty matrices that express the possible unimportance of
certain interactions or main effects among the means and the possible smoothness
in the dependence of these means on ordinal factors. These tensor-product penalty
matrices serve as the {Q : s € D} in the definition of the candidate estimator 7(z).
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2.3.1 ANOVA decomposition

The following algebra gives the orthogonal projections that define the ANOVA
decomposition of a complete kp-way layout of means into overall mean, main
effects, and interactions. For 1 < k < ko, define the p; x 1 unit vector u; =

p,l/z(l, 1,...,1) and the p; x py matrices
Jk = uku;(, Hk = ka — uku}(. (22)

For each k, the symmetric, idempotent matrices J; and H; have rank (or trace) 1
and p; — 1, respectively. They satisfy Ji Hy = 0 = HyJy and Ji + Hy = 1,,,. They
are thus orthogonal projections that decompose R”* into two mutually orthogonal
subspaces of dimensions 1 and p; — 1, respectively.

Let £ denote the set of all subsets of {1, 2, ... , ky}, including the empty set @.
The cardinality of £ is 2%. For every set s € £, define the p; x p; matrix
Jo ifké¢s
P ;= . . 23
sk {Hk ifk es (23)

Define the p x p Kronecker product matrix

ko
P, = ® P ko—k+1- (24)
k=1

The foregoing discussion implies that:

e Py is symmetric, idempotent for every s € £.

e If s # @, the rank (or trace) of Py is [ [, (px — 1). The rank (or trace) of Py is
1.

e If 5y and s, are two different sets in &, then P, P,, = 0= P, P;,.

b Zseé‘ PS = IP'

Consequently, the { P : s € £} are orthogonal projections that decompose R” into
2% mutually orthogonal subspaces.
The last bulleted point yields the identity

m= Z Pym, (25)

se&

whose right side expresses, in readily computable form, the ANOVA decomposi-
tion for the means of a complete kyo-way layout. Evidently, Pym is the overall mean
term. If s is nonempty, Pym is the main effect or interaction term defined by the
factors k € 5. The submodels considered in ANOVA are defined by constraining m
to satisfy P;m = O for every s € N, where N is a specified subset of £. The choice
of N identifies the main effects or interaction terms that vanish in the submodel.
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2.3.2 A class of tensor-product penalty matrices

An annihilator for factor k is a matrix Ay with p; columns such that Azu; = 0.
In other words, the rows of A, are contrasts. The basic idea is that the contrasts
in A; should quantify departures from the conjectured dependence of the means
on the levels of factor k. How exactly to do this for ordinal and nominal factors
is addressed in Sect. 2.3.3. Here we describe how to build tensor-product penalty
matrices {Q,} once the factor annihilators {A;} have been devised. The penalty
matrices then generate candidate PLS estimators as discussed in Sects. 1 and 2.1
Let D = £ — (J, the nonempty subsets of {1, 2, ... ko}. The cardinality of D is
d = 2% —1.For every subset s € D and for | < k < ko, define the py x p; matrix

T ifkgs
s,k = . 26
s {A;Ak ifkes (26)

and the p x p Kronecker product matrix

ko
05 = Q) Qs syict1- 27)
k=1

Finally, rescale Q; so that p(Q;) = 1. The foregoing definitions entail that P;Q, =
Q,P; = Q forevery s € D.

If 51, s, are different subsets of D, then there exists k such that k € s; and
k ¢ s5. Then, Qy « = A} Ar by (26) while Py, = Ji by (24). By the annihilator
property of Ay, it follows that O, ¢ P, » = 0. Hence

ko

PS2 QS] = QS] PSZ = ® [Q‘Yl,k[)fk+1PS2,k0*k+1] = 0' (28)
k=1
It follows from this and the ANOVA decomposition (25) that

m' Qsm = (Psm) Qs (Psm) (29)

for every s € D. By Eq. (7),

m' Qym = €el, +c Y t;(Psm) Qs (Pym). (30)

seD

Thus, the penalty matrix Q; in the definition of Q(#) acts solely on the ANOVA
component Pym. In this manner, the candidate PLS estimator 7(¢) or mp(¢) penal-
izes departures, in the interactions or main effects of m, from attributes determined
by the choice of the factor annihilators {A;} that define the {Q}.



