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Abstract A decision problem is defined in terms of an outcome space, an
action space and a loss function. Starting from these simple ingredients, we
can construct: Proper Scoring Rule; Entropy Function; Divergence Function;
Riemannian Metric; and Unbiased Estimating Equation. From an abstract view-
point, the loss function defines a duality between the outcome and action spaces,
while the correspondence between a distribution and its Bayes act induces a
self-duality. Together these determine a “decision geometry” for the family of
distributions on outcome space. This allows generalisation of many standard
statistical concepts and properties. In particular we define and study general-
ised exponential families. Several examples are analysed, including a general
Bregman geometry.

Keywords Bregman geometry - Decision geometry - Generalised exponential
family - Information geometry - Proper scoring rule - Unbiased estimating
equation

1 Introduction

Consider a statistical decision problem (X, A, L), defined in terms of an out-
come space X, action space A, and real-valued loss function L. Letting P be a
suitable class of distributions over X’ such that L(P,a) := Ex~pL(X,a) exists
foralla € A, P € P, we introduce, for P,Q € P, x € X

Bayes act ap := arginf,c 4 L(P,a)
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78 A. P. Dawid

Proper scoring rule S(x, Q) := L(x,ap)
Entropy function H(P) := S(P, P)
Divergence function d(P, Q) := S(P,Q) — H(P)

These quantities have special properties inherited from their construction
(Dawid, 1998). In particular:

H(P) is concave in P

S(P, Q) is affine in P

S(P, Q) is minimised in Q at Q = P
d(P,Q) — d(P, Qo) is affine in P
d(P, Q) > 0, with equality if Q = P

Conversely, these properties essentially characterise entropy functions, scoring
rules and divergence functions that can arise from a decision problem in this
way. In Dawid (1998),Dawid and Sebastiani (1999) they are illustrated for a
number of important cases, and used to determine the optimal choice of an
experimental design.

1.1 Equivalence

Suppose that a new loss function is defined by L*(x,a) = ¢ L(x,a)+k(x) (¢ > 0).
Then the Bayes acts are the same for L and L*, and, defining k(P) = Ep{k(X)}
(assumed to exist), we have

§*(x,0) = c¢S(x, Q) + k(x)
H*(P) = cH(P) + k(P)
d*(P,Q) = cd(P, Q).
In this case we call the two decision problems equivalent, and strongly equivalent

if moreover ¢ = 1. For most purposes we do not need to distinguish between
equivalent problems.

2 Parameter estimation
Let @ = {Qg} C P be a smooth one-parameter family of distributions. Given

data x = (xq,...,x,), with empirical distribution ﬁn € P, a popular method of
“estimating” 0 is by the minimum divergence criterion:

6 = argrrgnd(?n,Qg). (1)

When d derives from a decision problem as above, this is equivalent to optimum
score estimation (Gneiting and Raftery, 2005), which operates by minimising
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the cumulative empirical score:

n
6 = argm@inzllS(xi,G) (2)
=

(where we abuse notation by wliting S(x,0) for S(x,Qg)) — in which form it
remains meaningful even when P, ¢ P. .
Defining now s(x,0) := (3/360)S(x, 6), we see that 6 will satisfy the estimating

equation
n

> s(xi,0) = 0. (3)

i=1

Theorem 1 Ey s(X,0) =0.
Proof The quantity Eg, S(X,6) is minimised in 6 at 6y. Thus at 6 = 6y,

0 = (d/d6) Eg, S(X,06)
= Eg, s(X,0).

Corollary 2 The estimating Eq. (3) is unbiased.

We can thus apply standard results on unbiased estimating equations to
describe the properties of the minimum empirical score estimator 6: in particu-
lar, it will typically be consistent (though not necessarily efficient).

The above results generalise readily to multi-dimensional parameter spaces.

3 Decision geometry

We now introduce a concrete framework within which we can naturally define
and manipulate geometric properties associated with a decision problem. The
theory outlined below can be made rigorous for the case of a finite outcome
space X, but is also indicative of properties that (under appropriate technical
conditions) should hold more generally.

