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Abstract Local mixture models have proved useful in many statistical
applications. This paper looks at ways in which the local assumption, which
is used in an asymptotic approximation, can be relaxed in order to generate a
much larger class of models which still have the very attractive geometric and
inferential properties of local mixture models. The tool used to develop this
large class of models is the Karhunen–Loève decomposition. Computational
issues associated with working with these models are also briefly considered.

Keywords Local mixture models · Information geometry · Karhunen-Loève
decomposition · Posterior approximations

1 Introduction

The idea of using a local mixture model to simplify the inferential problems
associated with general mixture families has proved to be a useful one, see
Marriott (2002). Applications can be found in measurement error modelling,
Marriott (2003), in Bayesian prediction Marriott (2002), lifetime data analysis
and in influence analysis Critchley and Marriott (2003), also related ideas can
be found in Eguchi (2005) and Anaya-Izquierdo and Marriott (2005). We also
note strong links between the local mixture approach and that of Amari (1990,
Chapter 8), which looks at estimation in the presence of very large numbers of
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nuisance parameters. Both techniques use the geometric construct of a normal
fibre bundle, defined below. Amari’s results show that the dimension of the fibre
of the normal bundle can grow with the sample size while still allowing efficient
inference for the interest parameters, and this paper has analogous results when
the inferential issue is marginal inference on an interest parameter. This paper
extends the discussion of Marriott (2005) which first introduced the forms of
fibre bundle discussed here.

The following example shall be used throughout to illustrate the discussion.

Example 1 Consider the problem of inference about the parameter μ for the
model

X ∼ fX(x|μ, Q) :=
∫

fX(x|μ + η)dQ(η) (1)

where Q is a distribution which, for identification reasons, is constrained to have
mean zero, and fX(x|μ) is the exponential distribution with mean parameter μ.
We might, for example, consider model (1) in the context of a simple lifetime
analysis problem, where an exponential baseline model has been used, but the
possibility of an unmeasured frailty, or random effect needs to be investigated.
We emphasis that the problem of interest is to learn about μ, which has a pop-
ulation meaning as E(X) regardless of the mixing distribution Q. In Bayesian
terms we want to calculate the marginal posterior for μ,

∫
P(μ|x1, . . . , xn, Q)dP(Q) =

∫
Q

{
n∏

i=1

∫
fX(xi|μ + η)dQ(η)

}
dP(Q) (2)

for some measure dP on Q which will be some subset of the space of distri-
butions. For simplicity we shall assume throughout that the information in the
likelihood dominates that of the priors and shall not therefore consider their
form explicitly.

The structure of (2) is clearly problematic from an inferential point of view.
Apart from the fact (1) itself is not in closed form, it is required to integrate
out over an infinite dimensional ‘nuisance’ parameter Q ∈ Q. The idea of the
local mixture, and the extensions of it in this paper, is to replace this infinite
dimensional integral with a finite dimensional one without a great change in
marginal inference on μ.

2 Normal bundles

Amari (1990) showed the statistical importance of a normal bundle in the con-
text of both inference in curved exponential families and undertaking inference
on an interest parameter when there are, potentially, very large numbers of
nuisance parameters. One way of understanding this structure is to consider
when fX(x|μ) is a parametric family of density functions and we can construct a
larger family fX(x|μ, ξ) such that (1) fX(x|μ, 0) equals fX(x|μ) for all μ, (2) for
each fixed μ0 the family fX(x|μ0, ξ)− fX(x|μ0) is Fisher orthogonal to the score
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of fX(x|μ) at μ0 and (3) the family fX(x|μ0, ξ) has zero −1-curvature either at
(μ0, 0) or globally. Here the −1-curvature is defined with the ∇−1-connection,
see Amari (1990). A family fX(x|μ, ξ) which satisfies conditions (1), (2) and (3)
can be called a normal −1-affine fibre bundle and the subfamily parametrized
by ξ for a given μ0 is called the fibre at μ0.