184 R. Beran

2.3.3 Constructing factor annihilators

It remains to devise useful factor annihilators. Let v, = (vkl, Vk2s v et s vkpk) be
the possible levels of factor k, ordered in increasing order if that factor is ordi-
nal. Consider the hypothetical complete kyp-way layout of means associated with
the observed incomplete layout. The dependence of m; on these factor levels is
expressed by

mi = f (i, vaiys - .. ,vkoiko), iel, 31)

where f is an unknown real-valued function whose domain is the set of all factor
level combinations.
The complete layout of means forms the array

M = {f(vu,,vziz,--- svkoiko) 1< Epi,1<ih<py, ..., 1 <y Spko}-
(32)

Note that the vector m described in Sect. 1 is a systematic vectorization of the array
M. Fix k and fix the {i;: j # k}. Extract from M, as a p; x 1 vector, the elements
that are indexed by 1 < iy < py and {i;: j # k}. This vector is

m (ki j #K) = {fQups e ks v): 1< i< i} (33)

The idea that guides construction of an annihilator A; for factor k is this: the prop-
erty that |Agm (k|{i;: j # k})]| is relatively small for every choice of the values
{ij: j # k} should express plausible prior conjecture about the dependence of m
on the levels of factor k. It will be necessary to distinguish between nominal factors
and ordinal factors.

Factor k is nominal. The levels of a nominal factor are labels that can be
permuted freely without loss of information. The corresponding candidate PLS
estimators should be therefore be invariant under permutations of nominal levels.
This consideration prompts setting A, = H; for every k, the latter being defined
in (22). This choice of Ay will be called the flat annihilator for factor k, a term
suggested by the constant spectrum of the reduced singular value decomposition
of Hy. With A, = Hy, it follows from Eqs. (23) and (26) that O, x = P .

Consider the special case where every factor in the layout is nominal. Using the
flat annihilator for each factor entails Q; = P for every subset s € D. Note that
o (Py) = 1, s0norescaling is needed. In this case, the candidate PLS estimator 7 ()
essentially interpolates among the 2% — 1 ANOVA submodel fits to the incomplete
layout. The ANOVA submodel fits themselves are limit points of this set of can-
didate PLS estimators as ¢ tends to infinity (cf. Sect. 1). Consequently, adaptation
over the candidate PLS estimators yields an estimator of 1 whose estimated risk
typically undercuts that of the ANOVA submodel fit with smallest estimated risk.
The latter is also the ANOVA submodel fit with smallest Mallows C,,.

Factor k is ordinal. Suppose first that the ordered levels of factor k, arranged
as the column vector vy = (Vk1, Vg2, - .. , Ugp,)', are equally spaced. To have the
candidate PLS estimator 7(¢) favor a fit that is locally polynomial of degree ho — 1
in the levels of factor k, we take Ay equal to the h(-th difference operator of column
dimension py.
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Explicitly, consider the (g — 1) x g matrix A(g) = {8,w} in which §, , = 1,
8u.u+1 = —1 for every u and all other entries are zero. Define recursively

D1, pr) = A(pr),
D(h, p) = A(pr —h+1DD(h —1,p) for2 <h < p; — 1. (34)

Evidently the (px — ho) X pr matrix Ay = D(hg, px) accomplishes hoth differ-
encing and annihilates powers of v; up to power iy — 1 in the sense that

Aol =0 forO <h < hy— 1. (35)
’
The notation v]! denotes the vector (vl’:l, v, v,ilpk> . Moreover, in row i of Ay,
the elements not in columns i,i + 1, ... ,i + hg are zero.