Let W be the vector space of all signed measures over X, and V' the vec-
tor space of all real functions on X. These spaces are in natural duality with
respect to the bilinear product (m, f) = [ f(x) dm(x). In particular (P, f) =
Ex~p{f(X)} for P a probability distributions on X'. The set P of all distributions
on X is a convex subset of W of codimension 1, and its relative interior P° — the
set of all everywhere positive probability distributions on X’ — is a differentiable
manifold. At any P € P°, the tangent space to P° can be naturally represented
as the subspace W := {m € W : m(X) = 0}. This allows us to identify tangent
vectors in different tangent spaces, so defining a flat affine connexion on P° —
the mixture connexion (Dawid, 1975) — which we denote by V.
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80 A. P. Dawid

The dual of W is the quotient space V* := V/1, where 1 denotes the one-
dimensional space of constant functions on X. We denote by =+ the natural
projection from V to V*. For v,v' € V we write v ~T V' if x T (v) = 7T (), i.e.
the functions v and v’ differ by a constant.

Consider now a decision problem (X, A, L). With L understood, we hence-
forth identify a € A with its loss function L(-,a), thus converting the action
space into a subset £ of V, which we shall assume closed and bounded from
below. Allowing randomised acts, £ is convex. Let £* denote its lower boundary,
consisting of the admissible acts. Without any essential effect, we henceforth
replace £ by the convex set {v € V : v > a for some a € L}, which has the same
lower boundary £*. Then Tp := {v € V : (P,v) = H(P)} is a supporting hyper-
plane to £, and we can characterise £ dually as {v € V : (P,v) > H(P),all P €
P}.

For present purposes we make the following basic assumptions:

(i) For any P € P there is exactly one Bayes act p € L£*. (We use corre-
sponding upper case and boldface lower case symbols for a distribution
in P and its Bayes act in L.)
(ii) Distinct distributions in P have distinct Bayes acts in £*. Equivalently,
the scoring rule § is strictly proper: S(P, Q) > S(P, P) for Q # P.
(iii) Everya € L£* is a Bayes act for some P € P.

The function A : P — L* taking each P to its Bayes act p is then a (1, 1) corre-
spondence. The supporting hyperplane Tp now becomes the tangent plane to
L at p, intersecting £ at the single point p.

We note the following identifications:

The expected loss L(P,a) is (P, a)

The Bayes act is the score function: p(-) = S(-, P)

S(P,Q)is (P, q)

H(P)is (P, p)

d(P,Q)is (P, q —p).
Now let LT := 7 1(L*) € VT. Note that at most one member of a ray
vii={(v+k:keR)eVrcanbein L* sothat 7T : £L* - Lt isa (1,1)
correspondence.

Lemma 3 L7 is convex.

Proof We have to show that, for P,Q € P and 0 < o < 1, there exist R €
P, k € Rsuch thatr(x) = wpx) + (1 — w) q(x) — k.

ForIl € P,letk(Il) ;= 0w S(I1,P)+(1—w) SIT,Q)—HI) = wd(I1,P)+(1—
) d(T1, Q). This is a non-negative convex function on P. Let k := infjp k(I1),
and suppose that this infimum is attained at R € P. Alsolet v := wp + (1 —
w)q— k.

Forany IT € P, (I1,v) = w (I1,p) + (1 —w) (I1,q) — k = k(IT) + H(IT) — k >
H(IT), whence v € L. Moreover (R,v) = H(R) = inf,cr(R,a). Thus v = r, the
Bayes act for R, and the required property is demonstrated. O
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The geometry of proper scoring rules 81

We have thus shown that the map AT := 7™ o A provides a (1,1) correspon-
dence between the convex sets P € W and LT C VT, (Since the orientation of
the tangent plane 7p in V to £ at p = A(P) is determined by P, we further see
that, knowing 1™, we can recover £* and A up to an unimportant translation by a
constant.) This correspondence determines the decision geometry on P induced
by the given decision problem. In particular, it represents P° as an open convex
subset of V*, which in turn allows us to represent the tangent space to P° at any
of its points by V*. This then allows us to identify tangent vectors at different
points, thereby defining a flat affine connexion on P°, which we denote by V*
and term the decision connexion. Since this depends on the specific decision
problem from which it is constructed, there is no general relationship between
V* and the mixture connexion V.