As shown in Amari (1990) such normal bundles arise naturally when
fX(x|μ, ξ) is a full exponential family and the fibres are defined by the ancillary
family associated with the maximum likelihood estimate of the curved exponen-
tial family fX(x|μ). In this example it is the geometric structure of the −1-affine
fibre bundle which ensures third order asymptotic efficiency in the estimation
of the subfamily, fX(x|μ), (Amari 1990, Theorem 5.6).

The normal bundle is easily constructed when fX(x|μ) is a curved exponen-
tial family by using the embedding full exponential family, but there is a much
more general way of defining normal −1-affine fibre bundles on general para-
metric families. This construction is most easily understood in the affine space
defined by

〈XMix, VMix, +〉 .

In this construction the set XMix is defined as

XMix =
{

f (x)|f ∈ C∞(S, R), f ∈ L2(ν),
∫

f (x)dν = 1
}

,

a subset of the smooth functions from the fixed support set S to R, and ν is
a measure defined to have support on S. Furthermore VMix is defined as the
vector space

VMix =
{

f (x)|f ∈ C∞(S, R), f ∈ L2(ν),
∫

f (x)dν = 0
}

.

Finally the addition operator is the usual addition of functions. Note that
there is no requirement that an element of XMix be a positive function and
in fact the space of density functions is a convex subset. The affine structure
of 〈XMix, VMix, +〉 agrees with Amari’s −1 connection in the sense that affine
subsets are ∇−1 flat, and will be referred to as the −1 geometry, see Marriott
(2002). The condition on being a subset of L2(ν) allows inner products to be
defined on the affine space in a natural way.

Using this construction a finite dimensional normal fibre at μ0 to a fam-
ily fX(x|μ) is spanned by a set of linearly independent functions gi(x, μ0) i =
1, . . . , n such that gi(x, μ0) ∈ VMix and all of these functions are Fisher orthogo-
nal with the score vector of the parametric family at μ0. This condition is given by

∫
S

gi(x, μ0)
∂fX
∂μ

(x|μ)|μ=μ0

fX(x|μ0)
dν = 0, (3)
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where S is the sample space. Care is required in the interpretation of (3) as an
orthogonality condition. Amari (1990, Chapter 3) considers various represen-
tations of the tangent vector ∂

∂θ i for a general parametric family fX(x|θ). The
+1 representation is the vector space isomorphism given by

∂

∂θ i → ∂ log fX(x|θ)

∂θ i

under which the Fisher information matrix has the usual co-ordinate form

∫
∂ log fX(x|θ)

∂θ i

∂ log fX(x|θ)

∂θ j fX(x|θ)dx.

However, much more relevant for this paper is the −1 representation defined via

∂

∂θ i → ∂fX(x|θ)

∂θ j .

Since it is clear that

∫
∂ log fX(x|θ)

∂θ i

∂ log fX(x|θ)

∂θ i fX(x|θ)dx =
∫ ∂fX (x|θ)

∂θ i
∂fX (x|θ)

∂θ j

fX(x|θ)
dx

the form of (3) is the natural generalisation of this −1-representation of the
Fisher information on the vector space VMix of which both gi and ∂fX

∂μ
(x|μ) are

members.
The fibre is defined as the finite dimensional affine space

fX(x|μ0) +
n∑

i=1

λigi(x, μ0),

and a normal bundle is then automatic if we have this condition for all μ and the
dependence of gi(x, μ) on μ is smooth. Thus the construction of rich families of
normal bundles in 〈XMix, VMix, +〉 depends on being able to find such families
gi(x, μ). The local mixture model gives one way of constructing these fibres.