More generally, if the means are expected to behave locally like a polynomial
of degree ho — 1 in factor k but the factor levels in v, are not necessarily equally
spaced, we define Ay as follows. The hyth order local polynomial annihilator Ay is
a (pr —ho) x py matrix characterized through three conditions: First, for every pos-
sible i, all elements in the ith row of Ay that are notincolumnsi,i+1,...,i+hg
are zero. Second, Ay satisfies the orthogonality constraints (35). Third, each row
vector in Ay has unit length. These requirements are met by setting the non-zero
elements in the ith row of A; equal to the basis vector of degree & in the orthonor-
mal polynomial basis that is defined on the /o 4 1 design points (vi;, - . . , Vk.ith,)-
The S-Plus function poly accomplishes this computation.

When the components of vy are equally spaced, this construction of A; reduces
to amultiple of the hyth difference annihilator described in the preceding paragraph.
In the general construction, the powers of the components of v; can be replaced
by other linearly independent functions of the factor levels to express other prior
notions about the dependence of the means on factor k.

3 Asymptotic theory

The main results of this section concern the asymptotic risk and loss of the adaptive
estimator 7(7) that was defined in Eq. (20). For mathematical clarity, we first isolate
the properties of the matrix S(¢) in Eq. (16) on which the results depend. We ask
the reader to recognize that almost every quantity in this paper depends on g. To
avoid burdensome notation, we usually omit the subscript g. Section 5 gives all
theorem proofs.

Theorem 2 Let S(t) be the matrix in expression (16) for candidate estimator 7(t).
Then, for the matrix norm (16),

sup sup p[S(t)] < oo. (36)
q  tef0,1}4

Moreover, S(t) is continuous on [0, 114 and is differentiable on the interior of
[0, 11¢ with partial derivatives {V;S(t) = dS(t)/dt,: s € D)} such that

sup sup p[VS()] < oo. (37
5. 1€[0,11¢
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The next two theorems study the asymptotic convergences of the loss, risk, and
estimated risk of the candidate estimator 7(¢) and of the adaptive estimator 7 ().
The notation and definitions are those of Sect. 2.2. All risks and asymptotics under
strong Gauss-Markov model (2). The results proved hold without any assumptions
on the unknown means m.

Theorem 3 Suppose that S(t) has the properties stated in Theorem 2. Assume that
the strong Gauss-Markov model (2) holds and that, for every finite a > 0 and
o2 >0,
lim sup E|6%—0% =0. (38)
17 g1y <a
Let W (t) denote either the loss L(7)(t), n) or the estimated risk 7 (t) of candidate
estimator 1n(t). Then, for every finite c > 0, a > 0, and o2 >0,

97 g=lpylr<a | ref0,1¢

lim  sup E|: sup |W(t) — r(t)|] =0. 39

This theorem shows that the loss, risk, and estimated risk of candidate estimator
7(t) converge together asymptotically. The uniformity of this convergence over all
t € [0, 1]¢ makes estimated risk a trustworthy surrogate for its true loss or risk. In
the proof, the boundedness of p[S(#)] ensures pointwise convergence of W (¢) to
r(t). Strengthening this pointwise convergence to the uniform convergence (39)
draws on the boundedness of the {p[V,S(z)]}.

Theorem 4 Suppose that the conditions for Theorem 3 hold. Then, for every finite
¢c>0,a>0 ando? >0,

lim sup |R({(),n, 0% —r@)| =0, withi=argminr(r). (40)

1720 g1l <a 1€10,1)¢
Moreover, for V equal to either the loss L((f), n) or risk R(7j(f), n, 0%) of §({),
lim sup E|7(f) —V|=0. 41)

970 g1 n2<a

By Eq. (40), the risk of the adaptive PLS estimator #(f) converges to the risk
of the oracle estimator #(f), which achieves minimum risk over the class of can-
didate estimators {/j(¢): ¢ € [0, 1]?}. By Eq. (41), the plug-in risk estimator #(f)
converges to the actual risk or loss of 7(¢). Through 7(f), we learn approximately
how much adaptation over the class of candidate PLS estimators reduces risk for
the data at hand.