3.1 Estimating function

The image p* € L of P € P is the set of functions on X of the form S(-, P) +
constant. Hence in order to determine the decision geometry, we only need to
know S(-, P) up to a constant—which could however depend on P.

Suppose then we are given a function Z : X x P — R such that we know
only that S(x,P) ~T Z(x,P), i.e. S(x,P) has the form Z(x,P) — k(P). For a
parametric family @ = {Qp} we then have S(x,0) = Z(x,0) — k(6). Defining
7(x,0) := 9 Z(x,0)/0 6, we thus know that s(x,0) is of the form z(x,0) — k(0)
(with a dot denoting differentiation with respect to 6). Applying Corollary 2,
we see that )

k(©) = Eo{z(X,0)}. “4)

We can integrate this with respect to 6 to obtain k(6) — and thence the function
k : P — R (up to an additive scalar).

We term z(x,6) the estimating function. Using (4), the estimating equation
(3) is equivalent to equating > ;_; z(x;,6) to its expectation under Py.

3.2 Differential geometry

The tangent space to the manifold P° € W at any point is concretely repre-
sented by W+, and that to £ at any point by V. Under our basic assumptions,
the function At is differentiable at P € P°, and its derivative supplies an iso-
morphism between W and V7, which links the two representations of any
tangent vector at P. Also through this isomorphism, the negative of the nat-
ural bilinear product is converted into a inner product on W+, so defining a
metric g — the decision metric — on P°: multiplying this by 1/2 yields the local
form of the divergence d. These constructions and properties, which are special
cases of the general theory of Lauritzen (1987a), make (P°,g,V,V*) a dually
flat statistical manifold (Amari and Nagaoka, 1982; Lauritzen, 1987b; Amari
and Nagaoka, 2000). We again remark that V is always the mixture connexion,

@ Springer



82 A. P. Dawid

whereas the dual connexion V* and the metric g will depend on the specific
decision problem.

However, much of the geometric framework can be fruitfully applied at a
global level, without invoking the differentiable structure. We illustrate this
below.

4 Generalised exponential family

Let F be the intersection of some affine subspace of V* with £, and £ =
(AH)~I(F) the corresponding subfamily of P. We call such £ a linear gener-
alised exponential family (LGEF). A 1-dimensional LGEF is a V*-geodesic.
Through its identification with the convex subset F of V*, a LGEF & inherits
an affine parametrisation.

Since q(-) = S(-,0),aLGEF £ = {Qp : B € B C R}, with an affine
parametrisation, is thus defined by the linear loss, or equivalently linear score,
property (Griinwald and Dawid, 2004, Sect. 7.2):

k
S(x, Qp) = o+ mx) + D Biti(x), (5)

i=1

for some m, t; € V, with By then a uniquely determined function of 8. Applying
Corollary 2 we find dfo/dp; = —E,{t:(X)} (B € B°).
Note that the property of being a LGEF is unaffected if we replace our
underlying decision problem by an equivalent one, as described in Sect. 1.1.
Let f := (t1,...,t), and define, for t € RK: ', := {P € P : Ep{t(X)} = t}.
Suppose that there exists P, € I'; N € (note that this need not hold in general:
see below.) Since S(P, Q) = (P, q), an easy calculation, using (5), yields:

(P=Pr,p:—q)=0 (Pel;,Q€f).
This in turn implies the “Pythagorean equality™:
d(P,Pr) +d(Pr,Q) =d(P,Q)  (Pel,Q€f). (6)
It readily follows that, for any P € I'y,

P, = arg geirgl d(P, Q). (7)

When P is the empirical distribution ?n of data (xq,...,x,) from X, if there
exists P; € € satisfying Ep {t(X)} = t:=n"1 > t(x;), then this will minimise
the empirical score > ; S(x;, Q) over Q € £.