2.1 Local mixture models

The idea behind a local mixture model is to approximate (1) by replacing the
dependence the infinite dimensional Q with a finite dimensional parameter,
where the approximation is good for a particular class of mixing distributions.
In particular if Q is the set of distributions which are ‘close to a delta function’,
then a Laplace approximation gives that
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∫
fX(x|μ + η)dQ(η) ≈ fX(x|μ) + α

∂2

∂μ2 fX(x|μ) + β
∂3

∂μ3 fX(x|μ) (4)

=̇ fX(x|μ, α, β)

where α = 1
2

∫
η2dQ(η), β = 1

3!
∫

η3dQ(η). Note that the definition given here
is not the same as that in Marriott (2002), and details can be found in Anaya-Iz-
quierdo and Marriott (2005, submitted). In particular note that when fX(x μ) is a
natural exponential family, parametrized by the mean parameter then it follows
that the terms ∂ i

∂μi fX(x|μ) are Fisher orthogonal and linearly independent, thus
we get a normal bundle structure. Furthermore, the family fX(x|μ, α, β) is iden-
tified in all its parameters, (K. Anaya-Izquierdo and P. Marriott (submitted)).

Since Example 1 satisfies the above conditions we can think of applying the
local mixture model to the problem of marginal inference on μ. Thus as long
as Q lies in the class of distributions where (4) is a good approximation, then
the infinite dimensional marginalization (2) can be well approximated by a 2D
marginalization

∫
P(μ|x1, . . . , xn, Q)dP(Q) ≈

∫ {
n∏

i=1

fX(xi|μ, α, β)

}
dP(α, β). (5)

This is clearly a much easier computation, but does need care over the region
of (α, β) space where the approximation (4) makes sense. The ease of construc-
tion of the fibre in the affine space 〈XMix, VMix, +〉 comes at the price that it is a
superset of the space of positive densities, and hence boundaries on parameter
space have to be defined. There are in fact two types of boundary which need
care in the analysis of Example 1. These are

Hard boundary: defined by condition that fX(x|μ, α, β) ≥ 0 for all x.
Soft boundary: defined by fX(x|μ, α, β) lying in convex hull of curve fX(x|μ) in
the mixture affine geometry.

The hard boundary ensures that we are dealing with real density functions, while
the soft boundary ensures that the resultant approximation can be realised by
an exact mixture model, see (K. Anaya-Izquierdo and P. Marriott (submitted))
for details.

In Example 1 the base family is +1-affine, while the fibres are −1-affine. The
model is illustrated in Fig. 1, which represents a 3D manifold with boundary
embedded in the affine space 〈XMix, VMix, +〉. It is the hard and soft boundaries
discussed which give the illustrated boundaries, and note that these boundaries
can have singularities. In general the geometry of the fibre is closer to that of a
simplex than a manifold.

Recall that the question of interest for this paper is, for a given data-set,
can a finite dimensional integral be constructed that gives an (arbitrarily) good
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Fig. 1 Local mixture model embedded in −1 affine space

approximation to the infinite dimensional integral (2)? To investigate this con-
sider the local approximation (4) in more detail. This approximation is used at
a finite number of data points xi, i = 1, . . . , n in (5) and can be thought of as a
Taylor expansion inside the integral plus the regularity conditions which allow
the operations of integration and differentiation to commute

∫
fX(xi|μ + η)dQ(η) =

∫
{fX(xi|μ) + η

∂

∂μ
fX(xi|μ) + η2

2
∂2

∂μ2 fX(xi|μ)

+ η3

3!
∂3

∂μ3 fX(xi|μ) + R(xi, μ, η)}dQ(η)

= fX(xi|μ) + α
∂2

∂μ2 fX(xi|μ) + β
∂3

∂μ3 fX(x|μ)

+
∫

{R(xi, μ, η)} dQ(η). (6)

Note that this explicitly uses the identification assumption that the expected
value of Q is zero in the mean parametrization. Also it is easy to check, and
shown in (K. Anaya-Izquierdo and P. Marriott (submitted)), that for many expo-
nential families the second and higher derivatives in the mean parametrization
satisfy orthogonality condition (3) i.e.