4 Application to the examples

This section details the construction of adaptive PLS estimators for the coal ash
data and the starch data described in Sect. 1. The statistical logic in these case stud-
ies goes beyond the preceding mathematical developments. An adaptive procedure
implicitly fits the probability model that motivates it. However, using the procedure



Regression and discrete incomplete layouts 187

on data is not the same as believing that the motivating model generated the data.
Indeed, neither the coal ash data nor the starch data is certifiably random. In the
absence of randomness, the variance estimate quantifies the level of detail that is
deemed to be noise (i.e., not predictable) and thereby determines the shrinkage
transformations that yield the adaptive PLS estimators of m p, n, and m.

A probability model describes, at best, hypothetical data that is similar in se-
lected relative frequencies to what was observed; and several very different types
of model may serve this purpose. Procedures that work well in the world of an
insightful probability model may also prove satisfactory in the world of data and
computational experiments. Ultimately, this is a matter open to empirical testing.
Advances in both statistical computing and empirical process theory have induced a
dynamic that encourages experimentation with algorithms for data analysis; pushes
into the background notions of statistics as normative mathematical philosophys;
returns to prominence the fundamental distinctions among data, probability model,
and procedure; and reformulates statistics as an experimentally supported theory
and technology for data analysis.

4.1 Coal ash data

These data form an incomplete two-way layout with one observation at each ob-
served grid point. The factor levels are the grid coordinates, which encode the
geographical coordinates at which each assay sample was taken. Both factors are
ordinal, with p; = 23 and p, = 16 equally spaced levels, respectively. We tenta-
tively conjecture that mean coal ash percentage varies slowly as we move from one
grid-point to the next. On this supposition, we set the annihilator Ay to be the first-
difference operator of dimension (p; — 1) x pi for k = 1, 2. The tensor-product
penalty terms generated by these annihilators penalize, according to their weights,
departures in candidate PLS means from locally constant dependence on each of
the two geographical factors (see Sect. 2.3).

Conjectured local constancy in the means motivates the following variance
estimator. Form all first differences between adjacent observations in rows and
between adjacent observations in columns. Square these differences and then aver-
age them to obtain the first-difference variance estimator 62. This is an obvious
bivariate extension of the first-difference variance estimator for a one-way layout
(cf. Rice 1984). It is not difficult to provide conditions on i that express local
constancy and ensure that this variance estimator has L-consistency in the sense
(38). For the coal ash data, 62 = 1.038.

To completely define the candidate PLS (or Bayes) estimators in Eq. (8), (9)
and Theorem 1, we set ¢ = 10* and € = 10~7. For the coal ash data, p = 368
while ¢ = n = 208. The matrix C = I,. The estimated risk function 7(¢) in (19)
is minimized numerically at f = (.000349, .000217, 1). Calculations were done
in S-Plus 6.2.1 for Linux with the aid of the function nlmin. Cell (2,1) in Fig. 1
displays the adaptive estimate 771 (f) = 7(f) of the means at observed grid points.
Cell (2,2) presents the regression function estimate 71(f) that extrapolates the fit
to all grid points. The residual plots draw attention to one very large outlier at a
grid-point next to that of the interior missing observation. In the three mesh plots,
linear interpolation is merely a graphical device to guide the eye.
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The estimated risk of the adaptive PLS estimate () under the strong Gauss-
Markov model (2)is #(f) = 0.117. The estimated risk of the full model least squares
estimate, which coincides in this example with the raw data, is 6% = 1.038, almost
nine times as large. It is to be emphasized that neither the model nor the risk estima-
tor make any assumptions about the unknown means. The adaptive PLS estimate
constructed here is nearly additive in the two factors and is considerably smoother
than the raw data. Through smoothing and shrinkage to a submodel, this adap-
tive PLS estimate has reduced estimated risk very substantially, thereby validating
empirically the use of first-difference annihilators to construct the tensor-product
penalty matrices. Unlike kriging, which relies on random effects modeling, the
adaptive PLS methodology in this example uses a general fixed effects model—the
strong Gauss-Markov model (2).