Now fix Q € P, take m = q, and, for given ; € V, let £ be given by (5): then
€ is a LGEF containing Q. Again, if there exists P, € I'; N € then (6) holds for
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The geometry of proper scoring rules 83

all P € I';, whence we readily deduce

Pr = arg min d(P, Q). (8)

What happens if, for some 7, I'; # ¢ but I'y N € = @#? In this case P, can still
be defined by (8), but will not now be in £ (P; will in fact lie on the boundary
of P). However it turns out (Griinwald and Dawid, 2004, Sect. 10) that, under
mild conditions, such a case will satisfy the still stronger Pythagorean inequality:

d(P,Pr) +d(Pr,Q) =d(P,Q)  (PeTy). )

The family £” D £ of all P; given by (8), for all = such that I'; # 4, constitutes
a full generalised exponential family. In general this will not be flat — indeed,
even in simple problems it need not correspond to a smooth submanifold of V'
(Griinwald and Dawid, 2004, Example 7.1).

One might conjecture that, for any P € T';, (7) will continue to hold, in
the form P, = argmingcgm d(P, Q) — but this need not be so (Griinwald and
Dawid, 2004, Sect. 7.6.1).

Griinwald and Dawid (2004) investigate further properties of a statistical
decision problem, using convex duality and saddle-points in an associated game
against nature. These include but extend beyond properties of generalised expo-
nential families. It is likely that many of these properties can be given inter-
esting geometric interpretations within the framework set out above. However
in order to incorporate the full generality of this game-theoretic approach into
our geometrical framework it would be necessary to find ways of relaxing the
basic assumptions (i) and (ii).

5 Examples
Because any loss function determines a decision geometry, the class of these is
very wide. We consider a few special examples of some interest. Other examples
can be based on the various scoring rules presented in Dawid (1998),Dawid and
Sebastiani (1999),Gneiting and Raftery (2005).

For the following examples we take P = A = the set M of all distributions
on X that are absolutely continuous with respect to a given o-finite measure u.
For O € P we denote the density of Q with respect to u by ¢g(-), etc.

5.1 Logarithmic score and information geometry

Consider the loss function:

S(x, Q) = —log q(x). (10)
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Then S(P,Q) = — f y P(x)log q(x) du(x) is well-defined, and, as is well-known
(Cover and Thomas, 1991), is uniquely minimised in Q for Q = P, so that S is
a strictly proper scoring rule.

Correspondingly we have entropy function

HP) = —/p(t) log p(1) dpu(0), (11)

the Shannon entropy of P with respect to p; and divergence function

d(P,0) = / p(0) log {p(t)/q(0)} du (o), (12)
X

the Kullback—Leibler divergence between P and Q. The total empirical score (2)
is the negative log-likelihood function, and the minimum divergence estimator 6
given by (1) is the maximum likelihood estimator. The function s(x, #) becomes
Fisher’s (efficient) score function (not to be confused with scoring rule), and the
unbiased estimating Eq. (3) becomes the usual likelihood equation.

The Bayes act p € L£* corresponding to P € P is the negative log-density
function, p(x) = — log p(x); and its image =+ (P) in L™ is the set of negative log-
densities of positive multiples of P. Given any such function p’ we can recover
p ~7 p’ from the normalisation condition [ exp(—p)du = 1.

In this case the decision geometry reduces to the familiar information geom-
etry: the decision connexion V* is the exponential connexion (introduced as the
“Efron connexion” in Dawid, 1975), the decision metric is the Fisher metric,
and a “generalised’ exponential family” is just an ordinary exponential family.

5.2 Bregman geometry
We now investigate the general structure of a decision problem whose score

function S(x, Q) is determined, up to a constant possibly dependent on Q, by
the value of the density function ¢(-) at x:

S, Q) ~" Z(x, Q) == —£{q(x)) (13)

for some smooth function £ : R — R. For ease of further analysis we also
express & as ¥’, where ' denotes derivative.