∫ ∂k

∂μk fX(x|μ) ∂
∂μ

fX(x|μ)

fX(x|μ)
dx,

for k ≥ 2.
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Thus the approximation given by (4) will be useful when we know that the
remainder is uniformly ‘small’ in i and the class of mixing distributions under
consideration. Intuitively the local mixture approximation will be good for all
mixing distributions Q which have most of their mass in a region where each of
the n functions fX(xi|μ + η) can be well approximated by cubic functions of η.

Note that in the integral (2) it is required that the approximation

n∏
i=1

{
fX(xi|μ, α, β) +

∫
R(xi, μ, η)dQ(η)

}
≈

n∏
i=1

fX(xi|μ, α, β)

For this to be reasonable we must have that

n∏
i=1

{
1 +

∫
R(xi, μ, η)dQ(η)

fX(xi|μ, α, β)

}
≈ 1

Hence it is the relative error
∫

R(xi, μ, η)dQ(η)

fX(xi|μ, α, β)
(7)

which must remain small and this is impossible if the local mixture fX(xi|μ, α, β)

is zero, i.e. on the hard boundary,

2.2 Numerical illustration

To illustrate some of these issues a numerical example of Example 1 is explored
here which shows some of the geometric points which arise. A data set has been
generated from a discrete mixture of two well separated exponential distribu-
tions, one with mean 20 the other with mean 2 and a mixing proportion of 0.5.
The data is plotted in Fig. 2, together with the maximum likelihood fit from the
unmixed model family. Of note in the data is the very large observation which
will turn out to be highly influential in a mixture model analysis. Also shown in
Fig. 2 is the posterior distribution for the mean parameter μ under the assump-
tion that the unmixed model holds. This is object which is of interest, in that we
want to see how inference on μ is affected by different assumptions on possible
mixing distributions. Note that knowing that this is the object of interest gives
us a ‘scale’ relative to which we can measure how good an approximation is.
Perturbations which only have a small effect on the μ-posterior can, will little
inferential loss, be disregarded.

To illustrate the quality of the Taylor approximation given by (6) consider
Fig. 3. In order to get good behaviour we need the approximation to be good
at each of the observed points xi uniformly in some region of μ + η. Figure. 3
illustrates the approximation at μ = μ̂, the maximum likelihood estimate of the
unmixed model. Furthermore, the function fX(xi|μ + η) is shown in a region of
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Fig. 2 Dataset with fitted exponential density

(a) (b) (c)

(f)(e)(d)

Fig. 3 Checking the quality of the polynomial approximation for Example 1

parameter space μ̂±5 which is reasonably large relative to the uncertainty in μ

shown in Fig. 2. This figure illustrates the effect of looking at different observed
data values by using the minimum, median and maximum value of the data
respectively in panels (a), (b) and (c). The panels below each of these shows
the relative error, on a percentage scale, of approximation (6), i.e. by plotting

R(xi, μ, η)

fX(xi|μ) + η ∂
∂μ

fX(xi|μ) + η2

2
∂2

∂μ2 fX(xi|μ) + η3

3!
∂3

∂μ3 fX(xi|μ)
(8)
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for values of η ∈ [−5, 5]. It is clear that if (8) is uniformly small then the impor-
tant term (7) will be small for all mixing distributions which have support in
μ ± 5. A good diagnostic is to see how large his relative error gets in the region
of interest.

There are various issues to be considered. Firstly it is clear that the quality
of the approximation is not uniform at each observed data point, rather at the
extremes the worst approximation can be seen. This is quite consistent with the
well known fact that with mixture models, unlike exponential families, infer-
ential information is not uniformly spread across all data points, rather there
can be highly influential points. Secondly it is clear from panels (c) and (f) why
the polynomial approximation used in (6) is poor. The function fX(xmax|μ + η)

approaches zero for large negative η exponentially fast, and so the polynomial
approximation can not do well here. In fact it is clear that simply adding higher
order derivatives to the approximation (6) will not help either since a finite
polynomial can not approximate exponential decay.