4.2 Starch data

These data form a highly incomplete two-way layout with observations at 81
sparsely distributed grid points plotted in cell (1,1) of Fig. 2. The first factor, starch
type, is nominal with p; = 7 levels. The second factor, thickness of the starch
film, is ordinal with p, = 69 distinct levels that are not equally spaced. Having
plotted the data, we conjecture that breaking strength of a starch film varies locally
linearly with the thickness of the film. On this supposition, we set the annihilator
A, to be the generalized second-difference operator of dimension (p; — 1) x p, for
k = 1, 2. The annihilator A is set equal the projection H; of dimension p; X p; that
is appropriate for a nominal factor. The tensor-product penalty terms generated by
these annihilators penalize, according to their weights, differences between starch
types and departures from locally linear dependence of candidate PLS means on
starch film thickness.

Conjectured local linearity in how the means depend on starch-film thickness
motivates the following variance estimator. Fit a separate least squares line to the
data for each starch. Pool the residual sums of squares from these seven fits to
obtain 62. It is possible to provide conditions on 771 p that express local linearity
mathematically and ensure that this variance estimator has L-consistency in the
sense (38). For the starch data, 6% = 13, 976.

To completely define the candidate PLS (or Bayes) estimators, we set ¢ = 10°
and € = 1077, For the starch data, p = 493 while ¢ = 81 and n = 94. The
matrix C is not the identity because of a few replicated observations at a few grip
points. The estimated risk function 7(¢) in Eq. (19) is minimized numerically at
t = (1,.7707 x 107%,1). Cell (1,2) in Fig. 2 displays the regression function
estimate 7.1(f) that extrapolates the adaptive fit to all grid points. The linear inter-
polation is merely a graphical device to guide the eye. Indeed, starch type is a
nominal factor, not ordinal. The plots in Fig. 3 compare m with the raw data. The
fits appear satisfactory except for starch 5, where the data points for larger film
thicknesses exhibit a dual personality. An unrecorded factor may have influenced
these measurements. The plotted values of 7 at observed data points define 1 p in
Fig. 3.

The estimated risk of the adaptive PLS estimate 7)(f) under the strong Gauss-
Markov model (2) is #(f) = 4, 116. The estimated risk of the full model least
squares estimate, which coincides in this example with the raw data, is
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6% = 13,976, more than three times as large. In this example too, neither the
model nor the risk estimator make any assumptions about the unknown means.
The adaptive PLS estimate just constructed reduces estimated risk by strongly
penalizing the main effects of starch type and the interactions between starch type
and starch film thickness. Its success in trading off estimated bias against estimated
risk empirically validates the efficacy of the chosen annihilators.

5 Proofs

This section proves Theorems 1-4 and provides algebraic insight into the various
expressions for the Bayes or PLS estimators.

Lemma 1 Let C be the data-incidence matrix and D be the means incidence matrix
defined in Sect. 1. Let K be any p x p positive definite matrix. Then DK~'D’ is
also positive definite and

p(p'ccp+K) " D =[c'c+ (DK—ID/)‘IT1 . 42)

Proof Because DD’ = I,, it follows that D'a = 0 for ¢ x 1 vector a if and only
if a = 0. Consequently, DK ~! D’ is positive definite.
Let R = C'C, a non-singular diagonal matrix, and let £ = R 172D Then,

(K+EE) ' =k'—K'E'(I+ EK'E') EK™" (43)

by a standard identity (cf. Sen and Srivastava 1990, p. 275). Note that for any
nonsingular matrix W,

I=+W) ' +WI+W) ' =U+W) '+ +W)'W
=U+W) '+d+wH (44)

Let W = EK~'E’, a symmetric matrix. Equations (43) and (44) imply

EK+EEY'E=W-WI+W)'"W=W-W[I-U+W)"']
=WI+W)'=a+whH (45)

Substituting the definitions of W and E into Eq. (45) yields the desired identity
Eq. (42).