Let {Qyp : 6 € R} be a smooth parametric family in P. Then z(x,0) =
—v"{qe(x)} g (x). Hence from (4)

k(0) = —/qg(t) ¥"{qo (O} 4o (1) A (0), (14)
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The geometry of proper scoring rules 85

whence we can take k(0) = «(0) — k(0), with

k(0) = / [¥{ge (O} — o) ¥'{ge(O}] ().

Since « (0) depends only on Qg and not otherwise on the family {Qy}, we deduce
that, for all Q € P, up to a constant

k(Q) =/[w{q(t)} — g ¥'{qg®}] du() (15)
and so
S, 0) = -y {qg(x)} — / [v{g®} — g ¥'{q®}] du(). (16)

So long as & is increasing, v is convex, and then this recovers the general
form of a (separable) Bregman score (Griinwald and Dawid, 2004, Eq. 34). The
corresponding Bregman divergence (Bregman, 1967; Csiszar, 1991) is

d(P,0) = / Alp(©,q(0) du() (17)

with
A(a,b) == y(a) — Y (b) — ¥/ (b) (a — b). (18)

This is non-negative for ¥ convex, so that then S is indeed a proper scoring rule.
The associated Bregman entropy is

H(P) = —/I/f {p(O} du (). (19)

By construction, the image p™ € LT of P € P is the set of translates of the
function —&{p(x)}. With respect to the decision connexion V*, the convex com-
bination P, of Py with weight 1 — w and P; with weight w satisfies

§{po)} =1 - w)é{po)} + wé{p1(0)} = co, (20)
where the “normalising constant” ¢, is chosen to make P, a probability dis-

tribution. As w varies, P, traces a V*-geodesic. Correspondingly a LGEF {Pg}
has the form

k
E(pp(0)} = Bo +mx) + D Biti(x).
i=1

Now let M,N € W, absolutely continuous with respect to u with densities
m(-), n(-), be tangent vectors to P € P € W. The counterpart n to N in the
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tangent space VT at pt € LT is the set of translates of the function

= —&{p(x0)} n(x).

0=0

% [—£{p(x0) + On(x)}]

Thus the Bregman metric is the inner product (-, -)p on W given by

(M,N)p = —(M,n) = / £ p)} n() dM()

= /E/{P(X)} m(x) n(x) du(x). (21)

In particular, for a parametric family {Py}, the divergence between Py and Py q¢
is 7g(0) do?, with

2(6) = / £ (pe )} (Po 0P dul).

For properties and applications of Bregman geometry see Eguchi (2005),Murata
et al. (2004). However most of these do not depend on the Bregman form, and
continue to hold for a general decision geometry.

5.2.1 An extension

Much of the above analysis still goes through if we relax the requirement (13)
to:

S, 0) ~" Z(x, Q) == —£{x,q(0)}. (22)

Again we introduce ¢ such that &(x,q) = ¥'(x, q), where ' now denotes differ-
entiation with respect to the second argument, g. We require that, for each x,
¥ be convex in g (equivalently, & be non-decreasing in ¢g). We obtain

K@ = [ [vita) - a0 ¥'tt.g0)] et (23)
$.0) = ~'txg() = [ [W1t.00) - a0 ¥ .g)] du) @4
1) =~ [ ¥iep0) du) (25)
A(P.0) = [ Alt.p(0.q(0) duty (26)
with
A(t,a,b) ==y (t,a) — y(t,b) — '(t,b) (a — b). (27)

We may describe the constructions above as extended Bregman score etc.
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In particular, taking v (x, g) of the form a(x) ¥ (¢) for a non-negative function
a effectively allows us to use a different integrating measure in (16), (17) and
(19) from that used for defining probability densities.

5.3 Special cases

5.3.1 Logarithmic score

The logarithmic score of Sect. 5.1 is the special case of the Bregman score for
&(q) = logq (equivalently, ¥ (q) = glogg — g). In this case, though not in
general, the geometry is independent of the choice of base measure p.