3 Global extensions

The local mixture model is thus based on expanding each of the terms
fX(xi|μ + η) in a linear space of basis functions of η such that a uniformly
small remainder results. The polynomial set of basis functions which works well
in the local expansion do not work well over larger possible values of η since
the number of components needed very rapidly gets too large. Another way of
selecting a functional basis needs to be found.

In Marriott and Vos (2004) a data based eigen-function approach was used
to find approximate sufficient statistics for highly curved (in a +1-geometry
sense) parametric families. Analogously we can consider using the −1-geome-
try version of this to construct the basis of functions using which we will make
approximations.

The tool that is going to be used is a functional version of principle component
analysis (PCA) constructed using the Karhunen–Loève (K–L) decomposition,
see Papoulis (1984). In order to make this rigourous we first define a compact
subsets C of parameter space, and a class of distributions defined on C. Consider
the eigen-function equation

∫
C

G(μ1, μ2)ei(μ1)dμ1 = λei(μ2), (9)

where the kernel can have the form

G1(μ1, μ2) =
∫

(fX(x|μ1) − fX(x|μ)) (fX(x|μ2) − fX(x|μ))

fX(x|μ)
dx (10)
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or alternatively a kernel more determined by the data-set in question

G2(μ1, μ2) =
n∑

i=1

{
(fX(xi|μ1) − fX(xi|μ)) (fX(xi|μ2) − fX(xi|μ))

fX(xi|μ)

}
. (11)

By spectral theory, Rudin (1973, pp. 305–311), if C is compact and G continuous
there exists a countable set of eigenfunctions {ei} with eigenvalues {λi} ordered
such that λ1 ≥ λ2 ≥ · · · ≥ 0. These eigenfunctions can be chosen to form an
orthonormal basis for the set of smooth functions from C to R with respect to
the inner product defined by

〈f , g〉 =
∫

C
f (μ)g(μ)dμ.

The number of eigen-functions which are selected for the basis expansion of
fX(xi|μ + η) is then chosen using the spectrum of the eigen-function equation
(9) in the usual PCA way. The idea is to throw away only the eigen-functions
with small eigen-values. If we do this, keeping a basis of K eigen-functions, then
the corresponding version of (6) will be

∫
C

⎧⎨
⎩fX(xi|μ) +

K∑
j=1

sj(xi)ej(μ + η) + R(xi, μ, η)

⎫⎬
⎭ dQ(η). (12)

Using this expansion the global mixture expansion will have K + 1 parameters
and has the form

fX(xi|μ, α1, . . . , αK) = fX(xi|μ) +
K∑

j=1

αjsj(xi),

where

αj =
∫

C
ej(μ + η)dQ(η).

Thus the infinite dimensional marginalizing equation (2) has become a finite
dimensional integral over K-dimensions. As before the computation has to be
over a region which takes care of the hard and soft boundaries which ensures
that:

[C1] : fX(xi|μ, α1, . . . , αK) ≥ 0,

[C2] : fX(xi|μ, α1, . . . , αK) ∈ convex hull of {fX(x|μ + η)|μ + η ∈ C}.



Extending local mixture models 105

In order to show that these functions si(x) can define a normal bundle in the
same way that the derivatives of fX(x|μ) we need to check that they lie in the
vector space VMix.

Theorem 1 The function si defined in (12) are elements of VMix.

Proof This follows from the definition of si in (12) and the othogonality of the
eigenfunctions by

si(x) =
∫

C
{fX(x, μ + η) − fX(x, μ)} ei(η)dη.

Hence it follows that

∫
S

si(x)dx =
∫

S

∫
C

{fX(x, μ + η) − fX(x, μ)} ei(η)dηdx

=
∫

C

∫
S
{fX(x, μ + η) − fX(x, μ)} dx ei(η)dη

=
∫

C
0ei(μ)dμ

= 0.