Proof of Theorem 1 The prior distribution on m entails that the posterior distribu-
tionis m|y ~ N (VD/C’, 02V) with

v=[pccp+om] . (46)
This yields the Bayes estimator (11) for m and the first expression in (12) for

the Bayes estimator of mp = Dm and the first expression in (13) for the Bayes
estimator of n = C Dm.
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On the other hand, the prior distribution on m implies that mp ~ N(O,
o’DQ~!(t)D’). By Lemma 1, the covariance matrix here is nonsingular. Hence
the posterior distribution is mp|y ~ N (VC/y, O’ZV) with

V=[cCc+mo'0p) '] (47)

This implies the second expression in (12) for the Bayes estimator of m , and the
second expression in (13) for the Bayes estimator of = Cm p. The equivalence of
the dual expressions for the Bayes (or PLS) estimators of m p and of n, just derived
by probability reasoning, is also established through the algebraic identity (42).

Recall definition (6): p(A) = sup, _.o[|Ax|/|x|]. The next lemma summarizes
properties of p that are used in proving Theorems 2 and 3. The notation {A;(S)}
denotes the eigenvalues of the symmetric matrix S and Apmax(S) is the largest of
these eigenvalues. This lemma is used without further comment in proving Theo-
rems 2 and 3.

Lemma 2

a. p is a matrix norm.

b. If matrices A and B have compatible dimensions, p(AB) < p(A)p(B).

c. Ifa is avector, p(a) = |a|.

d. If the vectors a, b and the matrix A have compatible dimensions, |a'Ab| <
lallblp(A).

e. p(A) = M (A'A) = Ailax (AA') = p(A)).

£ If S is symmetric, then p(S) = At (S?) = max; | (S)| and p(S?) = p2(S).

g IfSis g x q symmetric, then g~ ' tr(S)| < p(S).

Proof Parts a and c are immediate from the definition of p. Part b holds because
|ABx| |ABx|
= su

p(AB) = sup
a0 x| x: Bxz0  |X]
|ABx| | Bx|
< sup < osup —— =< p(A)p(B). (48)
x: Bxz0 |BXx| x: Bxz0 | X|

Part d follows from b and c. Part e holds because

|Ax|?
p*(A) = sup —s
x£0 x|
x'A'Ax
= sup

e = Amax(A'A) = Amax (AA)) = p*(A)).  (49)

If S is symmetric, then by part e, p2(S) = Amax (S?) = [max; |A;(S)|]>. Moreover,
P(S2) = AE(SY) = Amax(S?) = p?(S). These two calculations establish part f.
Part g follows from ¢! tr(S)| < ¢~ ' >°7_, [A:(S)| < max; [A;(S)| and part f.

Proof of theorem 2 In view of (16) and the positive definiteness of the symmetric
matrix V (1),

PLSO] = plV (O] = dmax[V T (D] < 1 (50)
for every ¢ and 7. This establishes (36).