It is well known (Bernardo 1979) that the logarithmic score is essentially the
only proper scoring rule having the form S(x, Q) = —£{q(x)}, i.e. with k(Q) in
(15) independent of Q. In fact more is true: it is essentially the only proper
scoring rule having the form S(x, Q) = —&{x, q(x)}, i.e. with k(Q) in (23) inde-

pendent of Q. To see this, note that for an extended Bregman score the analogue
of (14) is

@) = — / 000 ¥ {6, g0 (1} o (6) (o), (28)

which has to vanish in such a case. Because the family {(Qg} is arbitrary, we must
thus have, for all Q € P:

/ q®) y"{t,q®}dm(t) = 0 (29)

for all m € WT with m < w. This can only hold if g(r) ¥"{t, q(¢)} is constant in ¢
[a.e. u], and thus of the form « (Q), which in turn yields

v'{x,q(x)} = k(Q) log q(x) + a(x). (30)

Moreover, since the distribution Q does not explicitly enter the left-hand side
of (30), we must in fact have

£(x,q) = klogq + a(x), (1)
equivalent to the logarithmic score.

5.3.2 Brier geometry

If we take £(g) = ¢, so that ¥ (q) = %qz, we obtain

1
S0 =5 / 4 du(t) — q(x). (32)
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This defines the Brier score. The corresponding Brier entropy function is

1
HP) = / P du) (33)

and the Brier divergence function is

1
ar,0) =3 / (P — q) du(o). (34)

The image pt € L£* corresponding to P € P is now the set of translates of
the negative density —p(-), and the decision connexion V* = V, the mixture
connexion. In particular a LGEF is just a mixture family.

The Brier metric is determined by the function

g6 = / (o)) du(x).

5.3.3 Tsallis geometry

Now for y € R, y # 0,1, take ¥ (q) = —oq” with (for convexity) o = 1 for
0 <y < 1,0 = —1 otherwise. We obtain the Tsallis score:

Sx,Q) =0 [V g0yt = (y - 1)/6](0" du(t)} : (35)

The corresponding Tsallis entropy, equivalent (when u is Lebesgue measure)
to that introduced by Tsallis (1988) in a physical context, is

H(P) = G/P(t)’” du(0), (36)

and the Tsallis divergence function is
d(P,Q) =0 J//P(I)CI(I)”*1 du@® — (y =1 H(Q) — H(P). (37)

The image pt € L£* of P € P is the set of translates of —oy p(x)?~!. With
respect to the decision connexion V*, the convex combination P, of Py with
weight 1 — w and P with weight w satisfies

PP =1 =) po)" T +op )’ —c,, (38)
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and a LGEF has the form

1-y

k
pp) = { Bo +mx) + >_ Bitix)

i=1

The Tsallis metric is defined by

g =y (1 — )| / P60V 2P (0} duu(x).

Formula (38) may be contrasted with the «-mixture, or convex combination
based on the «-connexion (Amari, 2005), which, for y = %(3 — a), can be
expressed as

Po@’ ™ =y x {(1 =@ po ™ + opr 07!} (39)

The «-connexion does not appear to be directly representable as a decision
connexion.

6 Further examples

Here we consider some examples that are not of Bregman type.

6.1 Pseudospherical score

As a variation on Sect. 5.3.3, suppose we seek a proper scoring rule having the
form:

S(x,0) = c(Q) q(x)” L.

From Theorem 1 we must have
6(9)/619(X)V du(x) + (y — 1)/6(9)619(36)”*1 qo(x)du(x) =0,

whence

«O) vy =1 [y’ () dpw)
c(6) Y e m

Integrating we obtain
c(8) o ligall, Y,
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where

1
lqll, = [ / 407 du«(X)]y

is the L, norm of g(-). Thus, up to a scalar multiple, we must have

1
q(x) ]y . (40)

S, Q) = —
Q) <||q||y

For y > 1 this is indeed a proper scoring rule, the pseudospherical (spherical
for y =2) score (Good 1971; Gneiting and Raftery 2005). Correspondingly we
have