��

As shown in (K. Anaya-Izquierdo and P. Marriott (submitted)) when fX(x|μ)

is an exponential family in the mean parametrisation, then all terms in the Tay-
lor approximation, after the first, are Fisher orthogonal to the score vectors
∂

∂μ
fX(x|μ), thus the normal bundle structure is automatic. This will not nec-

essarily hold in the eigen-function expansions and so care needs to be taking
with identification. In general the expansion is done in the subspace which is
orthogonal to ∂

∂μ
fX(x|μ).

3.1 The error in the expansion

It is important to understand the nature of the remainder term in any of these
expansions. The following calculations shows how knowledge of the spectrum
of the eigen-function expansion (9) determines bounds on this remainder. In
particular for approximations to be relevant to marginal posterior expressions
such as (2) we need approximations which are uniform within the relevant class
of mixing distributions Q.

In this section the data driven kernel G2 is considered, but similar results can
be calculated for G1 and other kernels. Throughout we will assume sufficient
regularity on the family fX(x|μ) so that all operations below are valid.
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Denote the element of VMix which is centred at fX(x|μ) by

fX(x|η) = fX(x|μ + η) − fX(x|μ),

and the remainder

R(x, η) = fX(x|η) −
K∑

i=1

sj(x)ej(η) =
∞∑

j=K+1

sj(x)ej(η).

The following calculation is useful in showing the nature of the bound.

n∑
i=1

R(xi, μ)2

fX(xi|μ)
=

n∑
i=1

1
fX(xi|μ)

⎧⎨
⎩

∞∑
j=K+1

sj(xi)ej(η)

⎫⎬
⎭

2

=
n∑

i=1

∑
j,k>K

1
fX(xi|μ)

sj(xi)sk(xi)ej(η)ek(η)

=
n∑

i=1

∑
j,k>K

1
fX(xi|μ)

{∫
C

fX(xi|η)ej(η)dη

}

×
{∫

C
fX(xi|η)ek(η)dη

}
ej(η)ek(η)

=
∑

j,k>K

{∫
C

∫
C

n∑
i=1

{
fX(xi|η1) fX(xi|η2)

fX(xi|μ)

}

× ej(η1)ek(η2)dη1dη2
}

ej(η)ek(η)

=
∑

j,k>K

∫
C

{∫
C

G2(η1, η2)ej(η1)dη1

}
ek(η2)dη2ej(η)ek(η)

=
∑

j,k>K

{∫
C

λjej(η2)ek(η2)dη2

}
ej(η)ek(η)

=
∑

j,k>K

λjδjkej(η)ek(η)

=
∑
j>K

λje2
j (η),
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where δjk is the delta function. Thus a bound on the tail of the expansion∑
j>K λje2

j (η) is a bound, for each observed xi on the relative error

R(xi, μ)2

fX(xi|μ)
.

Since, for each fibre fX(xi|μ) is known the tail of the expansion gives a direct
bound on R(xi, μ) which is uniform for all possible mixing distributions Q. Thus
the smallness of the bound (7) will be assured as long as the term fX(xi|μ, α, β)

is bounded away from zero as discussed above.

3.2 Numerical illustration

In this section the eigen-function approach is applied to the data used in
Sect. 2.2. All calculations are done numerically with a compact set C being cho-
sen and then discretized uniformly into a vector of dimension 50 in each set. The
eigen-functions from (9) are then calculated from the natural discretised ver-
sion of this equation. In general this means that all calculations are done in a
relatively high, but finite, dimensional space. There are various computational
issues which need careful consideration tol allow numerical schemes to run at
a suitable speed but these issues will only be sketched here.