Regression and discrete incomplete layouts 191

On the other hand,

V,S(t) = =SV, V()1S()
V,V(t) = R-VA[Vy(DQ ' (t)D) IR™'/2

v, (DO '0)D) " == (DO '1)D") " DIV,Q'@)1D' (DQ ' ()HD')”!
V0 (1) = —cQ' 1) 0,07 (). (51)

Evidently, p(R~1/2) < 1, p(D) = Aa(DD’) = 1, p(Q;) = 1 by the normaliza-
tion of the penalty matrices, and

PLOT' O] = Anax [Q7 ()] = 1/Amin[ Q)] < €7 (52)
Moreover,
p[(D0™ D) =i [(DQ D) ]
=1/Amin [POQ')D'] <€+ cd (53)
because DD’ = I, and

x’DO~'(t)D'x » _
W > Amin [Q (t)] = 1/)"max[Q(t)]

> (e+cd)". (54)

Amin [DQ ™' (t)D'] = inf

It follows from Egs. (50)—(53), using part b of Lemma 2, that p[V,S(¢)] < c(e +
cd)? /€ for every ¢, s and t. This establishes Eq. (37).

Proof of theorem 3 The strategy is to show that W(¢) — r(¢) converges in prob-
ability to zero for every 7 € [0, 1], then show that sup, (o ) |W () — r(#)| con-
verges in probability to zero, and finally use uniform integrability to establish (39).
Repeatedly used are the constraint ¢~'|n|> < a and the following properties of
T(t) = S*(t) and T(t) = [I — S(¢)]?, which follow from the Theorem assump-
tions and Lemma 2.

sup sup p[T(t)] <oo, sup sup p[T(t)] < oo

q 1e0.1]¢ q 1ef0.1)
sup sup p[V,T(t)] < oo, sup sup p[V,T ()] < oc. (55)
5.4 1e[0,1)¢ 5.q 1€[0.1]

The bounds on derivatives use the following identity: V,T'(t) = V,S(t) - S(¢) +
S(t) - Vi S(1).

We first prove the case W () = 7 (t) of (39). Define 7 (¢) by replacing 62 with o2
in the definition (19) of 7(¢). Hereafter, we generally omit the argument ¢, writing
T in place of T (t), for instance. Because of the inequality

[F(t) —F@)] <167 — o|g [ te(T)| + | tr(T)]]
< 6% = a*|[p(T) + p(T)] (56)

and the L, consistency (38) of 62, we may replace 7 () with 7*(¢) in the subsequent
argument.
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Pointwise consistency. Let
Y,(t) =7@) —r(), B@)= UT @)U’ 57)

andnote thattr(B) = tr(T) and p(B) = p(T).Recallthatz = U'y, w = U'e, £ =
U'n, and y = n + e. From Egs. (18), (19) and the foregoing definition of #(¢),

Y, () =q 't[T(zz — oI, — £€")]
=g ! [26'Tw + {wTw— aztr(T)}]
=g '[2n'Be + {¢'Be — o’ tr(B)}]. (58)
Evidently, E('Be) = 0 = E [¢/Be — 02 tr(B)] and
Var (¢~'n'Be) = ¢ *0’n'B*n < g 20*In*p(B*) < q 'o?ap*(T). (59)

Moreover, if B = {b;;} and e = {¢;}, then ¢’'Be = Y, b;;e? + 23 ijbijeie;. Let
y denote the kurtosis of ¢;, so that E(e}) = (3 + y)o* and Var(e?) = (2 + y)o™.
Then, using |B| = |T|,

Var(q~'¢'Be) = ¢ %0* <2|B|2 +y Zbﬁ) <q ' 2+y) Bl

=q 2+ ITP < g7 'd* @+ y)*(D). (60)
Thus, for every ¢ € [0, 1]¢,
plim ¥, (1) = 0. 61)
q—> 00

Uniform consistency. For any u, t € [0, 1]%,

Y () — Y, (t) = q~" Y (uy —1,) [20'VBe + {¢'V;Be — o> tr(V, B)}]
seD
(62)

where Vi B = V,B(it) for some & on the line segment that joins # and ¢. Thus,

sup |Y,(u) — Y, ()] <8¢~ Y _[21n'VsBe| + |¢'V;Be| + o°| tr(V; B)|] .

lu—t]<é seD

(63)
Moreover, using Lemma 2,
g7 w(VB)| = ¢ ' w(V,D)| < p(V,T)
g 'Eln'VsBe| < g7 '[n|Ele| p(VsB) < a'*op(V,T) (64)
q 'El¢'ViBe| < g 'Ele|’ p(V,B) = 0 p(V,T).