H(P) = —|pl,
() gt dux)
lqny ™"

v =5
= liqll,™ “ / p(x)yduoc)] { / q(x)yduoc)]
1 1—1
- / P} {qr} 7 dM(X)}
g) = (v = D llpall, > [ / Po ()" 2 po(x)* dpu(x) / po () dpu(x)

2
—[/pZ‘lpe(x>du<x)] ]

The V*-convex combination satisfies:

dip,Q) = lply —

y—1 y—1 y—1
Po)"" _ 1 - w) po" P . (41)
IPolly Ipolly Iptlly

For the spherical case y = 2 these reduce to

1

HP) = — [ / o) du(x)} i

1 5 2 , 5
d(P,0) = - |1 rerdun | [ aw?duco
{Ja®)?du)})?

- /P(x) q(x) du(x)}
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2
g6) = Ipsll 3 [ / o2 du(x) / P02 dun(x) — | / po() Po(x) du(X)I }

pw(x)=1+kw[(1—w)p°(x)_1 Pl(x)—l]

w
poll2 P12

with k,, chosen so that ||pyll2 = k.

6.2 Ranked probability score

Consider the (non-strict) proper scoring rule:

S(x, Q) = {Q(A) — 14(x)}? (42)

where A € X and 14 is the indicator function of A. This is equivalent to the
Brier score for predicting whether or not X € A. We have

H(P) = P(A) {1 — P(A)} (43)
d(P,Q) = {P(A) — Q(A)}%. (44)

The associated (semi)-metric gives the divergence between Py and Py qp as
1g(0) do? with

g(0) = 2{Py(A))%.

If now we have a collection of such events, {A4,}, indexed by ¢t € 7, we can mix
the above quantities using a measure u over 7, thus obtaining:

56:.0) = [(0W) - 14, 0P duo) (45)
H®) = [ POy (1 = Pag) dut (46)
aP.Q) = [ (PA) = QAP duty 47)
50) =2 [ (o402 duco (48)

In the case 7 = X (discrete) and A; = {¢}, this becomes equivalent to the Brier
problem of Sect.5.3.2. If instead we take 7 = X = R and A; = (—00,1], so
that O(A,;) = Fp(t), the cumulative distribution function of Q evaluated at ¢,
we obtain the ranked probability score (Epstein, 1969; Gneiting and Raftery,
2005). In either case the scoring rule is strictly proper so long as u has full
support, and the decision connexion is the mixture connexion.
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6.3 Kernel scores

A further generalisation of the Brier score is as follows (Eaton, 1982; Eaton
et al., 1996; Dawid, 1998; Gneiting and Raftery, 2005). Let K : X x X — C
be a positive-definite kernel, i.e. K(x,y) = E(y,x), and ||m||%< = K(m,m) =
| [ K(x,y)dm(x) dm(y) > 0 for all non-null bounded signed measures m on X.
Consider

So(x, Q) = 10 — 8%, (49)

where §, denotes the point mass at x. This is a strictly proper scoring rule,
strongly equivalent to

1011% — K(x,0) — K(Q,x).
‘We have:

H(P) = —||PI% + EpléxI%
d(P,Q) = |P - Qll%
g(6) =2||Py|%.

The decision connexion is in all cases identical with the mixture connexion.

We recover the construction of Sect. 6.2 for K(x,y) = [14,(x) 14,(y) du(t) =
wit + Ay D {x,y}}. For the case X = R another possible kernel is K(x,y) =
[ €@ du(r), where 1 is a full-support measure on R. Then [|m[|% = [ ¢ (1) 2
du(r), where ¢,, () = [ €™ dm(x) denotes the characteristic function of m. We
then have:

Sx,Q) = / e — g0 (O] du(t)
HP) = / (1~ 19p0)P} du)
d(P,Q) = / 6p(0) — o) du()

@) =2 / 160D du@).

Gneiting and Raftery (2005) give a number of other examples of scoring rules
based on (real-valued) kernels.
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