The method requires that a compact set C is defined around μ in order to
analyse the −1 fibre at μ. Here two choices are made with a small and large C
being selected, again small and large are relative to the posterior plot in Fig. 2.
Here small was taken as μ ± 0.1 while large was μ ± 5 in the mean parametri-
zation. Once the compact set is chosen an eigen-analysis of (9) is undertaken
given eigen-functions and eigen-values. For the small set the top eigen-functions
are shown in Fig. 4 and for the large set in Fig. 5. It is clear from Fig. 4 that
the polynomial approximation used by the local mixture model is reproduced
by the eigen-functions in (6). However it is also clear from Fig. 5 that the basis

Fig. 4 Eigenvalues and vectors for very small set μ ± 0.1
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Fig. 5 Eigenvalues and vectors for large set μ ± 5

of polynomials do not do a good job for the larger C. Further the spectra of
the two different cases shows that fewer eigen-functions are needed in the local
analysis than the global. These spectra give us a way of selecting the number of
terms needed, in the way familiar to PCA.

The key idea in the eigen-function approximation is that the approximation

fX(xi|μ + η) ≈ fX(xi + μ) +
K∑

j=1

sj(xi)ei(μ + η) (13)

is good for all observed data points xi and for all η in the set C. If this holds
then any integral

∫
C fX(xi|μ + η)dQ(η) can be approximated by fX(xi|μ) +∑K

j=1 αjsj(xi) for some vector α1, . . . , αK where αj := ∫
C ej(μ + η)dQ.

The quality of the approximation (13) in the large C case is shown in Fig. 6
for a selection of different data values in the same way as Fig. 3. It can be
seen that the (4D) approximation, given by the dots, gives an extremely good
approximation to the actual likelihood, given by the solid line. The percentage
relative error is plotted on the same scale as Fig. 3 and on this scale the error
is negligible. The quality of this approximation can be formalised by analysing
the spectrum of the eigen-function equation given by (9) and is shown in Figs. 4
and 5.

Having shown that the finite dimensional approximation fX(xi|μ, α1, . . . , αK)

is all that is needed to understand the marginal inference problem on μ we
need to address the hard and soft boundaries for which this model is defined.
The soft boundary is defined via a convex hull in the −1-affine space. One way
to characterise this is to find its extremal point. This is done numerically, using
discretisation, in Fig. 7 for the small C case. The points lie in a 3D affine space
and the pairwise co-ordinates are shown. It is necessarily to sample from the
posterior of this convex hull and this can be done by calculating the Delaunay
triangulation using an algorithm such as Quick–Hull (see Barber et al. 1996)
then rejection sampling can easily be done to sample from the posterior.



Extending local mixture models 109

(a) (b) (c)

(f)(e)(d)

Fig. 6 Checking the quality of the eigenvalue approximation for Example 1

4 Discussion

This entire theory has been conditional on choosing the compact set C. This set
defined the class of mixing distributions over which the marginalization has be
done over. Loosely we have integrated over the class of QC such that (1) either
Q has support in C , (2) or, and this is much more useful,

∫
C

dQ(η) ≥ 1 − ε

for some pre-selected small ε.
Also of interest is the effect on C on the number of components needed

in the approximation. Let K(C) be the number of components required for
set C according to any well-defined criterion used in PCA, for example a per-
centage of the sum of the chosen eigen-values in terms of the total. Numerical
experiments with Example 1 gives rise to the following conjecture.

Conjecture The number of components K(C) will be bounded as |C| → ∞, but
the bound will be data dependent. The bound on the number of components
needed tells us the maximum possible number of ‘nuisance’ parameters that are
needed for marginal inference on μ for a given data-set. This has been described
in the literature as the effective degrees of freedom for a problem. Note that
unlike the derivation of this quantity in versions of information criteria such as
AIC or BIC, the underlying geometric model here is not a manifold, but much
more closely related to a simplex due to the convex hull condition.
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Fig. 7 Convex hull defined by extremal points in −1 fibre. In this plot, via discretization, a set of ex-
tremal points of the convex hull in 3D has been plotted. The convex hull is then well approximated
by the convex hull of these points
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