Applying Markov’s inequality to Eq. (63) establishes existence of a finite constant
C, not depending on ¢, such that

P { sup Y, (u) — Y, (1) = e} < Cs. (65)

|lu—t|<é
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Hence,

%im lim sup P |: sup |Y,(u) —Y,()| > ei| =0. (66)

-0 4> lu—t|<8

It follows from (61), (66) and Wichura (1971) that Y, converges weakly in C[0, 114
to the zero element of C[0, 1]¢. Hence,

plim sup |Y, ()] =0. (67)
q—>00 1[0, 1]4
Ly uniform consistency. Let Vy = sup, g 3¢ | Y, (£)] and pmax = sup, sup, g 1y
p(T (1)) Using (58) and |n| = |£],

V,<q" sup_ [216'T w| + W' T w| + o (T (1))|]
t€l0,1]

< [2a'*{g " lwl} 4+ ¢ wI* + 07 pmax = W, (say). (68)

Let W = [2a'?0 + 20?] pmax. Because |w|> = €'UU’e, a calculation akin to
Eq. (60) shows that

Var (7" wl?) < g7 'a*Q +p). (69)

Hence ¢~ '|lw|?> = {g~"/?|w|}? converges in probability to its expectation o>. By
Vitali’s theorem,

lim Elg'lw]*> =02 =0

q—)OO
70
lim Elg~'?|w| —o| < lim EY?[¢7"?|w| —0]* = 0. 70)
q— 00 q— 00
Consequently, in view of Eq. (55), lim,_, E|W, — W| = 0. This convergence,
inequality (68), and a uniform integrability argument (cf. Neveu 1965, p. 52) imply

that (67) can be strengthened to

lim E|: sup |Yq(t)|:| —0. (71)

4= re[0,14

This completes the proof of (39) when W (r) = 7(¢).

The argument for the case W (¢) = L(7)(¢), n) of Eq. (17) is similar. The loss
and risk of 7(¢) are given in Egs. (17) and (18). Note that

L#H(t),n) =q "[2&'(S — I)Sw + w'Tw + &'T¢]. (72)
Let
Y, () = LG, n) —r®) =q ' [26'Vw+ {wTw—o?uw(}]. (73

where V(t) = T(t) — S(¢). Because the right-hand side of (73) has the same
structure as the middle expression in Eq. (58), an argument parallel to the one that
follows Eq. (58) completes the proof. Indeed, Eq. (55) and the theorem assumptions
on S(¢) imply that

sup sup p[V(t)] < oo, sup sup p[V,V(?)] < oo. (74)
q te0,1)4 5.q t€[0,11¢
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Proof of theorem 4 We show that Eq. (39) implies

lim sup E|Z—r(@®| =0, (75)

970 g1 n2<a

where Z can be L(#(t), n) or L(/(f), ) or #(f). The three limits to be proved in
Egs. (40) and (41) are immediate consequences of Eq. (75).
First, (39) with W(t) = 7(¢) entails

lim sup E[F(f) —r()| =0

97 g1 n2<a
R (76)
lim sup E|F(f) —r(f)| = 0.
P g1yl <a
Hence, Eq. (75) holds for Z = 7(f) and
lim sup Elr(@) —r(@)| = 0. (77
970 g1 pP<a
Second, Eq. (39) with W(¢) = L(7(2), n) gives
lim sup E|L(#H(@),n) —r@)| =0
970 g1 |n2<a
) . . (78)
lim sup E|L(n(),n) —r()| =0.
970 g1 |n2<a

These limits together with Eq. (77) establish the remaining two cases of Eq. (75).
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